Performance analysis of VoIP data over IP networks
Abstract
The paper presents the results of research and analysis of voice data transmission quality in IP packet networks. It analyses mechanisms allowing for the assessment of packet telephony data transmission quality. Possible transmission quality levels and adequate quality metrics, applicable in the recommen- dations of standardisation organisations, as well as suggested limit values conditioning acceptable voice data transmission quality were indicated and discussed. A packet network model was designed and tested, taking into account VoIP architecture supporting various audio codecs used for voice compression. Transmission mechanisms based on audio codecs G.711, G.723, G.726, G.728 and G.729 were investigated. It was shown that for delay-sensitive traffic which fluctuates beyond its nominal rate, selected codecs have an advantage over others and allow for better transmission quality of VoIP traffic with guaranteed bandwidth and delay.References
S. K. Puspita FM and S. Z. Taib BM, “Improved models of internet charging scheme of single bottleneck link in multi qos networks,” 2013. [Online]. Available: http://ddms.usim.edu.my: 80/jspui/handle/123456789/15429
A. R. Modarressi and S. Mohan, “Control and management in next-generation networks: challenges and opportunities,” IEEE Communications Magazine, vol. 38, no. 10, pp. 94–102, 2000. [Online]. Available: https://doi.org/10.1109/35.874976
D. Strzeciwilk, K. Ptaszek, P. Hoser, and I. Antoniku, “A research on the impact of encryption algorithms on the quality of vpn tunnels’ transmission,” in ITM Web of Conferences, vol. 21. EDP Sciences, 2018, p. 00011. [Online]. Available: https://doi.org/10.1051/itmconf/ 20182100011
H. J. Kim and S. G. Choi, “A study on a qos/qoe correlation model for qoe evaluation on iptv service,” in 2010 The 12th International Conference on Advanced Communication Technology (ICACT), vol. 2. IEEE, 2010, pp. 1377–1382.
D. Strzeciwilk, “Examination of transmission quality in the ip multi- protocol label switching corporate networks,” International Journal of Electronics and Telecommunications, vol. 58, pp. 267–272, 2012. [Online]. Available: http://dx.doi.org/10.2478/v10177-012-0037-z
A. J. Estepa, R. Estepa, J. M. Vozmediano, and P. Carrillo, “Dynamic voip codec selection on smartphones,” Netw. Protoc. Algorithms, vol. 6, no. 2, pp. 22–37, 2014. [Online]. Available: https://doi.org/10.5296/npa.v6i2.5370
W. M. Zuberek and D. Strzeciwilk, “Modeling traffic shaping and traffic policing in packet-switched networks,” Journal of Computer Sciences and Applications, vol. 6, no. 2, pp. 75–81, 2018. [Online].
Available: http://pubs.sciepub.com/jcsa/6/2/4
D. Cohen, “Specifications for the network voice protocol,” UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION SCIENCES INST, Tech. Rep., 1976. [Online].
Available: https://www.rfc-editor.org/info/rfc741
J. Davidson, J. Peters, J. Peters, and B. Gracely, Voice over IP funda- mentals. Cisco press, 2000.
S. Ganguly and S. Bhatnagar, VoIP: wireless, P2P and new enterprise voice over IP. John Wiley & Sons, 2008.
B. Hartpence, Packet Guide to Voice over IP: A system administrator’s guide to VoIP technologies. " O’Reilly Media, Inc.", 2013.
S. Deering and R. Hinden, “Rfc2460: Internet protocol, version 6 (ipv6) specification,” 1998.
K. Ramakrishnan, S. Floyd, and D. Black, “Rfc3168: The addition of explicit congestion notification (ecn) to ip,” 2001.
K. Nicholas, “Definition of the differentiated services field in the ipv4 and ipv6 headers,” RFC 2474, 1998.
F. Baker, J. Polk, and M. Dolly, “A differentiated services code point (dscp) for capacity-admitted traffic,” Internet Engineering Task Force (IETF), 2010.
D. Strzeciwilk, R. Nafkha, and R. Zawislak, “Performance analysis of a qos system with wfq queuing using temporal petri nets,” in International Conference on Computer Information Systems and Industrial Management. Springer, 2021, pp. 462–476. [Online].
Available: https://doi.org/10.1007/978-3-030-84340-3_38
S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” 1998.
