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Binary Tree Based Forward Secure Signature
Scheme in the Random Oracle Model

Mariusz Jurkiewicz

Abstract—In this paper we construct and consider a new
group-based digital signature scheme with evolving secret key,
which is built using a bilinear map. This map is an asymmetric
pairing of Type 3, and although, for the reason of this paper, it is
treated in a completely abstract fashion it ought to be viewed as
being actually defined over E(Fqn)[p] × E(Fqnk )[p] → Fqnk [p].
The crucial element of the scheme is the key updater algorithm.
With the adoption of pairings and binary trees where a number
of leaves is the same as a number of time periods, we are assured
that an updated secret key can not be used to recover any of
its predecessors. This, in consequence, means that the scheme
is forward-secure. To formally justify this assertion, we conduct
analysis in fu-cma security model by reducing the security of
the scheme to the computational hardness of solving the Weak
ℓ-th Bilinear Diffie-Hellman Inversion problem type. We define
this problem and explain why it can be treated as a source of
security for cryptographic schemes. As for the reduction itself,
in general case, it could be possible to make only in the random
oracle model.

Keywords—forward secure digital signature scheme, bilinear
pairing of Type 3, random-oracle model, bilinear Diffie-Hellman
inversion problem

I. INTRODUCTION

THE concept of forward-secure signature schemes refers
to the security model in which leaking the private key

related with a certain time frame does not essentially influence
on the unforgeability of the scheme for the time periods prior
to this leakage [2]. This model is strictly connected with
so called signature schemes with evolving private key [2],
[6]. Such schemes are characterized by the fact that, roughly
speaking, the lifetime of a public key is split into a some
number of subperiods with associated different secret keys.
More precisely, at the beginning both a public key and an
initial secret key are generated and assigned to the first period,
next the initial key is updated to the next period and so on until
reaching the last period. This, in turn, means that the updating
mechanism is of crucial importance in this security model.
Namely, besides justification of unforgeability for singular
time frames, it must be proven, above all, that disclosure of
a certain secret key reveals nothing about the past periods. In
other words, this mechanism has to fulfill a nontrivial property
which can be called a ”memory loss”, meaning that a secret
key associated with a given time frame must store nothing but
data required for making current signatures and generating a
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key for the next period, moreover this data must be useless
with regard to the previous periods.

II. CONTRIBUTION

In this paper we construct a signature scheme with evolving
secret key, which is based on Type 3 pairing, defined in [11],
and prove that the scheme is forward-secure in the random
oracle model.

The security proof is conducted by reducing the whole anal-
ysis to considerations which pertain to the difficulty of solving
a certain computational problem that we call (ℓ, 1)-wBDHI∗3,
and define formally in Section III-A. This problem constitutes
a natural generalization of Weak ℓ-th Bilinear Diffie-Hellman
Inversion one, which has been defined by Boneh, Boyen and
Goh in [4]. Although the cited paper is devoted to some HIBE
scheme, it is well known that there is a natural correspon-
dence between HIBE schemes and signature schemes, see for
instance [5], [8], [9]. When it comes to forward-security of
the constructed scheme, it is provided by a security reduction
carried out in the random oracle model.

Due to using a concept and some properties of binary trees,
we have been able to create an updating mechanism in such
a way that it has been possible to gain all the requirements
described above. Namely, a fixed positive integer ℓ induces a
binary tree of height ℓ and with 2ℓ leafs. These leaves can be
numbered from 0 to 2ℓ − 1, besides, it is well known that for
every leaf there is a unique path joining the root with this leaf.
If we adopt a rule that for a given node choosing its left or right
child means assigning the value 0 or 1, respectively, then this
path can be viewed as a binary string of the length ℓ, which
is also a binary representation of the index assigned to the
leaf. Obviously, the same observation can be made for every
node, where we identify the index of the node with the binary
representation of the unique path between this node and the
root. The binary representation itself is obtained after applying
the introduced rule. Such an idea allows us to equate the leaves
with successive time periods and use the rule for making paths
to generate a secret key associated with a leaf related to a given
time frame. Furthermore, as we have already stated, secret keys
must carry data needed for both making current signatures and
generating a key for the next period. In our scheme these tasks
are split into two separated components, namely a signing one
and a stack, consisting of at most ℓ nodes so that they enable
the generation of keys only for future periods. It means that
none of the elements of this stack may be used to obtain any
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of the previous keys. It is possible because each node from the
stack lies on the right-hand side of the path joining the root
with the leaf referring to the current time period. Moreover,
it must be stressed that the algorithm which is intended to fill
in the stack has been designed so as to guarantee its minimal
content. Minimality here means that if even one element of
the stack has been removed, then it is not possible to generate
at least one future key.

Although the concept of forward-secure signature schemes
was proposed by Anderson [1] in 1997, the formalization
of this notion was made by Bellare and Miner [2]. They
provided tree-based and Fiat-Shamir [10] -based constructions
that meet this definition. In [16] Krawczyk put forward simple
transformation of a regular signature scheme into a forward-
secure signature scheme, where the parameters of resultant
signatures have size independent of the number of periods,
but the signer’s storage grows linearly with this number. Ca-
menisch and Koprowski [7] use construction proposed by Itkis
and Reyzin [14] to achieve a forward-secure signature scheme
in the standard model under the Strong-RSA assumption.
Following this line of thought, Hohenberger and Waters [13]
put forward a new abstraction that was called RSA sequencer
and enables achieving efficient forward-secure signatures.

Thanks to exploit asymmetric pairing along with some
properties of binary trees we have been able to obtain a new
provable forward-secure signature scheme. To the best of our
knowledge, the approach that is proposed herein is new and
differs from the approach presented by other authors. Nonethe-
less, we want to stress that this work is ideologically connected
with [4] where Boneh, Boyen and Goh used symmetric pairing
in construction of a certain HIBE system.

III. PRELIMINARIES

A. Weak Bilinear Diffie-Hellman Inversion Type Assumption

Assume that G1,G2 and GT are three multiplicative cyclic
groups of prime order p. Let us remind that if G1 ̸= G2 and no
efficiently computable isomorphism is known between G1 and
G2, in either direction, then a map ê : G1×G2 → GT is called
a pairing of Type 3 if it satisfies the following properties:

1) (bilinearity) i.e., for all u ∈ G1, v ∈ G2 and a, b ∈ Fp

we have
ê
(
ua, vb

)
= ê (u, v)

ab
;

2) (non-degeneracy) i.e.:
• if for all u ∈ G1 we have ê(u, v) = 1GT

then it is
equivalent to v = 1G2 ;

• if for all v ∈ G2 we have ê(u, v) = 1GT
then it is

equivalent to u = 1G1
.

