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Abstract—In the paper, an overview of the methods and 

algorithms of synthesis, realization and implementation used by 

the author to obtain orthogonal 3-D filters with a structure made 

of Givens rotations has been presented. The main advantage of 

orthogonal filters, which may have a lower sensitivity to 

quantization of the coefficients, was indicated. The author 

proposed a number of possible changes and modifications of 

individual stages, which may result in obtaining filters with even 

better parameters. The work will be the basis for the direction of 

further research. 
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I. INTRODUCTION 

HE publication presents and describes issues related to the 

synthesis, realization and implementation of orthogonal 

lossless 3-D filters based on Givens rotations [1]. Typically a 

Givens rotator is described as a system with two inputs and 

outputs that performs the following operation: 
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α – angle of the rotation. 

On figure 1 symbol of rotator used in the article is presented. 

 

 

Fig. 1. Used symbol of Givens rotator. 
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It has been shown that filters in the orthogonal implementation 

may have better parameters than their standard implementations 

using convolutions [2,3]. The use of Givens rotations in such 

systems has been proposed, among others, in publications [3,4] 

and [5]. Also, the synthesis and realization of 1-D rotation 

systems is presented in article [6], while 2-D in [7-9] and [10]. 

An implementation utilizing the CORDIC algorithm, among 

others, is presented in [11,12] and [13]. In papers [14-16], 

possible implementations of orthogonal 3-D FIR filters have 

been described. 

This article presents an overview of the methods of synthesis, 

realization and implementation of orthogonal 3-D rotation 

systems originally described by the transfer function of three 

variables: 
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where: 

L1, L2, L3 – filter orders, 

321 ,, lllb  – 3-D filter coefficients. 

The following sections also propose possible directions for 

further research and development of appropriate methods. 

II. PREVIOUS WORKS AND RESEARCH 

The work on orthogonal 3-D filters so far was based on the use 

of methods and functions developed for 1-D [6] and 2-D [7] 

systems. It is worth noting that the appropriate actions for 2-D 

structures are also founded on basic functions and algorithms 

for 1-D systems. Obtaining the final rotation structure has been 

divided into three stages, respectively: 

 - the synthesis, which includes the appropriate arithmetic 

operations on the original transfer function of the filter in order 

to obtain a paraunitary system, 

 - the realization, which includes the transformation of a 

paraunitary system to an orthogonal structure described by 

state-space equations with two inputs and two outputs, and 

obtaining of the rotation matrices, 

 - the implementation, which includes an appropriate 

interpretation of the rotation matrices and the hardware 

 

An Overview of the Methods of Synthesis, 

Realization and Implementation of Orthogonal 

3-D Rotation Filters and Possibilities of Further 

Research and Development 
Paweł Poczekajło 

T 



296 P. POCZEKAJŁO 

 

 

implementation method of the system based on Givens 

rotations. 

The author’s research on the obtainment of 3-D rotation 

systems was presented in a consistent series of publications [14-

16] and [17-19]. The methods presented there were based on the 

utilization of the properties of the transfer function with three 

variables. In line with this, a division has been made into 

separable and non-separable 3-D systems. 

For separable 3-D FIR filters, the transfer function (2) can be 

written [14,16] as: 

 )()()(),,( 332211321 zHzHzHzzzH =  (3) 

where: 

)( 11 zH , )( 22 zH , )( 33 zH  – 1-D sub-transfer functions of the 

3-D system. 

For the 3-D separable transfer function (3), the system can be 

realized as a cascade of 1-D sub-transfer functions (Fig. 2). 

 

 

Fig. 2. 3-D system realized by a cascade of 1-D systems. 

In the case of non-separable 3-D FIR filters the transfer 

function (2) can be written as [15]:  
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where: 

),(),( 112111 zHzH  – 1-D sub-transfer functions of the 3-D 

system.  

),,(),,( 3223232231 zzHzzH  – 2-D sub-transfer functions of 

the 3-D system. 

For the 3-D non-separable transfer function (4), the system can 

be realized as a cascade of 2-D and 1-D sub-systems (Fig. 3).  

 

 

Fig. 3. 3-D system realized by a cascade of 1-D and 2-D systems. 

In both (3) and (4), the original 3-D system was broken down 

into simpler systems of one or two variables. Therefore, further 

work could be carried out independently on the respective 

component subsystems. The 1-D and 2-D methods and 

functions used so far in each stage are presented in the following 

sections. 

A. The synthesis 

First of all, it is necessary to obtain a paraunitary system which 

must satisfy the dependency [6]: 
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The original filter is in this case described by the transfer 

function H(z), while the synthesis comes down to determining 

T(z) using the factorization of polynomials [6]. In the case of 

two-dimensional transfer functions (4), [7] proposes an 

approach in which one-dimensional sub-transfer functions are 

obtained first: 
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In this way, all one-dimensional transfer functions can be 

transformed into a paraunitary system independently. In the case 

of 3-D filters, the synthesis always comes down to finally 

operating on a single transfer function or a 1-D transfer function 

vector constituting the component subsystems of the original 

filter (similarly in the case of 2-D filters). 

