&

je

Manuscript received September 3, 2021; revised January, 2022.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 1, PP. 19-26
DOI: 10.24425/ijet.2022.139843

Analysis of a Novel FPGA-based System for
Filtering Audio Signals Using a Finite Impulse
Response Filters

Adrian Lipowski, Pawel Majewski and Stawomir Pluta

Abstract—In this article, an analysis of an innovative system
for filtering signals in the audible range (16 Hz - 20 kHz) on
programmable logic devices using a filters with a finite impulse
response, is presented. Mentioned system was neat combination
of software and hardware platform, where in the program layer
a multiple programming languages including VHDL, JavaScript,
Matlab or HTML were used to create completely useful appli-
cation. To determine the coefficients of polynomial filters the
Matlab Filter Design & Analysis Tool was used. Thanks to the
developed graphic layer, a user-friendly interface was created,
which allows easily transfer the required coefficients from the
computer to the executive system. The practical implementation
made on the FPGA platform, specifically on the Altera DE2-
115 development kit with the FPGA Cyclone IV, was compared
with simulation realization of Matlab FIR filters. The performed
research confirm the effectiveness of filtration in real time with up
to 128th order of the filter for both audio channels simultaneously
in FPGA-based system.

Keywords—audio filtering; FIR filter; FPGA; signal processing

I. INTRODUCTION

STANDARD approach to signal processing tasks is to

use the DSPs [1]-[6]. This structures are characterized
by the possibility to work in real-time systems and, depend on
model, can implement different kinds of memories, peripher-
als, interfaces etc. Nowadays, they can even vary by structure
of core, from single to multicore approach. Thanks to its
universal possibilities they can be used in almost any scientific
field. Nevertheless, sometimes the demands that are made of
them can inflate part of the parameters of such a system.
Therefore, in some cases, simple system may need a processor
with very high clock speed, where another parameters are
not so critical. Notwithstanding, instead of struggling with
these parameters is better to use another alternative approach.
At present, thanks to high complexity of PLDs, the FPGA
chips can be a such solution [7]-[12]. The internal physical
structure of such a system can perform a different specific task.
Maybe these structures are not flexible as DSPs, but in some
cases they can be full-fledged counterparts to their opponents.
Moreover, bringing the functionality almost directly to the
physical layer we significantly speeds up the computations
what makes FPGAs so attractive [13]-[20]. What is more,
the PLDs work same as CPUs according to clock tact, but

A. Lipowski, P. Majewski and S. Pluta are with Opole
University Technology, Opole, Poland (e-mail: a.r.lipowski@ gmail.com,
p-majewski@po.edu.pl, s.pluta@po.edu.pl).

first of them do not have as many abstract areas, so they no
need to fetch code from memory, because algorithm is already
implemented in hardware. This speaks in favor of FPGAs, so
the authors of this article paid particular attention to them.

One of mentioned FPGAs functionality can be a real-time
signal filtration process, especially with using filter with finite
impulse response (FIR). Thanks to the convolutional equations
describing this tool, the process of its implementation reduce
to perform only a certain number of multiplication and ad-
dition operations. Through the carried research, the authors
propose to realized signal processing of audio frequencies
by using high order of FIR filter in FPGA-based systems.
A comparative analysis of the work of a real object with
its simulation counterpart, which is aim of these article,
confirms the correctness of proposed approach. Therefore, the
paper has following manner. After a short introduction of
mentioned filters in Section 2, the tools used in the project
to perform a research studies are presented in Chapter 3.
Next, the discussing of the description and configuration of
the authors’ developed system in Section 4 precedes the results
of the analysis presented in Chapter 5. The whole article is
summarized in the form of a discussion in Chapter 6. before
the References.

II. FINITE IMPULSE RESPONSE FILTER

Finite Impulse Response filters belong to the group of poly-
nomials filters, which are assumed to be easily implemented
in digital systems. They allow to improve the characteristics
of the processed signals in a finite impulse response, therefore
they are very user-friendly. Despite its numerous advantages,
one is undoubtedly the most important feature - stability. If
we look at the Figure (1), the current state of the output
depends only on the state at the input at the present and
the past. Therefore is no need to know the states of output
now and in the past. This allows the FIR transfer function
characteristic to include only zeros without poles, what results
in the mentioned structural stability of the systems. Moreover,
due to the appropriate selection of the filter coefficients,
these systems can have a linear phase characteristic. While
an implementation disadvantage is the memory requirement
for storing the filter coefficients, but that does not bother
us nowadays. Moreover, the implementation itself can be
reflected in following expression

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

20

x(n)

—{ e

hel) (2)

l ¥(n)

Fig. 1. Scheme of finite impulse response filter [21]

M—

y(n) = > h(k)x(n - k), (1)

k=0

—

where x(n) and y(n) are n-th sample of input and output
signal, respectively. While h(k) stands for k-th coefficient of
the filter polynomial with M — 1 order. Whilst the form of the
filter can be written as follows

H(Zil) = hM_127M+1 —|—hM_22’7]VI+2 +... +h1271 +hy,
2
where 2z~ stands for one step backward shift operator.

As we can see in Eq. (1) implementation of the FIR require a
convolution operation, hence system must perform number of
multiplication and additions, what is not problem for FPGAs
(even for high order M — 1).

Therefore, if we have an outlined tool that we will use in
the further part of our article, let’s move on to the chapter
describing the platform, specifically the hardware and software
used in the research.

III. HARDWARE AND SOFTWARE USED IN THE RESEARCH
STUDIES

For the purpose of research studies on the implementation
of filtration with the FIR approach, it is necessary to compose
a set of appropriate tools. The whole system consists of several
software and hardware key components, therefore they will be
described separately.