Let g1, g2 be generators of G1 and G2, respectively, and
let α, β

$← F∗
p. We introduce the following problem, called

(ℓ, 1)-wBDHI∗3:

given Gi(α, β) := {gi, gαi , . . . , g
(αℓ)
i , gβi }, i = 1, 2,

compute ê(g1, g2)
β(αℓ+1).

Suppose that params := (G1,G2,GT , p, g1, g2, ê) ←
G (1n). We say that (ℓ, 1)-wBDHI∗3 problem is hard relative
to G if for all PPT adversaries A, the following probability is
negligible

Pr

[
params← G (1n);

α, β
$← F∗

p

:
ê(g1, g2)

β(αℓ+1) ← A (1n,
params, Gi(α, β))

]
This probability is called the advantage of the adversary
A in solving (ℓ, 1)-wBDHI∗3 problem, and is denoted by
Adv(ℓ,1)-wBDHI∗3

params,n (A).

Note that (ℓ, 1)-wBDHI∗3 is a natural generalization of
so-called the Weak ℓ-th Bilinear Diffie-Hellman Inversion
problem, denoted by ℓ-wBDHI∗ and defined in [4] for pairings
of Type 1. Indeed, remind that if e : G × G → GT is Type
1 pairing, G,GT are cyclic groups of prime order p and g is
a random generator of G and α, β

$← F∗
p, then ℓ-wBDHI∗ is

as follows (obviously, since p is a prime then h = gβ is a
generator too):

given g, gα, . . . , g(α
ℓ), h := gβ compute e(g, g)β(α

ℓ+1).

Substituting a := g(α
ℓ) and γ := α−1, δ := β(αℓ)−1, we

see that a(γ
i) = g(α

ℓ−i), i ∈ [ℓ] and aδ = gβ . Thus, taking
(a, b := aδ, aγ , a(γ

2), . . . , a(γ
ℓ)) as an input to ℓ-wBDHI∗,

we immediately conclude that ℓ-wBDHI∗ is polynomially
reducible to to the following problem known as ℓ-wBDHI and
introduced in [4]:

given g, gα, . . . , g(α
ℓ), h := gβ compute e(g, h)

1
α .

In the same manner as above, we show the existence of
a polynomial transformation, acting in the other direction.
In consequence, both problems ℓ-wBDHI∗ and ℓ-wBDHI are
equivalent under polynomial time reductions. Furthermore,
it turns out that there is a strict connection between these
problems and the commonly known ℓ-BDHI (see [3], [17],
for instance). Namely, D. Boneh, X. Boyen and E.-J. Goh
proved in [4] that an algorithm for ℓ-wBDHI or ℓ-wBDHI∗ in
G gives an algorithm for ℓ-BDHI with a tight reduction.

To sum up, all this information provided above lead us
to the conclusion it is highly likely that (ℓ, 1)-wBDHI∗3 is
at least as hard as ℓ-BDHI. In fact, if there was a method
making possible to break (ℓ, 1)-wBDHI∗3 then this one should
be able to be applied to break easier case with Type 1 pairing.
This means that ℓ-wBDHI∗ would be broken as well, what
eventually would imply weakness of ℓ-BDHI.

B. Forward-Secure Signature Schemes

A signature scheme with evolving private key is composed
of five algorithms Πfu = (G ,KGen, KUpd,Sign,Vrfy) along
with an associated message space M, such that:

• (System parameters generation) G is a PT algorithm,
which takes as an input the value 1n of a security
parameter and maximum number of time periods T . It
outputs the system parameters params.
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• (Key generation) KGen is a PPT algorithm. It takes as
input the system parameters params and maximum num-
ber of time periods T and outputs a public verification
key pk along with an initial secret signing key sk0 for
the time period t = 0.

• (Key update) KUpd is a PPT algorithm. It takes as input
the secret key skt for time period t < T − 1 and outputs
the secret key skt+1 for the next time period t+ 1.

• (Signing) Sign is a PPT algorithm. It takes as input the
current secret key skt and a message m ∈M and outputs
a signature σ.

• (Verification algorithm) Vrfy is a DPT algorithm. It takes
as input a public key pk, a message m ∈M, the proper
time period t and a (purported) signature σ. It outputs
a single bit b, with b = 1 meaning accept and b = 0
meaning reject.

In addition, we assume the correctness, meaning that for all
messages m ∈M and for all time periods t ∈ {0, 1, . . . T−1}
it holds that
Vrfypk(t,m,Signskt(m)) = 1 with probability one if
(sk0, pk) ← KGen(params, T ) and ski+1 ← KUpd(ski) for
i = 0, . . . t− 1.

We explain below how a well known euf-cma security
model may be expanded to signature schemes with evolving
private key. This idea was taken from Bellare-Miner paper [2].
Let A be an adversary. Consider the following experiment
Expfu-cma

A,Πfu
, which depends on the system parameters and a

number of periods. We assume that the system parameters
have been generated and they are known to the adversary.

1) Generate params ← G (1n, T ) and (sk0, pk) ←
KGen(params, T ).

2) The adversary A is given pk and access to three oracles,
signing oracle Sign, key update oracle KUpd and break
in oracle Break.

3) t← 0.
4) while t < T

4.1. Sign : For current secret key skt the adversary A re-
quests signatures on as many messages as it like (anal-
ogously to euf-cma it is denoted by ASignskt (·)(pk)).

4.2. KUpd : If the current time period t < T − 1 then A
requests update: t← t+ 1, skt+1 ← KUpd(skt).

4.3 If Break then break the loop while;
Break : If A is intended to go to the forge phase then
it launches Break. Then the experiment records the
break-in time t̄ = t and sends the current signing key
skt̄ to A. This oracle can only be queried once, and
after it has been queried, the adversary can make no
further queries to the key update or signing oracles.

5) Eventually (t⋆,m⋆, σ⋆)← A(1n, state).
6) If t⋆ < t̄ and Vrfypk (t

⋆,m⋆, σ⋆) = 1 and the signing
oracle Signskt⋆ has been never queried about m⋆ within
the time period t⋆, then output 1, otherwise output 0.

We refer to such an adversary as an fu-cma-adversary. The
advantage of the adversary A in attacking the scheme Πfu is

defined as

Advfu-cma
Πfu,n

(A) = Pr[Expfu-cma
A,Πfu

(1n, T ) = 1].

