Analysis of Coverage and Area Spectral Efficiency under Various Design Parameters of Heterogeneous Cellular Network
Abstract
As day by day the population is increasing, the use of mobile phones and different applications is increasing which requires high data rate for transmission. Homogeneous cellular network cannot fulfill the demand of mobile users, so creating a heterogeneous cellular network (HCN) is a better choice for higher coverage and capacity to fulfil the increasing demand of upcoming 5G and ultra-dense cellular networks. In this research, the impact of antenna heights and gains under varying pico to macro base stations density ratio from 2G to 5G and beyond on two-tier heterogeneous cellular network has been analyzed for obtaining optimum results of coverage and area spectral efficiency. Furthermore, how the association of UEs affects the coverage and ASE while changing the BSs antenna heights and gains has been explored for the two-tier HCN network model. The simulation results show that by considering the maximum macro BS antenna height, pico BS antenna height equal to user equipment (UE) antenna height and unity gains for both macro and pico tiers, the optimum coverage and area spectral efficiency (ASE) for a two-tier fully loaded heterogeneous cellular network can be obtained.References
RYSAVY Research, “LTE to 5G: Cellular and Broadband Innovation,” 5G Americas white paper, 2017.
J. Acharya, L. Gao, and S. Gaur, “Heterogeneous Networks in LTE-Advanced,” John Wiley & Sons, 2014.
H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and analysis of K-tier downlink heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 30(3), 2012, pp. 550-560.
J. Chen, P. Rauber, D. Singh, C. Sundarraman, P. Tinnakornsrisuphap, and M. Yavuz, “Femtocells – Architecture & Network Aspects,” Qualcomm, 2010, pp. 1-6.
M. Ghanbarisabagh, G. Vetharatnam, S. M. Giacoumidis, and Malayer, “Capacity Improvement in 5G Networks Using Femtocell,” Wireless Personal Communications, vol. 105, 2019, pp. 1027–1038, https://doi.org/10.1007/s11277-019-06134-2.
F. Baccelli, and B. Btaszczyszyn, “Stochastic Geometry and Wireless Networks: Volume I: Theory,” Foundations and Trends in Networking, Hanover, USA, 2009.
M. Haenggi, “Stochastic Geometry for Wireless Networks,” Cambridge University Press, 2012.
S. N. Chiu, D. Stoyan, W. Kendall, and J. Mecke, “Stochastic Geometry and its applications,” Wiley series in Probability and Statistics, John Wiley & Sons, 2013.
J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Transactions on Communications, vol. 59, no. 11, 2011, pp. 3122–3134.
H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and analysis of K-tier downlink heterogeneous cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, 2012, pp. 550–560.
Y. Deng, L. Wang, M. Elkashlan, M. Di Renzo and J. Yuan, “Modeling and Analysis of Wireless Power Transfer in Heterogeneous Cellular Networks,” IEEE Transactions on Communications, vol. 64, no. 12, 2016, pp. 5290-5303.
Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis and J. G. Andrews, “User Association for Load Balancing in Heterogeneous Cellular Networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6, 2013, pp. 2706-2716.
S. Singh, and H.S. Dhillon, “Offloading in Heterogeneous Networks: Modeling, Analysis, and Design Insights,” IEEE Transactions on Wireless Communications, vol. 12 (5), 2013, pp. 2484–2497.
W. Wang and G. Shen, “Energy Efficiency of Heterogeneous Cellular Network,” IEEE 72nd Vehicular Technology Conference - Fall, Ottawa, 2010, pp. 1-5.
X. Chen, J. Wu, Y. Cai, H. Zhang and T. Chen, “Energy-Efficiency Oriented Traffic Offloading in Wireless Networks: A Brief Survey and a Learning Approach for Heterogeneous Cellular Networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, 2015, pp. 627-640.
X. Li, R. W. Heath Jr., K. Linehan, and R. Butler, “Impact of metro cell antenna pattern and downtilt in heterogeneous networks,” arXiv:1502.05782 [cs.IT], 2015. [Online] Available: http://arxiv.org/abs/1502.05782.
L. Xiang, H. Chen, and F. Zhao, “Area Spectral Efficiency and Energy Efficiency Tradeoff in Ultradense Heterogeneous Networks,” Wireless Communications and Mobile Computing, Hindawi, vol. 2017.
M. Ding and D. Lopez Perez, “Please Lower Small Cell Antenna Heights in 5G,” IEEE Global Communications Conference (GLOBECOM), Washington, DC, 2016, pp. 1-6.
M. Ding and D. López-Pérez, “Performance Impact of Base Station Antenna Heights in Dense Cellular Networks,” IEEE Transactions on Wireless Communications, vol. 16, no. 12, 2017, pp. 8147-8161.
M. M. Shaikh, M. C. Aguayo-Torres, “Joint Uplink/Downlink Coverage and Spectral Efficiency in Heterogeneous Cellular Network,” Springer, Wireless Personal Communications Journal, 2016, DOI: 10.1007/s11277- 016-3889-1.
M. M. Shaikh, M. C. Aguayo-Torres, “Fairness and Rate Coverage of Symmetric Transmission over Heterogeneous Cellular Networks under Diverse Coupling and Association Criteria,” Springer Wireless Personal Communications Journal, 2017, DOI: 10.1007/s11277-017-4418-6.
S. Mukherjee, “Analytical Modeling of Heterogeneous Cellular Networks: Geometry, Coverage, and Capacity,” Cambridge University Press, 2014.
M. Ding, D. Lopez-Perez, H. Claussen and M. A. Kaafar, “On the Fundamental Characteristics of Ultra-Dense Small Cell Networks,” IEEE Network, vol. 32, no. 3, 2018, pp. 92-100.
3GPP, “TR 36.828 V11.0.0: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation (Release 11),” 2012.
3GPP, “TR 36.814, V2.2.0: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects,” 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.