The vector of transmittance H1(z1) (4) can be realized like 

a one multi-input and multi-ouput system [15]. 

B. The realization 

The paraunitary 1-D system obtained from the synthesis is 

in the next step transformed into orthogonal state-space 

equations [6]: 
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where: 

ISS =T
. 

State-space equations are supplemented with additional 

inputs, so that the matrix S is a square matrix [7]. 

In the case of a 2-D system broken down into 1-D 

subsystems, after determining orthogonal 1-D state-space 

equations, a two-dimensional Roesser model is used [20]: 
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 21DDD = ,  

A1, B1, C1, D1 – state-space matrices describing the first 1-D 

system, 

A2, B2, C2, D2 – state-space matrices describing the second 1-D 

system. 

As a result, subsystems for (3) and (4) are obtained, realized by 

the means of orthogonal state-space equations described by a 

square matrix. 

Then, for a given component subsystem described by the 

matrix S (6a, 7), we decompose this matrix into the product of 

the rotation matrices with permutations [11,12]: 

 kRRRRS 321=  (9) 
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R  – general form of 

a rotation matrix with a permutation. 

 

C. The implementation 

Each of the rotation matrices Ri (9) can be implemented 

with a Givens rotation and a delay block. On figure 4 and 5 3-D 

systems (e.g. FIR filters) realized by Givens rotations are 

presented. The Givens rotation design can be tailored to the 

specific hardware structure. Typically, it is an FPGA that allows 

the rotation structure to work in a pipeline, where individual 

operations are performed in parallel on subsequent input data. 

Adopting a pipelined implementation ensures the highest 

possible frequency of sampling the input data, processing it and 

returning the output values. 

The direct implementation of the Givens rotation requires 

multiplication and addition [13], which can be done using logic 

gate structures. Due to the propagation time, such a solution may 

result in longer data processing times by a single rotator. This 

will directly translate into a lower clock frequency of the 

finished system and thus slower input sampling and output 

return. 

An alternative is the possibility of using DSP blocks 

available in selected processors (e.g. Intel Cyclone, Arria, 

Stratix), which can perform, among others, multiplication 

operations in one clock cycle and allow a higher clock frequency 

[15]. The condition is a sufficiently large number of available 

DSP blocks, because the rotation structure for a separable 3-D 

filter with the number of coefficients a3 will require 12a 

multiplications and 6a additions in each cycle of the system 

operation [16] (e.g. for a filter with 53 coefficients, it is 

necessary to implement 60 multiplication blocks and 30 adder 

blocks). In the case of non-separable 3-D filters, the number of 

rotations may be greater than the number of coefficients [15], so 

the number of multiplications and additions, respectively, will 

be even greater. This is quite a significant limitation which may 

in some situations disqualify the possibility of using DSP blocks 

in the case of the selected FPGA chip. 

In [11], it was proposed to use the iterative CORDIC 

pipeline algorithm for the implementation of Givens rotations, 

which eliminates the need to use multiplier blocks. This solution 

allows for a fully pipeline structure, with relatively simple base 

operations (including addition and basic logical operations). 

This allows the use of higher system clock frequencies 

(comparable to the system clock frequencies on DSP blocks 

[19]). However, such a solution is burdened with a greater 

occupancy of rotations in the FPGA processor [19]. One j-th 

iteration of the Givens rotation with use CORDIC algorithm is 

expressed as follows [11]:  
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where: 

j = 0, 1, 2, … , J, 

J – number of iterations, 

q0 = 1,  

0
01 =y ,  

0
02 =y , 

210 xxe −= , 

210 xxf += , 

)sin(0 =s ,  

)cos(0 =c , 

J
yy 11 =  – input data of the rotator, 

J
yy 22 =  – input data of the rotator, 

α – angle of the rotation, 

x1, x2 – input data of the rotator,  

y1, y2 – output data of the rotator. 
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Fig. 4. 3-D separable system realized by a structure based of Givens rotators, H×V is the dimension of a single 2-D slide of  a 3-D data block which is 

processing. 

 

 

Fig. 5. 3-D separable system realized by a structure based of Givens rotators, H×V is the dimension of a single 2-D slide of  a 3-D data block which is 

processing. 
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III. POSSIBILITIES FOR FURTHER DEVELOPMENT 

The algorithms and solutions presented in Section 2 have been 

discussed in a series of consistent publications [14-19], where a 

number of advantages have been demonstrated, including 

mainly the low sensitivity of rotation filters to the quantization 

of coefficients [17,18]. For this reason, research into structures 

based on Givens rotations continues. In the following 

subsections, a number of proposals have been collected that 

constitute the possibilities of further development of appropriate 

algorithms and functions in order to improve their functioning 

and application. However, it should be emphasized that this is 

only a set of solutions, the verification of which, also in the 

context of feasibility, will be analyzed in the future. 