A signature scheme with evolving private key Πfu =
(G ,KGen,KUpd,Sign, Vrfy), is called to be existentially
forward unforgeable under a chosen-message attack or just
forward-secure if for all efficient probabilistic, polynomial-
time adversaries A, there is a negligible function negl such
that

Advfu-cma
Πfu,n

(A) = negl(n).

In a well known and widely cited paper [12], the authors
provide a classification of security strength for signature
schemes. Except commonly used notion of existential forgery
they also indicate some weaker notions, like the second on
the top list, namely a selective forgery where a signature must
be forged for a particular message chosen a priori by the
adversary. This idea was exploited by Canetti, Halevi, Katz [8]
and Boneh, Boyen [3], who define security against selective
forgery for IBE and HIBE. Therefore, it is not surprising that
it can be also adopted for scheme with evolving private key
regarding their forward security. Formally, we start with a
description of a proper experiment, which will be referred to
as Expsfu-cma

A,Πfu
. This experiment differs from Expfu-cma

A,Πfu
in such

a way that an adversary A outputs a message together with the
associated time parameters (m∗, t∗, t̄) that are intended to be
forged, before receiving the public key. Next, the experiment
is conducted in the same manner as Expfu-cma

A,Πfu
, with this

difference that only if the time period t̄ is reached then the
oracle Break is launched. The adversary wins if it has been
able to output a valid signature σ∗ for m∗ in the period t∗. This
lead us to the following definition. A signature scheme with
evolving private key Πfu = (G ,KGen, KUpd,Sign, Vrfy),
is called to be selectively forward-secure if for all efficient
probabilistic, polynomial-time adversaries A, Advfu-cma

Πfu,n
(A)

is a negligible function of n.

IV. CONSTRUCTION OF FORWARD-SECURE SCHEME

In this section we shall show the construction of our
signature scheme with evolving private key Πfu = (G ,KGen,
KUpd,Sign,Vrfy). We will justify that the scheme is forward
secure in the random oracle model with only assumed hardness
of (ℓ, 1)-wBDHI∗3 problem for pairings of Type 3.

Let M = {0, 1}∗ be the message space associated with the
scheme and H :M → {0, 1}l·ℓ be a collision resistant hash
function. We must stress that the length of the hash values is
not accidental, because output hashes are split into l blocks,
where a single block is a ℓ-bit string.

Before going to the formal description, we briefly explain
the idea of the scheme, which is based on the geometry and
some properties of binary-trees. Let us adopt a rule that for
a given node, choosing its left or right child means assigning
the value 0 or 1, respectively (see Fig. 1). On the other hand,
it is commonly known that for every node there is a unique
path joining the root with this node (in particular including
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Fig. 1. Visualization of some basic ideas standing behind the scheme.

leaves). Therefore, when we apply the described rule, we
see that this path is represented by the following bit-string
tℓtℓ−1 · · · th, h ∈ [ℓ], with h being the height of a node.
Moreover, this bit-string provide the node with the unique
identification, which thus may be viewed as an identifier of
this node. As we mentioned in the introduction, the goal is to
make a binary tree with a number of leaves being the same as
the number of time periods i.e. 2ℓ, therefore a high of this tree
must be ℓ. Let us choose u0,0, u1, . . . , uℓ from G and define
Ht(h) := u0,0

∏ℓ
i=h ui, for h ∈ [ℓ]. Then, it is obvious that ev-

ery node indexed by id = tℓ · · · th can be uniquely connected
with Ht(h)id = u0,0

∏ℓ
i=h u

ti
i (see Fig. 1). Furthermore, note

that if P is the path linking the root with a leaf tℓ · · · t1 and
id1 = tℓ · · · th, id2 = tℓ · · · th−1 ∈ P are indexes of two
successive nodes, then there is the following relation between
Ht(h)id1 and Ht(h)id2 , namely Ht(h−1)id2 = Ht(h)id1 ·uth−1

h−1 .
Next, suppose that the root is related to mk, which should be

viewed as a master-key. This key controls the entire scheme,
which means that knowing mk we are able to generate a
valid secret key for each period. Bear in mind that what
we are trying to gain is forward-security, which is why
revealing a secret key assigned to a period t must not leak
anything about secret keys of prior periods. This implies, in
particular, that master-key ought not to be recovered from
any period’s secret key or, even worse, can not be a plain
part of these keys, keeping simultaneously in minds that all
these keys must strictly depend on the master key. In addition,
all the knowledge regarding prior secret keys has to be lost.
These are the reasons why we talk about ,,memory loss” by
the key updater. To meet these requirements, we encapsu-
late mk by randomization Hts, according to the following
iterative method. At first, we pick rℓ uniformly at random
from Fp, and compute mk · (Ht(ℓ)tℓ)rℓ ; note that to keep
the randomness under control we must save ur

ℓ−1, . . . , u
r
1.

We also have to keep an additional element gr2 , which is
required for verification. Taking all of these into account we
obtain nodetℓ =

(
mk · (Ht(ℓ)tℓ)rℓ ;urℓ

ℓ−1, . . . , u
rℓ
1 ; grℓ2

)
. Next,

if nodetℓ···th =
(
mk · (Ht(h)tℓ···th)rh ;urh

h−1, . . . , u
rh
1 ; grh2

)
is

a node at height h and tℓ · · · th−1 is the index of a suc-
cessive node of height h − 1, lying on a same path which
links the root with a leaf, then to get nodetℓ···th−1

, we
compute mk · (Ht(h)tℓ···th)rh · (urh

h−1)
th−1 = mk · (Ht(h −

mk

0 10 1

0 1

0 10 1

0 1

0 1

sign. comp.
for period t = 2

on stack

on stack

STACK
node011
node1

Fig. 2. Content of a secure key associated with a period t.

