Two Optimization Ways of DDR3 Transmission Line Equal-Length Wiring Based on Signal Integrity
Abstract
As we enter the 5G (5th-Generation) era, the amount of information and data has become increasingly tremendous. Therefore, electronic circuits need to have higher chip density, faster operating speed and better signal quality of transmission. As the carrier of electronic components, the design difficulty of high-speed PCB (Printed Circuit Board) is also increasing. Equal-length wiring is an essential part of PCB design. But now, it can no longer meet the needs of designers. Accordingly, in view of the shortcomings of the traditional equal-length wiring, this article proposes two optimization ways: the "spiral wiring" way and the "double spiral wiring" way. Based on the theoretical analysis of the transmission lines, the two optimization ways take the three aspects of optimizing the layout and wiring space, suppressing crosstalk and reducing reflection as the main points to optimize the design. Eventually, this article performs simulation and verification of schematic diagram and PCB of the optimal design by using HyperLynx simulation software. The simulation results show that these two ways not only improve the flexibility of the transmission line layout, but also improve the signal integrity of the transmission lines. Of course, this also proves the feasibility and reliability of the two optimized designs.References
Gong Yonglin. The hot spots of printed circuit technology in 2020.
Printed Circuit Information, 28(2):1–11, 2020.
Myeonghoon Oh, Youngwoo Kim, Hag Young Kim, Young Kyun Kim,
and Jinsung Kim. Wire optimization and delay reduction for high-performance on-chip interconnection in gals systems. Etri Journal, 39(4):582–591, 2017.
Yuan Wei-Qun, Song Jian-Yuan, Chen Shi-Rong, Suntak Technology Co, and LTD. Research and optimization design of high-speed pcb based on signal integrity. Journal of Guangdong University of Technology, 36(6):74–79, 2019.
L.W.; Zhao Z.L. Yang, C.Z.; De. Research on signal integrity in high
speed digital pcb board design. Automation and Instrumentation, (9):1–4, 2018.
Yuan Wei-Qun, Song Jian-Yuan, Chen Shi-Rong, Suntak Technology Co, and LTD. Research and optimization design of high-speed pcb based on signal integrity. Journal of Guangdong University of Technology, 36(6):74–79, 2019.
Zhang Min. Signal integrity and design optimization of high speed
parallel bus interface. Wireless Internet Technology, 15(6):3–4, 2019.
Nastaran Soleimani, Mohammad G H Alijani, and Mohammad Hassan Neshati. Crosstalk analysis of multi-microstrip coupled lines using transmission line modeling. International Journal of Rf and Microwave Computer-aided Engineering, 29(6), 2019.
Y.; Wen C.L. Yong, J.H.; Ting. PADS software foundation and application examples. Publishing House of Electronics Industry, 2019.
Teng Li. A study on si simulation of high-speed interconnection channel. Electronics and Packaging, 18(12):37–40, 2018.
H. Sasaki, M. Kanazawa, T. Sudo, A. Tomishima, and T. Kaneko. New frequency dependent target impedance for ddr3 memory system. pages 1–4, 2011.
C. Liao, B. Mutnury, C. Chen, and Y. Lee. Pcb stack-up design
and optimization for next generation speeds. In 2016 IEEE 25th
Conference on Electrical Performance Of Electronic Packaging And
Systems (EPEPS), pages 155–158, 2016.
Nastaran Soleimani, Mohammad GH Alijani, and Mohammad H Neshati. Crosstalk analysis at near-end and far-end of the coupled transmission lines based on eigenvector decomposition. AEU-International Journal of Electronics and Communications, 112:152944, 2019.
X. Ye and C. Ye. Transmission lines and basic signal integrity. In 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI PI), pages 1–51, 2018.
Wang Xiaojing, Ye Ming, and Ma Yan. Research crosstalk between
parallel interconnects. Electronic Measurement Technology, 2015.
J. Fan, X. Ye, J. Kim, B. Archambeault, and A. Orlandi. Signal integrity design for high-speed digital circuits: Progress and directions. IEEE Transactions on Electromagnetic Compatibility, 52(2):392–400, 2010.
Dong Zhang, L. I. Qiong, and Qianqin Qin. Application of simulation analysis based on ibis model to sdram pcb design. Journal of Wuhan University, 2011.
A. K. Pandey. Power-aware signal integrity analysis of ddr4 data bus in onboard memory module. In 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI), pages 1–4, 2016.
Nastaran Soleimani, Mohammad GH Alijani, and Mohammad H Neshati. Crosstalk analysis of multi-microstrip coupled lines using transmission line modeling. International Journal of RF and Microwave
Computer-Aided Engineering, 29(6):e21677, 2019.
S. Muller, T. Reuschel, R. Rimolo-Donadio, Y. H. Kwark, H. Bruns, and C. Schuster. Energy-aware signal integrity analysis for high-speed pcb links. IEEE Transactions on Electromagnetic Compatibility, 57(5):1226–1234, 2015.
Jie Tang, Yi Gong, and Zhen Guo Yang. Failure analysis on cracking of blind and buried vias of printed circuit board for high-end mobile phones. Soldering and Surface Mount Technology, 31(4), 2019.
Liu Lu, Cao Yuesheng, and Duo Ruihua. Design and realization of
high-density fdr interconnection switch board. Computer Engineering,
(6):3, 2016.
M S Al Salameh and M M Ababneh. Selecting printed circuit board
parameters using swarm intelligence to minimize crosstalk between
adjacent tracks. International Journal of Numerical Modelling-electronic
Networks Devices and Fields, 28(1):21–32, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.