Extended Definitions of Spectrum of a Sampled Signal
Abstract
It is shown that a number of equivalent choices for the calculation of the spectrum of a sampled signal are possible. Two such choices are presented in this paper. It is illustrated that the proposed calculations are more physically relevant than the definition currently in use.References
A. Borys, “Spectrum aliasing does not occur in case of ideal signal sampling,” Intl Journal of Electronics and Telecommunications, vol. 67, no. 1, pp. 71-77, 2021.
J. H. McClellan, R. Schafer, M. Yoder, DSP First. London, England: Pearson, 2015.
M. Vetterli, J. Kovacevic, V. K. Goyal, Foundations of Signal Processing. Cambridge, England: Cambridge University Press, 2014.
A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing. New Jersey, USA: Prentice Hall, 1998.
R. J. Marks, Introduction to Shannon Sampling and Interpolation Theory. New York, USA: Springer-Verlag, 1991.
R. N. Bracewell, The Fourier Transform and Its Applications. New York, USA: McGraw-Hill , 2000.
V. K. Ingle, J. G. Proakis, Digital Signal Processing Using Matlab. Stamford, CT, USA: Cengage Learning, 2012.
P. Prandoni, M. Vetterli, Signal Processing for Communications. Lausanne, Switzerland: EPFL Press, 2008.
N.T. Thao, M. Vetterli, “Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates”, IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 519-531, 1994.
K. Adam, A. Scholefield, M. Vetterli, “Encoding and Decoding Mixed Bandlimited Signals Using Spiking Integrate-and-Fire Neurons”, 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 9264-9268, May 2020.
R. Alexandru, P. L. Dragotti, “Reconstructing classes of non-bandlimited signals from time encoded information”, IEEE Transactions on Signal Processing, vol. 68, pp. 747-763, 2020.
A. Lazar, L. T. Toth, “Perfect recovery and sensitivity analysis of time encoded bandlimited signals,” IEEE Transactions on Circuits and Systems – I: Regular Papers, vol. 51, no. 10, pp. 2060-2073, 2004.
J. A. Urigueen, T. Blu, P. L. Dragotti, “FRI Sampling with arbitrary kernels”, IEEE Transactions on Signal Processing, vol. 61, pp. 5310-5323, 2013.
M. Vetterli, P. Marziliano, T. Blu, “Sampling signals with finite rate of innovation”, IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1417-1428, 2002.
P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and recon-
structing signals of finite rate of innovation: Shannon meets strang-fix,”
IEEE Transactions on Signal Processing, vol. 55, no. 5, pp. 1741-1757, 2007.
R. Tur, Y. C. Eldar, Z. Friedman, “Innovation rate sampling of pulse streams with application to ultrasound imaging,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1827-1842, 2011.
M. Unser, “Sampling – 50 years after Shannon,” Proceedings of the IEEE, vol. 88, no. 4, pp. 569-587, 2000.
G. Ortiz-Jimenez, M. Coutino, S. P. Chepuri, G. Leus, “Sparse sampling for inverse problems with tensors”, IEEE Transactions on Signal Processing, vol. 67, no. 12, pp. 3272-3286, 2019.
S. P. Chepuri, G. Leus, “Graph sampling for covariance estimation”, IEEE Transactions on Signal and Information Processing over Networks, vol. 3, no. 3, pp. 451-466, 2017.
M. R. D. Rodrigues, Y. C, Eldar, Information-Theoretic Methods in Data Science. Cambridge, England: Cambridge University Press, 2021.
M. R. D. Rodrigues, H. Bolcskei, S. Draper, Y. Eldar, V. Tan, “Introduction to the issue on information-theoretic methods in data acquisition, analysis, and processing”, IEEE Journal on Selected Topics in Signal Processing, vol. 66, no. 9, pp. 2314-2329, 2018.
G. Matz, H. Bölcskei, and F. Hlawatsch, “Time-frequency foundations of communications”, IEEE Signal Processing Magazine, vol. 30, no. 6, pp. 87-96, 2013.
Y. Eldar, H. Bölcskei, “Geometrically uniform frames”, IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 993-1006, 2003.
Y. Kopsinis, K. Slavakis, S. Theodoridis “On line sparse system identification and signal reconstruction using projections onto weighted l1 balls”, IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 936-952, 2011.