1)tℓ···th−1)rh , next we choose r′h−1 uniformly at random from
Fp and calculate (Ht(h − 1)tℓ···th−1)r

′
h−1 ; having this, we

do mk · (Ht(h − 1)tℓ···th−1)rh · (Ht(h − 1)tℓ···th−1)r
′
h−1 =

mk · (Ht(h − 1)tℓ···th−1)rh−1 , with rh−1 = rh + r′h−1;

in the same way we obtain u
rh−1

i = urh
i · u

r′h−1

i , i ∈
[h-2], and g

rh−1

2 = grh2 · g
r′h−1

2 ; eventually nodetℓ···th−1
=(

mk · (Ht(h− 1)tℓ···th−1)rh−1 ;u
rh−1

h−2 , . . . , u
rh−1

1 ; g
rh−1

2

)
. Fol-

lowing this method, we get in the end to the last node on
the path, namely leaftℓ···t1 = (mk · (Ht(1)tℓ···t1)r1 ; gr12 ). It
must be emphasized that even though rh = rh(rh+1, . . . , rℓ),
all of rh, rh−1, . . . , rℓ are equally likely. It is a consequence of
an easy and well-known fact, namely if we take a probability
measure µ(A) := #A/p defined on the σ-field 2Fp , then for
every A ∈ 2Fp and fixed γ ∈ Fp we have µ(A) = µ(γ + A)
(see [15], for instance).

These considerations lead us to the conclusion that having
a node nodeid at height h it is easy to determine nodes at
lower heights, that lie on root-to-leaves paths and pass through
nodeid. On the other hand, if DLP is hard in G, then it is hard
to figure out a form of nodes at higher heights. Furthermore,
all these nodes encapsulate ,,master-key” mk. Finally, it is
seen that to guarantee the ,,memory loss” property, secret keys
associated with periods must consists both components needed
for making signatures and nodes being roots of maximal sub-
trees that let to compute leaves associated with future periods.
The latter is made by the function StackFilling, defined
through Algorithm 1 (see Section IV-B). More precisely, nodes
required for generating secret keys for future periods are
gathered on a stack, which any time consists of at most ℓ
elements. As we indicated above, the content of the stack is
optimal, meaning that if at least one element of the stack has
been removed, then it would not be possible to generate at
least one future key. Algorithm 1 is depicted in Fig. 2.

A. System parameters generation

Let n be a security parameter. An efficient and polynomial
time system parameters generator G takes on input both a
value of the security parameter 1n and a maximum number
of time periods T , to then output (G1,G2,GT , p, g1, g2, ê),
where:

• G1,G2,GT are three cyclic groups of prime order p,
where group operations can be performed efficiently and
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no efficiently computable isomorphism is known between
G1 and G2, in either direction .

• g1 ∈ G1, g2 ∈ G2 are chosen uniformly at random from
the set of all generators of G1 and G2 respectively.

• ê : G1 × G2 → GT is an efficiently computable Type 3
pairing.

B. Key generation

Before we go to the description of the initial keys gener-
ation process, we will present the other algorithm, namely
StackFilling. This algorithm plays the crucial role in our
construction, because it is directly responsible for ,,memory
loss” of our keys updater, meaning in particular that it allows
us to gain the desired security requirements.

For the formal reasons, let us define
i2∏

i=i1

uαi
i =

{
u
αi1
i1
· · ·uαi2

i2
for i1 ≤ i2

1G1 for i1 > i2
.

Assume there is a stack STACK, that will be filled with pairs
(node, h), where node and h are a node and its height on the
binary tree, respectively. We stress that height h varies from 1
to ℓ+ 1, where ℓ+ 1 is assigned to the root. Besides, it must
be kept in mind that a node, being on a height of h have the
specific form, namely

node :=

(
τx1 ·

(
u0,0

ℓ∏
i=h

uti
i

)r

;ur
h−1, . . . , u

r
1; g

r
2

)
=
(
A; (bi)i∈[h−1];C

)
, (1)

where r is an element of Fp, meaning that each element of
Fp is equally likely.

Algorithm 1 Function StackFilling

Input: params, STACK, t = tℓ · · · t1
Output: STACK, scp

1: (node, h)← STACK.pop() ▷ node =
(
A; (bi)i∈[h−1];C

)
2: h← h− 1
3: ▷ After reindexing, node =

(
A; (bi)i∈[h];C

)
4: while h > 0 do
5: r

$← Fp

6: tmp←
(
A · b1h ·

((
u0,0

∏ℓ
i=h+1 u

ti
i

)
· u1

h

)r
;

bh−1 · ur
h−1, . . . , b1 · ur

1;C · gr2
)

7: ▷ A := node.A, bi := node.bi, C := node.C, i.e.
tmp = tmp(node).

8: STACK.push ((tmp, h))

9: r
$← Fp ▷ A new randomness, i.e. independent of r

picked in 5

10: node←
(
A ·
(
u0,0

∏ℓ
i=h+1 u

ti
i

)r
; bh−1 · ur

h−1,

. . . , b1 · ur
1;C · gr2)

11: h← h− 1
12: end while
13: scp← node

Now we are ready to describe the algorithm KGen, generat-
ing both an initial private key sk0 and a long term public key

mk

0 10 1

0 1

0 10 1

0 1

0 1

scp on STACK

on STACK

on STACK

STACK
node001
node01
node1

Fig. 3. The initial secret key sk0 = (scp, STACK, t = 0) and output from
StackFilling.

pk. It depends on two variables, namely system parameters,
which has been generated by G , and a maximal number of
time periods T . Let us suppose that, we have been taken
params := (G1,G2,GT , p, g1, g2, ê) ← G (1n). The formal
definition of the algorithm is as follow:

1) Choose τ1
$← {g ∈ G1 | ⟨g⟩ = G1}/{g1}.

2) Pick x
$← F∗

p and set τ2 := gx2 ∈ G2, which is the crucial
component of pk.

3) Choose (u0,i)
l
i=0, u1, . . . , uℓ

$← G1.
4) Pick r

$← Fp and compute node ←
(
τx1 u

r
0,0; ur

ℓ , u
r
ℓ−1,

. . . , ur
1; gr2) =:

(
A; (bi)i∈[ℓ];C

)
.

5) Initialize an empty stack STACK, next do
STACK.push ((node, ℓ+ 1)).

6) Run (scp, STACK) ←
StackFilling (params, STACK, t = 0). After the function
StackFilling has output the value, STACK consists of ℓ
elements.

7) The initial secret key is sk0 = (scp, STACK, t = 0) and
the public key is
pk = (τ1, τ2, (u0,i)

l
i=0, u1, . . . , uℓ).

Note that the signing component scp of sk0 has the follow-
ing form

scp =
(
τx1 u

r
0,0; gr2

)
= (A;C). (2)

It is important to highlight that r in the above formula only
express randomness and it is highly likely to be different from
the other randomness r, appearing in 4. It can be confusing
at the first glimpse, so we focus on this for a while. Taking
into account the method of generating scp, we see from 4)
and Algorithm 1 that there are (ℓ+1) random elements of Fp,
required to generate r appearing in (2). To be more accurate
r = r(r0, r1, . . . , rℓ), where for instance r0 is the same as r
appearing in 4). In fact, the relation between all these r’s is
linear and r = r0 + . . .+ rℓ.

