Comparative BER Analysis of Free Space Optical System using Wavelength Diversity over Exponentiated Weibull channel

Authors

  • Dhaval Shah Institute of Technology, Nirma University
  • Hardik Joshi Institute of Technology, Nirma University
  • Dilipkumar Kothari Institute of Technology, Nirma University

Abstract

Atmospheric turbulence is considered as major threat to Free Space Optical (FSO) communication as it causes irradiance and phase fluctuations of the transmitted signal which degrade the performance of FSO system. Wavelength diversity is one of the techniques to mitigate these effects. In this paper,
the wavelength diversity technique is applied to FSO system to improve the performance under different turbulence conditions which are modeled using Exponentiated Weibull (EW) channel. In this technique, the data was communicated through 1.55 µm, 1.31 µm, and 0.85 µm carrier wavelengths. Optimal Combining (OC) scheme has been considered to receive the signals at
receiver. Mathematical equation for average BER is derived for wavelength diversity based FSO system. Results are obtained for the different link length under different turbulence conditions. The obtained average BER results for different turbulence conditions characterized by EW channel is compared with the published result of average BER for different turbulence which is presented by classical channel model. A comparative BER analysis shows that maximum advantage of wavelength diversity technique is obtained when different turbulence conditions are modeled by EW channel.

References

V. W. S. Chan, “Free-Space Optical Communications,” J. Light. Technol., vol. 24, no. 12, pp. 4750–4762, dec 2006, doi: 10.1109/JLT.2006.885252

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE, vol. 58, no. 10, pp. 1523–1545, 1970, doi: 10.1109/PROC.1970.7977

J. Schuster, “Free space optics technology overview,” a Present., 2002.

H. A. Fadhil, A. Amphawan, H. A. B. Shamsuddin, T. H. Abd, H. M. R.

Al-Khafaji, S. A. Aljunid, and N. Ahmed, “Optimization of free space

optics parameters: An optimum solution for bad weather conditions,”

Opt. J. Light Electron Opt., vol. 124, no. 19, pp. 3969–3973, 2013,

doi: 10.1016/j.ijleo.2012.11.059

E. Wainright, H. H. Refai, and J. J. Sluss Jr, “Wavelength diversity in

free-space optics to alleviate fog effects,” in Free. Laser Commun. Technol. XVII, vol. 5712. International Society for Optics and Photonics,

, pp. 110–118, doi: 10.1117/12.591193

L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” JOSA A, vol. 16, no. 6, pp. 1417–1429,

, doi: 10.1364/JOSAA.16.001417

H. Henniger and O. Wilfert, “An Introduction to Free-space Optical

Communications.” Radioengineering, vol. 19, no. 2, 2010.

H. Moradi, M. Falahpour, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “BER analysis of optical wireless signals through lognormal fading channels with perfect CSI,” in 2010 17th Int. Conf. Telecommun. IEEE, 2010, pp. 493–497, doi: 10.1109/ICTEL.2010.5478870

M. Uysal and J. Li, “Error rate performance of coded free-space optical

links over gamma-gamma turbulence,” in 2004 IEEE Int. Conf. Commun.

(IEEE Cat. No. 04CH37577), vol. 6. IEEE, 2004, pp. 3331–3335,

doi: 10.1109/ICC.2004.1313162

H. E. Nistazakis, V. D. Assimakopoulos, and G. S. Tombras, “Performance estimation of free space optical links over negative exponential atmospheric turbulence channels,” Opt. J. Light Electron Opt., vol. 122, no. 24, pp. 2191–2194, 2011, doi:ttps://doi.org/10.1016/j.ijleo.2011.01.013

M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of

coded free-space optical links over strong turbulence channels,” IEEE

Commun. Lett., vol. 8, no. 10, pp. 635–637, 2004, doi: 10.1109/ LCOMM.2004.835306

R. Barrios and F. Dios, “Exponentiated weibull distribution family under aperture averaging for gaussian beam waves,” Optics express, vol. 20, no. 12, pp. 13 055–13 064, 2012, doi: 10.1364/OE.20.013055

L. M. Wasiczko and C. C. Davis, “Aperture averaging of optical

scintillations in the atmosphere: experimental results,” in Atmos. Propag.