A. The synthesis 

The synthesis is a key stage and, from the point of view of 

numerical calculations, also quite problematic. This is the only 

stage where it is necessary to perform operations on 

polynomials. The factorization of first order polynomials is still 

relatively simple (even for many coefficients – with the use of 

appropriate computing environments). 

The first significant problem, however, is the accuracy of 

factorization, the possible error of which may be multiplied by 

subsequent operations. The finally obtained structure may even 

have completely different parameters (profiles) than the 

originally installed filter. The second issue is the polynomials of 

many variables (in this case two or three), the factorization of 

which is already a significant problem. This was one of the main 

reasons for the decomposition of the 3-D transfer function into 

1-D component subsystems according to (3), (5) and (6). The 

possibilities of further development of the synthesis method 

based on factorization may therefore come down to the 

development and use of more accurate algorithms and 

calculations as well as methods allowing for direct factorization 

of 2-D and 3-D polynomials (also with sufficiently high 

accuracy). 

B. The realization 

The realization so far allows to obtain orthogonal state-

space equations for 1-D systems and, using the two-dimensional 

Roesser model, also for 2-D systems [21]. Attempts were made 

to obtain orthogonal state-space equations for 3-D systems in an 

analogous manner. Examples of such realization are presented 

in [22]. For non-separable 3-D systems (4), a similar 

implementation is also possible. However, preliminary analyzes 

showed that the obtained matrices were very large. The matrix 

A of orthogonal state-space equations for a non-separable 3-D 

system with several dozen coefficients, according to 

predictions, could have up to several thousand elements. 

Therefore, in the original research, this concept was abandoned 

as unnecessarily elaborate and problematic. 

Perhaps this idea was rejected too hastily, because one of 

the stages of implementation is the minimization of the matrix 

A (8) [6,7], which ultimately results in a less complex structure, 

i.e. the more zero elements in the matrix A, the less rotations 

will be in the finally obtained system. This fact can be used at 

the stage of constructing orthogonal state-space matrices for 

non-separable 3-D systems and arranging them in such a way as 

to minimize it immediately.  Thanks to this, despite the large 

number of elements in the matrices, operating on them should 

be quite simple and give satisfactory results. 

C. The implementation 

The implementation presented in Section 2.3 can be based 

on two methods. The first is the CORDIC algorithm, and the 

second is the direct execution of rotation’s actions (1) using 

logic gates or DSP blocks. The development of work on this 

element may come down to changes in the CORDIC algorithm, 

which was presented in [18] and in a slightly modified version 

in [17]. The analyzes have shown that there may be situations in 

which the final (exact) result was obtained at the i-th iteration, 

and another attempt to approximate for (i+1)-th iteration may 

lead to a distortion of the result with an error resulting from the 

value of i and the assumed fixed point notation. It has also been 

noticed that there are register overflows (which you need to 

watch out for). The introduction of appropriate modifications to 

the CORDIC algorithm is possible, however, they significantly 

affect the occupancy of the structure in the FPGA and may cause 

an extension of the processing time. Ultimately, this can lead to 

a situation where the direct structure of the rotation (on the 

multiplication and addition blocks) is parametrically better. 

Another suggestion is a completely different approach to 

the rotation. The concept described above is based on the fact 

that the rotation operates on a two-element input vector that 

represents the position of a given point in the Cartesian 

coordinate system. The rotation itself is then characterized by 

the values of the trigonometric functions sin(α) and cos(α), 

where α is the rotation angle of the rotator. An alternative may 

be the polar approach, in which the rotation’s input is a point 

that is described by the length of the vector (relative to the origin 

of the coordinate system) and its angle. Accordingly, the 

rotation would also need to be described with the quantities 

defining the change in angle and length of the vector. This 

solution can provide a significant improvement in accuracy 

while reducing the computational complexity of the rotation. 

IV. CONCLUSION 

The article presents the methods and algorithms used to obtain 

rotation structures realizing 3-D filters, where the author 

reviewed his publications on this subject. Section 2 lists the 

relevant activities used so far at the stages of synthesis, 

realization and implementation in the hardware. Links to 

relevant methods for 1-D and 2-D systems were considered. 

Section 3 concerned the proposed changes and further 

development of various operations (for all stages of work) that 

may have a positive impact on the final structure, including by 

reducing calculation errors. Particular attention was paid to 

numerical methods and matrix operations, the ostensibly 

problematic performance of which may positively affect the 

final results. The final implementation is also an important 

issue, as it may affect the correct operation of the system. The 

article will be the basis for defining and directing the author’s 

further scientific and research work. 
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