C. Key update

The algorithm KUpd takes as an input the secret key,
assigned to the period t < T − 1 and updates this key for
the next period t+1. Below we describe the successive steps
of this algorithm.

1) Parse skt = (scp, STACK, t). Obviously it is the current
secret key, which is dedicated to the period t, and is going
to be updated.
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2) Update a variable carrying a time period, namely conduct
t← t+1. After this step the variable t stores a value of
the new time period.

3) If t ≡ 1 (mod 2), then the following steps are carried
out.

3.1 (node, h)← STACK.pop() and scp← node. It is easily
seen, that here the highest element is popped from the
stack and passed to the signing component scp.

3.2 The secret key for the new period has the form skt =
(scp, STACK, t).

4) If t ≡ 0 (mod 2), then the following steps are conducted.
4.1 Run (scp, STACK)← StackFilling (params, STACK, t).
4.2 The secret key for the new period has the form skt =

(scp, STACK, t).
This time the signing component scp of skt has the form

scp =

(
τx1 ·

(
u0,0

ℓ∏
i=1

uti
i

)r

; gr2

)
= (A;C). (3)

We strongly recommend keeping in mind the remarks regard-
ing randomness, that are pointed out after (2).

D. Signing

Here we explain how the procedure of making signature
looks like. It is obvious that Sign depends on the secret key
skt associated with a period t < T , meaning that for a fixed
t, the signatures are made by Signskt

, taking as an argument
a message that is going to be signed, and outputting a value
of the signature. As we have seen above each secret key skt
consists of two components, namely a signing component scp
and a stack STACK. Both play an important role in the scheme
simultaneously, having completely different tasks. The latter
is of crucial importance with regard to updating a key to the
next period and is not used in the signing process, while the
signing component is not needed in updating a key but it is
essential in making a desired signature.

Below we describe the consecutive steps of computing a
signature on a given message m from the message space M.

1) Compute the hash value m = H(m).
2) Parse skt = (scp, STACK) and next parse scp = (A;C).
3) Write t in the binary form t = (tℓ · · · t1)2. Split m into

concatenation of l blocks m1∥ · · · ∥ml and write each
block mi in the binary form (mi,ℓ · · ·mi,1)2.

4) Pick r
$← Fp and si

$← Fp, i ∈ [l], independently and
uniformly at random.

5) Let us compute

σ1 ← A ·

(
u0,0 ·

ℓ∏
i=1

uti
i

)r

·
l∏

j=1

(
u0,j ·

ℓ∏
i=1

u
mj,i

i

)sj

.

(4)

σ2 ← C · gr2 (5)
σ3,j ← g

sj
2 , j = 1, . . . , l.

Output a signature σ =
(
σ1, σ2, (σ3,j)j∈[l]

)
.

There is an interesting observation to make. Namely, let the
hash m be presented as the following binary matrix

M :=


m1,ℓ m1,ℓ−1 · · · m1,1

m2,ℓ m2,ℓ−1 · · · m2,1

...
...

. . .
...

ml,ℓ ml,ℓ−1 · · · ml,1


The i-th row and the i-th column of M are denoted by
M(i, ·) = mi and M(·, j), respectively. Furthermore, the
former can be treated as a vector in Fℓ

p, whilst the latter as a
vector in Fl

p. Let us put s = [s1, . . . , sl] ∈ Fl
p and compute

the following inner products in Fl
p

s̄i := ⟨s,M(·, i)⟩ =
l∑

j=1

mj,isj , for i = 1, . . . , ℓ. (6)

Then σ1 can be written in the form

σ1 ← A ·

(
u0,0 ·

ℓ∏
i=1

uti
i

)r

·
l∏

j=1

u
sj
0,j ·

ℓ∏
i=1

us̄i
i

E. Verification

1) Compute m = H(m) and parse pk as (τ1, τ2,
(u0,j)

l
j=0, u1, . . . , uℓ).

2) Write t in the binary form t = (tℓ · · · t1)2 and split m
into l blocks of ℓ-bits each, as described above, i.e. m =
m1∥m2∥ · · · ∥ml, where mi = (mi,ℓ · · ·mi,1)2.

3) Output 1 if and only if the following condition holds

ê(σ1, g2)
?
= ê(τ1, τ2) · ê

(
u0,0 ·

ℓ∏
i=1

uti
i , σ2

)

·
l∏

j=1

ê

(
u0,j ·

ℓ∏
i=1

u
mj,i

i , σ3,j

)
. (7)

Otherwise, output 0.
To justify the correctness of the verification algorithm, we use
(4). Due to the fact that both the time part and mj-parts of
σ1 keep the same randomness as σ2 and σs,j , respectively, we
have that

ê(τ1, τ2) · ê

(
u0,0 ·

ℓ∏
i=1

uti
i , σ2

)
·

l∏
j=1

ê

(
u0,j ·

ℓ∏
i=1

u
mj,i

i , σ3,j

)

= ê(τx1 , g2) · ê

((
u0,0 ·

ℓ∏
i=1

uti
i

)r

, g2

)

·ê

 l∏
j=1

(
u0,j ·

ℓ∏
i=1

u
mj,i

i

)sj

, g2


= ê

τx1 ·

(
u0,0 ·

ℓ∏
i=1

uti
i

)r

·
l∏

j=1

(
u0,j ·

ℓ∏
i=1

u
mj,i

i

)sj

, g2


= ê(σ1, g2).

This yields (7).
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V. SECURITY OF THE SCHEME

The goal of this section is to show that the presented scheme
is forward-secure. The proof itself is conducted in the random
oracle model, and is split into two parts. Namely, we firstly
deal with the special case, when the hash function is the
identity on {0, 1}lℓ, and we prove that the scheme is selectively
forward-secure then. Having done this, we are able to consider
the general case, guessing both the proper time period and the
query to the random oracle, what finally provides us with the
desired full fu-cma security of the scheme.