II, vol. 5793. International Society for Optics and Photonics, 2005, pp.

–208, doi: 10.1117/12.606020

P. R. Barbier, D. W. Rush, M. L. Plett, and P. Polak-Dingels, “Performance improvement of a laser communication link incorporating

adaptive optics,” in Artif. Turbul. Imaging Wave Propag., vol. 3432.

International Society for Optics and Photonics, 1998, pp. 93–102,

doi: 10.1117/12.327974

J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “Highrate error-correction codes for the optical atmospheric channel,” in Free. Laser Commun. V, vol. 5892. International Society for Optics and

Photonics, 2005, p. 58920V, doi: 10.1117/12.615760

S. S. Muhammad, T. Javornik, I. Jelovcan, E. Leitgeb, and O. Koudelka, “Reed solomon coded PPM for terrestrial FSO links,” in 2007 Int. Conf. Electr. Eng. IEEE, 2007, pp. 1–5, doi: 10.1109/ICEE.2007.4287281

D. Shah and D. K. Kothari, “BER Performance of FSO link under strong turbulence with different Coding Techniques,” IJCSC, vol. 8, pp. 4–9, 2015, doi: 10.031206/IJCSC.2016.002

H. E. Nistazakis and G. S. Tombras, “On the use of wavelength and

time diversity in optical wireless communication systems over gamma–

gamma turbulence channels,” Optics & laser technology, vol. 44, no. 7,

pp. 2088–2094, 2012, doi: 10.1016/j.optlastec.2012.03.021

D. Shah, D. K. Kothari, and A. K. Ghosh, “Bit error rate analysis of

the K channel using wavelength diversity,” Opt. Eng., vol. 56, no. 5, p.

, 2017, doi: 10.1117/1.OE.56.5.056106

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal,

“Optical wireless links with spatial diversity over strong atmospheric

turbulence channels,” IEEE Trans. Wirel. Commun., vol. 8, no. 2, pp.

–957, 2009, doi: 10.1109/TWC.2009.071318

D. Giggenbach, B. L. Wilkerson, H. Henniger, and N. Perlot,

“Wavelength-diversity transmission for fading mitigation in the atmospheric optical communication channel,” in Free. Laser Commun. VI,

vol. 6304. International Society for Optics and Photonics, 2006, p.

H, doi: 10.1117/12.680924

M. M. Ibrahim and A. M. Ibrahim, “Performance analysis of optical receivers with space diversity reception,” IEEE proceedings Communications, vol. 143, no. 6, pp. 369–372, 1996, doi: ip-com: 19960885

K. P. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis, “Simple, accurate formula for the average bit error probability of multipleinput multiple-output free-space optical links over negative exponential turbulence channels,” Opt. Lett., vol. 37, no. 15, pp. 3243–3245, 2012, doi: 10.1364/OL.37.003243

R. R. Parenti and R. J. Sasiela, “Distribution models for optical scintillation due to atmospheric turbulence,” MASSACHUSETTS INST OF

TECH LEXINGTON LINCOLN LAB, Tech. Rep., 2005.

S. Nadarajah and A. K. Gupta, “On the moments of the exponentiated Weibull distribution,” Commun. Stat. Methods, vol. 34, no. 2, pp. 253– 256, 2005, doi: 10.1080/03610920509342418

M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions 10th Printing with Corrections,” Natl. Bur. Stand. Appl. Math. Ser., vol. 55, 1972.

A. Goldsmith, Wireless communications. Cambridge university press,

Downloads

Published

2024-04-19

Issue

Section

Wireless and Mobile Communications