A. Morgado, R. del Río, J.M. de la Rosa, “High-efficiency cascade sigma-delta modulators for the next generation software-defined-radio mobile systems,” IEEE Trans. on Instrumentation and Measurement, vol. 61, pp. 2860-2869, 2012.
L. Zhao, Z. Chen, Y. Yang, L. Zou, Z. J. Wang, “ICFS clustering with multiple representatives for large data”, IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 3, pp. 728-738, 2019.
V. Poor, An Introduction to Signal Detection and Estimation. Berlin, Germany: Springer-Verlag, 1994.
T. Kailath, V. Poor, “Detection of stochastic processes”, IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2230-2231, 1998.
A. Yeredor, “Blind channel estimation using first and second derivatives of the characteristic function”, IEEE Signal Processing Letters, vol. 9, no. 3 pp. 100-103, 2002.
J.J. Clark, M.R. Palmer, P.D. Lawrence, “A transformation method for the reconstruction of functions from non-uniformly spaced samples,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 33, pp. 1151-1165, 1985.
L. Heyoung, Z.Z. Bien, “A variable bandwidth filter for estimation of instantaneous frequency and reconstruction of signals with time-varying spectral content,” IEEE Transactions on Signal Processing, vol. 59, pp. 2052-2071, 2011.
E. Lee, D. Messerschmitt, Digital Communication. Boston, USA: Kluwer, 1994.
S. Mallat, A Wavelet Tour of Signal Processing. San Diego, USA: Aca-demic, 1998.
P. Stoica, R. Moses, Introduction to Spectral Analysis. Englewood Cliffs, USA: Prentice-Hall, 2000.
H. P. E. Stern, S.A. Mahmoud, Communication Systems: Analysis and Design. Upper Saddle River, USA: Prentice-Hall, 2004.
M. Vetterli, J. Kovacevic, Wavelets and Subband Coding. Englewood Cliffs, USA: Prentice-Hall, 1995.
E. J. Candè, M. B. Wakin, “An introduction to compressive sampling”, IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, 2008.
A. Zayed, Advances in Shannon’s Sampling Theory. Boca Raton, USA: CRC Press, 1993.
R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539–550, 1999.
P. P. Vaidyanathan, “Generalizations of the sampling theorem: seven decades after Nyquist,” IEEE Trans. Circuits Systems I: Fundamental Theory and Applications, vol. 48, no. 9, pp. 1094–1109, 2001.
H. J. Landau, “Sampling, data transmission, and the Nyquist rate”, Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, 1967.
R.G. Lyons, Understanding Digital Signal Processing. Reading, USA: Addison-Wesley, 1997.
A. J. Jerri, “The Shannon sampling theorem - its various extensions and applications: a tutorial review,” Proceedings of the IEEE, vol. 65, no. 11, pp. 1565–1596, 1977.
Y. C. Eldar, T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Processing Magazine, vol. 26, no. 3, pp. 48–68, 2009.
A. Papoulis, “Error analysis in sampling theory,” Proceedings of the IEEE, vol. 54, no. 7, pp. 947–955, 1966.
A. Papoulis, “Generalized sampling expansion,” IEEE Transactions on Circuits and Systems, vol. 24, no. 11, pp. 652–654, 1977.
R. G. Vaughan, N. L. Scott, D. R. White, “The theory of bandpass sampling,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 1973–1984, 1991.
Y. M. Lu, M. N. Do, “A theory for sampling signals from a union of subspaces,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2334–2345, 2008.
C. Herley, P. W. Wong, “Minimum rate sampling and reconstruction of signals with arbitrary frequency support,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1555–1564, 1999.
L. Schwartz, Théorie des Distributions. Paris, France: Hermann, 1950-1951.
A. Borys, “Spectrum aliasing does occur only in case of non-ideal signal sampling”, Intl Journal of Electronics and Telecommunications, vol. 67, no. 1, pp. 79-85, 2021.
S. Boyd, L. Chua, “Fading memory and the problem of approximating nonlinear operators with Volterra series,” IEEE Transactions on Circuits and Systems, vol. 32, no. 11, pp. 1150-1161, 1985.
L. V. Kantorovich, G. P. Akilov, Functional Analysis. Oxford, England: Pergamon Press, 1982.
I. W. Sandberg, “Linear maps and impulse responses,” IEEE Transactions on Circuits and Systems, vol. 35, no. 2, pp. 201-206, 1988.
I. W. Sandberg, “Causality and the impulse response scandal,” IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications, vol. 50, no. 6, pp. 810-813, 2003.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.