A. Selective forward security of the scheme

Let Πsfu = (G ,KGen,KUpd,Sign,Vrfy) be the scheme
defined above for T = 2ℓ time periods and with the associated
message space M = {0, 1}lℓ. In addition, let us assume that
H = idM. If there exists an sfu-cma adversary A against
Πsfu that has advantage Advsfu-cma

Πsfu,n
(A), then there exists an

algorithm B to solve (ℓ, 1)-wBDHI∗3 problem with advantage

Adv(ℓ,1)-wBDHI∗3
params,n (B) ≥ p− 1

p
·Advsfu-cma

Πsfu,n
(A), (8)

and running time O (time(A))

In order to justify this assertion, we reduce the selective
forward security of Πsfu to the hardness of (ℓ, 1)-wBDHI∗3
relative to G .

We start with introducing an algorithm, which is connected
with Algorithm 1 and outputs indexes of nodes stored in
STACK for a time frame t < T .

Algorithm 2 Function StackFillingID

Input: STACKID, t = (tℓ · · · t1)2
Output: STACKID,

1: (nodeID, h)← STACKID.pop() ▷ nodeID = tℓ · · · th
2: h← h− 1 ▷ After reindexing, nodeID = tℓ · · · th+1

3: while h > 0 do
4: tmp← tℓ · · · th+11 ▷ i.e. th = 1
5: STACKID.push ((tmp, h))
6: end while

Suppose that A is an adversary which attacks the scheme.
Without loss of generality, we can assume that for every time
period the adversary A makes q queries to the signing oracle.
Having this, we construct an algorithm B which solves the
(ℓ, 1)-wBDHI∗3 problem.

Algorithm B
The algorithm is given params = (G1,G2,GT , p, g1, g2, ê)
and
Gi(α, β) = {gi, gαi , . . . , g

(αℓ)
i , gβi }, i = 1, 2.

1) The parameters params are sent to A, which chooses
and outputs (m∗, t∗, t̄) ∈ {0, 1}(lℓ,ℓ,ℓ) with t∗ < t̄; i.e
(m∗, t∗, t̄)← A(params).

2) Uniformly at random select y, y0,j , yi
$← Fp, j = 0, . . . , l,

i = 1, . . . ℓ and put

x := α, τ2 ← gα2 ,

τ1 ← gy1 · g
(αℓ)
1 , (9)

u0,0 ← g
y0,0

1 ·
ℓ∏

i=1

(
g
(αi)
1

)−t∗i
, (10)

u0,j ← g
y0,j

1 ·
ℓ∏

i=1

(
g
(αi)
1

)−m∗
j,i

, for j = 1, . . . l, (11)

ui ← gyi

1 · g
(αi)
1 , for i = 1, . . . ℓ. (12)

For t < T and m = m1∥m2∥ · · · ∥ml, define the
functions

Y0(t) = y0,0 +

ℓ∑
i=1

yiti,

Yj(mj) = y0,j +
ℓ∑

i=1

yimj,i.

3) If Y0(t
∗) = 0 in Fp then abort.

4) Otherwise, set t ← 0 and send pk = (τ1, τ2, (u0,j)
l
j=0,

u1, . . . uℓ) to A. Assign nodeID ← null, initialize
STACKID.push ((nodeID, ℓ+ 1)) and launch
STACKID ← StackFillingID (STACKID, t) (see
Algorithm 2).

5) If A requests to update the current key and t <
T − 1, then do t ← t + 1 and next if t ≡ 1
(mod 2) then do STACKID.pop(), else do STACKID ←
StackFillingID (STACKID, t). Otherwise output ⊥.

6) When A requests a signature on a message m ̸= m∗,
then do:

6.1. If t ̸= t∗ then pick ξ, η1, . . . , ηl
$← Fp, compute i0 ←

max{i ∈ [ℓ] | ti ̸= t∗i } and provide A with a desired
signature σ = (σ1, σ2, (σ3,j)j∈[l]), where

σ1 =
(
g
(α)
1

)y
· gξY0(t)

1 ·

(
i0∏
i=1

(
g
(αi)
1

)(ti−t∗i )
)ξ

·
(
g
(αℓ+1−i0 )
1

)− Y0(t)

ti0
−t∗

i0

·
i0−1∏
i=1

(
g
(αℓ+1+i−i0 )
1

)− ti−t∗i
ti0

−t∗
i0

·
l∏

j=1

(
g
Yj(mj)
1 ·

ℓ∏
i=1

(
g
(αi)
1

)(mj,i−m∗
j,i)
)ηj

,

σ2 = g
ξ−(ti0−t∗i0

)−1·(αℓ+1−i0 )

2 ,

σ3,j = g
ηj

2 .
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6.2. If t = t∗, then choose ξ, η1, . . . , ηl
$← Fp and return a

required signature σ = (σ1, σ2, (σ3,j)j∈[l]) to A, where

σ1 = (gα1 )
y · gξY0(t

∗)
1

·
l∏

j=1

(
g
Yj(mj)
1 ·

ℓ∏
i=1

(
g
(αi)
1

)(mj,i−m∗
j,i)
)ηj

,

σ2 = g
ξ−Y0(t

∗)−1·(αℓ+1)
2 ,

σ3,j = g
ηj

2 .

7) When the break-in time t̄ is reached then the following
steps are carried out.

7.1 Set i0 = max{i ∈ [ℓ]} | t̄i ̸= t∗i } and choose ξ
$← Fp

uniformly at random. Compute scp = (A;C), where

A =(gα1 )
y · gξY0(t̄)

1 ·

(
i0∏
i=1

(
g
(αi)
1

)(t̄i−t∗i )
)ξ

·
(
g
(αℓ+1−i0 )
1

)−(t̄i0−t∗i0
)−1Y0(t̄)

·
i0−1∏
i=1

(
g
(αℓ+1+i−i0 )
1

)−(t̄i0−t∗i0 )
−1·(t̄i−t∗i )

;

C = gξ2 ·
(
g
(αℓ+1−i0 )
2

)−(t̄i0−t∗i0
)−1

.

7.3 Let L ← STACKID.len() and initialize two empty
stacks STACK, STACK.

7.4 while L > 0 do
7.5 ((tℓ, . . . , th), h)← STACKID.pop() .
7.6 Set i0 = max{i ∈ {h, . . . , ℓ} | ti ̸= t∗i } and pick

ξ
$← Fp. Compute node = (A′; b′h−1, . . . , b

′
1;C

′),
where

A′ =(gα1 )
y · gξ(y0,0+

∑ℓ
i=h yiti)

1 ·
h−1∏
i=1

(
g
(αi)
1

)−ξt∗i

·
i0−1∏
i=h

(
g
(αi)
1

)ξ(ti−t∗i )

· g
−(y0,0+

∑ℓ
i=h yiti)·α

(ℓ+1−i0)

ti0
−t∗

i0
1

·
i0−1∏
i=h

(
g
(αℓ+1+i−i0 )
1

)− ti−t∗i
ti0

−t∗
i0 ;

b′i = gξyi

1 ·
(
g
(αi)
1

)ξ
·
(
g
(αℓ+1−i0 )
1

)− yi
ti0

−t∗
i0

·
(
g
(αℓ+1−i0+i)
1

)− 1
ti0

−t∗
i0 ;

C ′ = g
ξ−(ti0−t∗i0

)−1·(αℓ+1−i0 )

2 .