D. C. Dowden, R. D. Gitlin, and R. L. Martin, “Next-generation networks,” Bell Labs technical journal, vol. 3, no. 4, pp. 3–14, 1998. [Online]. Available: https://doi.org/10.1002/bltj.2125
G. R. Ash, Traffic engineering and QoS optimization of integrated voice and data networks. Elsevier, 2006.
M. H. Miraz, S. A. Molvi, M. A. Ganie, M. Ali, and A. H. Hussein, “Simulation and analysis of quality of service (qos) parameters of voice over ip (voip) traffic through heterogeneous networks,” arXiv preprint arXiv:1708.01572, 2017. [Online]. Available: https://arxiv.org/abs/1708.01572
E. T. Affonso, R. D. Nunes, R. L. Rosa, G. F. Pivaro, and
D. Z. Rodriguez, “Speech quality assessment in wireless voip communication using deep belief network,” IEEE Access, vol. 6, pp. 77 022–77 032, 2018. [Online]. Available: https://doi.org/10.1109/ ACCESS.2018.2871072
J. Yu and I. Al-Ajarmeh, “Call admission control and traffic engineering of voip,” in 2007 Second International Conference on Digital Telecom- munications (ICDT’07). IEEE, 2007, pp. 11–11.
T. ITU, “Recommendation g. 114, one-way transmission time,” Series G: Transmission Systems and Media, Digital Systems and Networks, Telecommunication Standardization Sector of ITU, 2000.
J. H. James, B. Chen, and L. Garrison, “Implementing voip: a voice transmission performance progress report,” IEEE Communications Magazine, vol. 42, no. 7, pp. 36–41, 2004. [Online]. Available: https://doi.org/10.1109/MCOM.2004.1316528
J. G. Beerends, C. Schmidmer, J. Berger, M. Obermann, R. Ullmann, J. Pomy, and M. Keyhl, “Perceptual objective listening quality assessment (polqa), the third generation itu- t standard for end-to-end speech quality measurement part i—temporal alignment,” Journal of the Audio Engineering Society, vol. 61, no. 6, pp. 366–384, 2013. [Online]. Available: http://resolver.tudelft.nl/uuid:91d98cbc-d802-40d3-a1bb-a58d67668728
R. D. Nunes, R. L. Rosa, and D. Z. Rodríguez, “Performance improvement of a non-intrusive voice quality metric in lossy networks,” IET Communications, vol. 13, no. 20, pp. 3401–3408, 2019. [Online].
Available: https://doi.org/10.1049/iet-com.2018.5165
B. Naderi and R. Cutler, “An open source implementation of itu-t rec- ommendation p. 808 with validation,” arXiv preprint arXiv:2005.08138, 2020. [Online]. Available: https://arxiv.org/ct?url=https%3A%2F%2Fdx. doi.org%2F10.21437%2FInterspeech.2020-2665&v=69f1738e
A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Per- ceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs,” in 2001 IEEE international conference on acoustics, speech, and signal processing. Proceedings (Cat. No. 01CH37221), vol. 2. IEEE, 2001, pp. 749–752.
S. Voran, “Objective estimation of perceived speech quality. i. development of the measuring normalizing block technique,” IEEE Transactions on speech and audio processing, vol. 7, no. 4, pp. 371–382, 1999. [Online]. Available: https://doi.org/10.1109/89.771259
M. Coto-Jimenez, J. Goddard-Close, L. Di Persia, and H. L. Rufiner, “Hybrid speech enhancement with wiener filters and deep lstm denoising autoencoders,” in 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI). IEEE, 2018, pp. 1–8. [Online].
Available: https://doi.org/10.1109/IWOBI.2018.8464132
L. Ding and R. A. Goubran, “Speech quality prediction in voip using the extended e-model,” in GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No. 03CH37489), vol. 7. IEEE, 2003, pp. 3974–3978. [Online]. Available: https://doi.org/10. 1109/GLOCOM.2003.1258975
J. A. Bergstra and C. Middelburg, “Itu-t recommendation g. 107: The e-model, a computational model for use in transmission planning,” 2003.
R. Jain, “Quality of experience,” IEEE multimedia, vol. 11, no. 1, pp. 96–95, 2004. [Online]. Available: https://doi.ieeecomputersociety.org/ 10.1109/MMUL.2004.10000
A. Eskandar, M. Syed et al., “Performance analysis of voip over gre tunnel.” International Journal of Computer Network & Information Security, vol. 7, no. 12, 2015. [Online]. Available: http://dx.doi.org/10. 5815/ijcnis.2015.12.01
R. S. Ramakrishnan and P. V. Kumar, “Performance analysis of different codecs in voip using sip,” in The Conference on Mobile and Pervasive Computing, 2008, pp. 142–145.
S. Ragot, B. Kovesi, R. Trilling, D. Virette, N. Duc, D. Massaloux,
S. Proust, B. Geiser, M. Gartner, S. Schandl et al., “Itu-t g. 729.1: An 8-32 kbit/s scalable coder interoperable with g. 729 for wideband telephony and voice over ip,” in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 4. IEEE, 2007, pp. IV–529. [Online]. Available: https://doi.org/10.1109/ICASSP. 2007.366966
Downloads
Published
Issue
Section
License
Copyright (c) 2021 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.