Optimal Ensemble Learning Based on Distinctive Feature Selection by Univariate ANOVA-F Statistics for IDS
Abstract
Cyber-attacks are increasing day by day. The generation of data by the population of the world is immensely escalated. The advancements in technology, are intern leading to more chances of vulnerabilities to individual’s personal data. Across the world it became a very big challenge to bring down the threats to data security. These threats are not only targeting the user data and also destroying the whole network infrastructure in the local or global level, the attacks could be hardware or software. Central objective of this paper is to design an intrusion detection system using ensemble learning specifically Decision Trees with distinctive feature selection univariate ANOVA-F test. Decision Trees has been the most popular among ensemble learning methods and it also outperforms among the other classification algorithm in various aspects. With the essence of different feature selection techniques, the performance found to be increased more, and the detection outcome will be less prone to false classification. Analysis of Variance (ANOVA) with F-statistics computations could be a reasonable criterion to choose distinctives features in the given network traffic data. The mentioned technique is applied and tested on NSL KDD network dataset. Various performance measures like accuracy, precision, F-score and Cross Validation curve have drawn to justify the ability of the method.
References
Ektefa, M. Mohammadreza, S. Sara and A. Fatimah, “Intrusion detection using data mining techniques,” 200 - 203. 10.1109/INFRKM.2010.5466919.
Y. Wang, W. Cai and P. Wei, “A Deep Learning Approach For Detecting Malicious Javascript Code,” Wiley Online Library . February 2016.
C. Yin , Y. Zhu, J. Fei and H. Xinzheng, “A Deep Learning Approach For Intrusion Detection Using Recurrent Neural Networks,” IEEE Access. November 7, 2017.
Q. Niyaz, W. Sun, Y Javaid and A. Mansoor, “A Deep Learning Approach For Network Intrusion Detection system,” In Eai Endorsed Transactions on Security and Safety, Vol. 16, Issue 9, 2016.
M. Preeti, V. Vijay, T. Uday and S. P. Emmanuel, “A Detailed Investigation And Analysis Of Using Machine Learning Techniques For Intrusion Detection,” IEEE Communications Surveys & Tutorials, Volume: 21, Issue:1, First quarter 2019.
Y. Li, M. Rong And R. Jiao, “A Hybrid Malicious Code Detection Method Based On Deep Learning,” International Journal of Software Engineering and Its Applications 9(5):205-216, May 2015.
Gulshan and Krishan, “A Multi-Objective Genetic Algorithm Based Approach For Effective Intrusion Detection Using Neural Networks,” Springer. 2015.
K. Levent and D. C. Alan, “Network Intrusion Detection Using A Hidden Naïve Bayes Binary Classifier,” 2015 17th Uksim-Amss International Conference on Modelling and Simulation (Uksim).
A. Nadjaran, K. Mohsen, “A New Approach To Intrusion Detection Based On An Evolutionary Soft Computing Model Using Neuro-Fuzzy Classifiers,” July 2007, Computer Communications 30(10):2201-2212.
D. Amin and R Mahmood, “Feature Selection Based On Genetic Algorithm And Support Vector Machine For Intrusion Detection System,” The Second International Conference On Informatics Engineering & Information Science (Icieis2013).
A. Preeti and S. Sudhir, “Analysis of KDD Dataset Attributes - Class wise for Intrusion Detection,” Procedia Computer Science, Volume 57, 2015, 842-851.
D. M. Doan, D. H. Jeong and S. Ji, “Designing a Feature Selection Technique for Analyzing Mixed Data,” 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 2020, pp. 0046-0052, doi: 10.1109/CCWC47524.2020.9031193.
Campbell and Zachary, “Differentially Private ANOVA Testing,” 2018 1st International Conference on Data Intelligence and Security (ICDIS) (2018): 281-285.
S. K. Murthy, “Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery 2, 345–389 (1998).
S. Dhaliwal, A. Nahid and R. Abbas, “Effective Intrusion Detection System Using XGBoost. Information 2018, 9, 149.
Pedregosa et al., “Scikit-learn: Machine Learning in Python,” JMLR 12, pp. 2825-2830, 2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.