7.7 Push node onto the top of the stack STACK, i.e.
STACK.pop(node, h).

7.8 Decrement L← L− 1.
7.9 end while

7.10 Put L← STACK.len()
7.11 while L > 0 do
7.12 tmp← STACK.pop() and next STACK.push (tmp).

7.13 Decrement L← L− 1
7.14 end while
8) Sent skt̄ = (scp, STACK) to A.
9) Eventually, A outputs σ∗ = (σ∗

1 , σ
∗
2 , (σ3,j)

∗
j∈[l]). If it is

a valid forgery of m∗ in the time period t∗, output

ê
(
σ∗
1 , g

β
2

)
·
(
ê
(
(gα1 )

y, gβ2

)
· ê
(
gβ1 , σ

∗
2

)Y0(t
∗)

·
l∏

j=1

ê
(
gβ1 , σ

∗
3,j

)Yj(m
∗
j,i)

−1

.

At first, note that the signatures given to A are correctly
distributed. Indeed, according to (5) and (4) it is seen that
the real signature of m ∈ {0, 1}lℓ for a given time period
t = (tℓ · · · t1)2 has the following form

σ1 = τx1 ·

(
u0,0 ·

ℓ∏
i=1

uti
i

)r

·
l∏

j=1

(
u0,j ·

ℓ∏
i=1

u
mj,i

i

)sj

,

σ2 = gr2, σ3,j = g
sj
2 , j = 1, . . . , l,

where r and sj are selected uniformly at random from Fp.
Therefore, choosing ξ and ηj uniformly at random from Fp,
next setting r = ξ − λ and sj = ηj , where λ is an element of
Fp, we see that ξ, ηj and r, sj are equally likely, respectively.

Assume that t ̸= t∗. Obviously in this case there exists at
least one i ∈ [ℓ] such that ti ̸= t∗i . Let i0 := max{i ∈ [ℓ] |
ti ̸= t∗i }, then ti = t∗i for i > i0 if such exist, meaning that
if i0 ̸= ℓ. Choosing ξ

$← Fp uniformly at random and putting
r = ξ − (ti0 − ti∗0 )

−1 · αℓ+1−i0 , we obtain after taking (9),
(10) and (12) into account, that

τx1 ·

(
u0,0 ·

ℓ∏
i=1

uti
i

)r

x=α
= (gα1 )

y · g(α
ℓ+1)

1

·

(
g
Y0(t)
1 ·

i0∏
i=1

(
gα

i

1

)(ti−t∗i )
)r

= (gα1 )
y · g(α

ℓ+1)
1 · gξY0(t)

1 ·

(
i0∏
i=1

(
gα

i

1

)(ti−t∗i )
)ξ

·
(
g
(αℓ+1−i0 )
1

)− Y0(t)
ti0

−ti∗0 (13)

·
i0−1∏
i=1

(
g
(αℓ+1+i−i0 )
1

)− ti−t∗i
ti0

−t∗
i0 · g(α

ℓ+1)
1

= (gα1 )
y · gξY0(t)

1 ·

(
i0∏
i=1

(
gα

i

1

)(ti−t∗i )
)ξ

·
(
g
(αℓ+1−i0 )
1

)− Y0(t)
ti0

−ti∗0

·
i0−1∏
i=1

(
g
(αℓ+1+i−i0 )
1

)− ti−t∗i
ti0

−t∗
i0 .

It is immediately seen that the maximal power of α in the
last equality is i0 ≤ ℓ, thus this formula can be explicitly
computed, as we know G1(α, β).
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Further, selecting ηj
$← Fp and assigning sj = ηj and taking

(11)-(12) into account, we get for every m ̸= m∗

(
u0,j ·

ℓ∏
i=1

u
mj,i

i

)sj

=

(
g
y0,j

1

ℓ∏
i=1

(
g
(αi)
1

)−m∗
j,i

·
ℓ∏

i=1

(
gyi

1 g
(αi)
1

)mj,i

)ηj

=

(
g
Yj(mj)
1 ·

ℓ∏
i=1

(
gα

i

1

)(mj,i−m∗
j,i)
)ηj

.

Combining this with (13), we obtain the form of σ1 as in 6.1
of Algorithm B.

Let us go to the stage break in. According to the model,
when the time t̄ is reached, then the secret key skt̄ is handed
to A. In the considered scheme skt̄ = (scp, STACK), where
scp serves for making signatures related to the current time
period t̄, whereas STACK keeps data needed only for updating
the key.
The signing component is given by (3). Therefore, there exists
r ∈ Fp such that A = τx1 ·

(
u0,0

∏ℓ
i=1 u

t̄i
i

)r
and C = gr2 . If

we select ξ
$← Fp and put r = ξ − (t̄i0 − ti∗0 )

−1 · αℓ+1−i0 ,
then we obtain the proper distribution, as r and ξ are equally
probable. Analogously as above, there is i0, such that i0 :=
max{i ∈ [ℓ] | ti ̸= t∗i } thus, carrying out the same steps as
above, we obtain

A
x=α
= (gα1 )

y · gξY0(t̄)
1 ·

(
i0∏
i=1

(
gα

i

1

)(t̄i−t∗i )
)ξ

·
(
g
(αℓ+1−i0 )
1

)− Y0(t̄)

t̄i0
−ti∗0 ·

i0−1∏
i=1

(
g
(αℓ+1+i−i0 )
1

)− t̄i−t∗i
t̄i0

−t∗
i0 ,

and C = gξ2 ·
(
g
(αℓ+1−i0 )
2

)−(t̄i0−t∗i0
)−1

. This justifies 7.1 of
Algorithm B.

