Modified Block Sparse Bayesian Learning-Based Compressive Sensing Scheme For EEG Signals
Abstract
Advancement in medical technology creates some issues related to data transmission as well as storage. In real-time processing, it is too tedious to limit the flow of data as it may reduce the meaningful information too. So, an efficient technique is required to compress the data. This problem arises in Magnetic Resonance Imaging (MRI), Electro Cardio Gram (ECG), Electroencephalogram (EEG), and other medical signal processing domains. In this paper, we demonstrate Block Sparse Bayesian Learning (BSBL) based compressive sensing technique on an Electroencephalogram (EEG) signal. The efficiency of the algorithm is described using the Mean Square Error (MSE) and Structural Similarity Index Measure (SSIM) value. Apart from this analysis we also use different combinations of sensing matrices too, to demonstrate the effect of sensing matrices on MSE and SSIM value. And here we got that the exponential and chi-square random matrices as a sensing matrix are showing a significant change in the value of MSE and SSIM. So, in real-time body sensor networks, this scheme will contribute a significant reduction in power requirement due to its data compression ability as well as it will reduce the cost and the size of the device used for real-time monitoring.References
Zou, Xiuming, Lei Feng, and Huaijiang Sun. "Compressive Sensing of Multichannel EEG Signals Based on Graph Fourier Transform and Cosparsity." Neural Processing Letters (2019): 1-10.
Tayyib, Muhammad, Muhammad Amir, Umer Javed, M. Waseem Akram, Mussyab Yousufi, Ijaz M. Qureshi, Suheel Abdullah, and Hayat Ullah. "Accelerated sparsity-based reconstruction of compressively sensed multichannel EEG signals." Plus one 15, no. 1 (2020): e0225397.
Şenay, Seda, Luis F. Chaparro, Mingui Sun, and Robert J. Sclabassi. "Compressive sensing and random filtering of EEG signals using Slepian basis." In 2008 16th European signal processing conference, pp. 1-5. IEEE, 2008.
Gurve, Dharmendra, Denis Delisle-Rodriguez, Teodiano Bastos-Filho, and Sridhar Krishnan. "Trends in Compressive Sensing for EEG Signal Processing Applications." Sensors 20, no. 13 (2020): 3703.
Amezquita-Sanchez, Juan P., Nadia Mammone, Francesco C. Morabito, Silvia Marino, and Hojjat Adeli. "A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals." Journal of neuroscience methods 322 (2019): 88-95.
DeVore, R. "Nonlinear approximation Acta Numerica, 51 {150." (1998).
Einstein, A., B. Podolsky, and N. Rosen, 1935, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 47, 777-780.
Baraniuk, R. G. "Compressive sensing, IEEE Signal Proc." Mag 24, no. 4 (2007): 118-120.
Upadhyaya, Vivek, and Mohammad Salim. "Basis & Sensing Matrix as key effecting Parameters for Compressive Sensing." In 2018 International Conference on Advanced Computation and Telecommunication (ICACAT), pp. 1-6. IEEE, 2018.
E. Candes. Compressive sampling. In Proc. Int. Congress of Math., Madrid, Spain, Aug. 2006.
E. Candes and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Compute. Math., 6(2):227-254, 2006.
E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489-509, 2006.
E. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207-1223, 2006.
E. Candes and T. Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406-5425, 2006.
D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289-1306, 2006.
S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R.G. Baraniuk, “Analog-to-information conversion via random demodulation,” in Proc. IEEE Dallas Circuits Systems Workshop, Oct. 2006, pp. 71-74.
Zhang, Zhilin, Tzyy-Ping Jung, Scott Makeig, and Bhaskar D. Rao. "Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning." IEEE Transactions on Biomedical Engineering 60, no. 2 (2012): 300-309.
https://sccn.ucsd.edu/eeglab/download.php.
Joshi, Amit Mahesh, and Vivek Upadhyaya. "Analysis of compressive sensing for non-stationary music signal." In 2016 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), pp. 1172-1176. IEEE, 2016.
Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13, no. 4 (2004): 600-612.
Nibheriya, Khushboo, Vivek Upadhyaya, and Ashok Kumar Kajla. "To Analysis the Effects of Compressive Sensing on Music Signal with variation in Basis & Sensing Matrix." In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1121-1126. IEEE, 2018.
Zhang, Zhilin, Tzyy-Ping Jung, Scott Makeig, and Bhaskar D. Rao. "Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware." IEEE Transactions on Biomedical Engineering 60, no. 1 (2012): 221-224.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.