Now, let us examine the second component, STACK. We
start with a general remark, noting that each node being on
the stack skt.STACK associated with a time period t < T has
the form (node, h), where node is of the form (1) and h is its
height on the binary tree. Therefore, such nodes are uniquely
determined by the binary strings tℓ · · · th called indexes, which
in turn are contained in STACKID. Besides, a position of
(node, h) on skt.STACK is the same as a position of its index
on STACKID, for every fixed t < T . This means that B,
simulating behavior of Πsfu regarding a time period t, still
keeps knowledge about indexes of nodes, where these nodes
are originally from skt.STACK. Further, as all nodes create a
binary tree, there is a unique path between any different two of
them. In particular, there exists the unique path P , joining the
root and the leaf at index t∗ = (t∗ℓ · · · t∗1)2. Therefore, taking
any (node, h) ∈ skt̄.STACK, we know by Section IV-C and
the assumption t∗ < t̄, that node /∈ P . It is because, in other
case the index of node would be t∗ℓ · · · t∗h, what contradicts
the construction of the algorithm KUpd. This implies that if
tℓ · · · th is the index of node, then there is i0 ∈ {h, . . . , ℓ}

such that i0 := max{i ∈ {h, . . . , ℓ} | ti ̸= t∗i }. By (1)
we know that node =

(
A′; (b′i)i∈[h−1];C

′), where A′ =

τx1 ·
(
u0,0

∏ℓ
i=h u

ti
i

)r
, b′i = ur

i and C ′ = gr2 . Choosing ξ
$← Fp

uniformly at random and putting r = ξ−(t̄i0−ti∗0 )
−1·αℓ+1−i0 ,

we get after having regard to the substitutions (9), (10) and
(12), that

A′ x=α
= (gα1 )

y · g(α
ℓ+1)

1

·

(
g
y0,0

1 ·
ℓ∏

i=1

(
g
(αi)
1

)−t∗i
·

ℓ∏
i=h

gyiti
1

(
g
(αi)
1

)ti)r

= (gα1 )
y · g(α

ℓ+1)
1

·

(
g
y0,0+

∑ℓ
i=h yiti

1 ·
h−1∏
i=1

(
g
(αi)
1

)−t∗i
·

ℓ∏
i=h

(
g
(αi)
1

)(ti−t∗i )
)r

= (gα1 )
y · gξ(y0,0+

∑ℓ
i=h yiti)

1

·
h−1∏
i=1

(
g
(αi)
1

)−ξt∗i
·

ℓ∏
i=h

(
g
(αi)
1

)ξ(ti−t∗i )

·g
− y0,0+

∑ℓ
i=h yiti

ti0
−t∗

i0

·(αℓ+1−i0 )

1 ·
i0−1∏
i=h

(
g
(αℓ+1+i−i0 )
1

)− ti−t∗i
ti0

−t∗
i0 .

Moreover, we have

b′i =
(
gy1 · gα

i

1

)r
= gξyi

1 ·
(
g
(αi)
1

)ξ
·
(
g
(αℓ+1−i0 )
1

)− yi
ti0

−t∗
i0

·
(
g
(αℓ+1−i0+i)
1

)− 1
ti0

−t∗
i0 ,

for i = 1, . . . , h − 1 and obviously C ′ =

g
ξ−(ti0−t∗i0

)−1·(αℓ+1−i0 )

2 .

Finally, let σ =
(
σ1, σ2, (σ3,j)j∈[l]

)
be a forged signature

of m∗ in the time period t∗, then according to (7) we know
that

ê(σ∗
1 , g2) = ê

(
gy1g

αℓ

1 , gα2

)
· ê
(
g
Y0(t

∗)
1 , σ∗

2

)
·

l∏
j=1

ê
(
g
Yj(m

∗
j,i)

1 , σ∗
3,j

)
= ê ((gα1 )

y, g2) · ê
(
g
(αℓ+1)
1 , g2

)
· ê
(
g
Y0(t

∗)
1 , σ∗

2

)
·

l∏
j=1

ê
(
g
Yj(m

∗
j,i)

1 , σ∗
3,j

)
.

It is easy to see that the above formula can be written in the
following form

ê(σ∗
1 , g

β
2 )

β−1

=
(
ê
(
(gα1 )

y, gβ2

)
· ê
(
g
(αℓ+1)
1 , gβ2

)
· ê
(
(gβ1 )

Y0(t
∗), σ∗

2

)
·

l∏
j=1

ê
(
(gβ1 )

Yj(m
∗
j,i), σ∗

3,j

)β−1

.

This in conjunction with the fact that p is a prime number
lead us to the conclusion that the formula in 9 of Algorithm
B essentially equals ê

(
g
(αℓ+1)
1 , gβ2

)
.
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In conclusion, we have showed that if A is able to make
sfu-cma forgery and independently Y0(t

∗) ̸= 0 in Fp, then
B solves (ℓ, 1)-wBDHI∗3 problem. Therefore, the following
estimation is satisfied

Advsfu-cma
Πsfu,n

(A) ≤ p

p− 1
·Adv(ℓ,1)-wBDHI∗3

params,n (B).

This proofs the assertion.

B. Forward security of the scheme

Now we are ready to justify the forward security of the
presented scheme.

Let Πfu = (G ,KGen,KUpd,Sign,Vrfy) be the scheme defined
in Section IV with the associated message spaceM = {0, 1}∗.
If (ℓ, 1)-wBDHI∗3 is hard relative to G , then Πfu is forward-
secure in the random-oracle model .

The proof of this assertion immediately follows from Sec-
tion V-A. It is because, if H :M→ {0, 1}lℓ is modeled as a
random oracle, then given an adversary A, attacking fu-cma
security in the random oracle model, it is possible to break
sfu-cma security. To be more precise, we are able to construct
an sfu-cma adversary B, that guesses the time frame t∗ and
the index of A’s random oracle query for H(m∗). Note that,
if B has chosen a proper t∗ then it can set t̄← t∗+1 and use
skt̄ to simulate oracles KUpd and Break after the time period
t̄ and up to the point when A requests to launch the oracle
Break.

Finally, if B has correctly guessed the index of H(m∗),
then a forgery output by A is a valid forgery for B. This
means that intersection of three independent events, namely
making a forgery by A and the proper choice of both t∗ and
the random oracle query, implies the event that B breaks the
sfu-cma security. Therefore, we get the estimation

Advfu-cma
Πfu,n

(A) ≤ qH(T − 1) ·Advsfu-cma
Πsfu,n

(B),

where qH is the number of random-oracle queries made by
A. Hence, (8) then yields Advfu-cma

Πfu,n
(A) = negl(n). This

completes the proof.
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