A. Altera DE2-115 development kit

In order to the implementation of the convolution function
described by the equation Eq. (1) in hardware, the Altera DE2-
115 with FPGA Cyclone IV development kit was used. This
platform, apart from the chip that can work with frequencies
up to 400 MHz (50 MHz clock speed was used in the re-
search), contains numerous useful functions such as the audio
codec system with 3.5 mm jack input/output or numerous
peripherals from GPIO to serial communication. The block
diagram of the used system is shown in Figure (2).

A. LIPOWSKI, P. MAJEWSKI, S. PLUTA

B. Converter USB/UART

Although the previously presented FPGA platform can be
programmed via USB, the UART communication was used for
communication with a PC. Therefore, a USB/UART converter,
the PL2303HX model was used in the developed system
(Figure (3)). This approach guarantee, a smooth and simple
connection between board and the station that displays the
results i.e. PC computer.

C. Generating and measuring equipment

The waveforms necessary to test the system were made with
a Siglent SDG1025 functional generator with a base band
of 25 MHz. Mentioned device allows to generate periodic
signals of a selected shape (including a sine wave) and a
specific amplitude. It also has a ”sweep” option, which allows
to automatically change the frequency of the generated signal
in a given way. The generated signal was fed to the input of
the audio processing line of FPGA platform.

To analyze the operation of the digital processing path the
Siglent SDS 1072CML oscilloscope with a band of 70 MHz
was used, which is sufficient for recording audio signals.
Both the function generator output and the filtered signal
audio output were connected to the oscilloscope channels.
Thanks to this, it was possible to observe time-correlated
signals in the time domain. It will also allow to determine the
static characteristics of the processing path for the selected
frequencies. The oscilloscope also has the FFT function, the
use of which on the filtered signal allows to determine the
effectiveness of the proposed filter.

D. Software

For the purposes of programming the FPGA, the Quartus
Prime environment was used, which, apart from the possibility
of interpreting the VHDL language, allows to configure the
inputs/outputs of the system and download the result code to
the chip (Figure (4(a))).

The next key tools from the point of view of the research are
the Node.js environment and an Internet browser. The first of
them is responsible for managing operations in the background
(backend), and together with the browser with WebSocket
support, we can have a fully functional interface.The role of
this system is to manage the window and FIR filter coefficients
and it consists of several layers (Figure (5)). Directly to the
FPGA is connected the TX line of the computer’s serial con-
nector. This connector is realized via a USB/UART converter.
As part of this, the server application was launched in the
Node.js environment. It handles the serial port and passes data
between it and the instance of the WebSocket object. A web
browser that supports the WebSocket technology can connect
to the server by executing JavaScript code. Thanks to this, it
is possible to transfer data between the FPGA chip and a web
browser, in which the graphic layer is made up of standard
HTML elements.

In the proposed approach, the filter coefficients previously
determined in Matlab are read by JavaScript code and can
be edited within the browser. Moreover, the user can select a
specific type of filter from the list of previously prepared sets

ANALYSIS OF A NOVEL FPGA-BASED SYSTEM FOR FILTERING AUDIO SIGNALS USING A FINITE IMPULSE RESPONSE FILTERS 21

LCD Modulke

SDRAM X57
—

& 292 !"!TFHI'J

CLKOUT i
CLOCK X3

Push-butions X4

wwws

Fig. 2. Block scheme of DE2-115 platform [22

Bottom view

|]

Fig. 3. Converter USB/UART PL2303HX [23]

(Figure (6(a))), and can also edit it graphically with the use
of active sliders (Figure (6(b))). The set values can be sent to
the layout as window or filter coefficients.

Last but not least is Matlab environment. Thanks to this
software, especially thanks to the Filter Designer & Analysis
Tool, it is possible to design and verify the proposed filtering
algorithm and of course receive the required filter coefficients
(Figure (4(b)).

IV. DESCRIPTION AND CONFIGURATION OF THE
RESEARCH SYSTEM

In order to perform the research studies, the laboratory
system was prepared from earlier mentioned hardware and
software components. However, before the research was made,
some setup remarks should be considered. Due to its complex-
ity each of them will be taking into account separately.

Adnsiable Vollage Signal

A. Audio interface operating module

In the hardware part of the whole system we used audio
codec of the platform which has a microphone input and
line input/output, as well as communication lines and buses.
The connections between the codec and FPGA, was made
permanently in the DE2-115 development kit. But from the
point of view of the software, it can be seen that thanks to
the IP modules, many configuration tasks can be performed
automatically, but not all of them. Thanks to the mentioned
modules provided by the manufacturer of the development
kit, the codec system could be configured by automatically
generating the VHDL code. For example block named Audio
and Video Config [24] provides communication with the codec
module necessary for its configuration.

The audio input path has been configured to send the signal
from the Line In to the ADC. The “Enable DAC Output”
option was also selected to allow the samples to be written
to the DAC and the audio signal generated to the Audio Out,
simultaneously. The audio samples (both from the ADC and
to the DAC) were recorded on 32 bits with left justification
(MSB at position 31).

Receiving and storing samples over physically available
buses require the creation of additional coding/decoding mod-
ules and appropriate buffers. But in the Quartus environment,
we can find an IP block that is an interface to the audio codec
(Figure (7)). Using this module allows to gain access to the
ADC and DAC in a relatively simple, high-level way. The
module is physically connected to the audio codec via a data
bus and clock lines. Thanks to the use of the AudiolO module,
we obtain 2 input (ADC) and 2 output (DAC) buses with valid

22

St o}

(a) Main window of the Quartus Prime

o

-] Filter Design & Analysis Tool

File Edit Analysis Targets View Window Help

DeE&h @< i@ DiNOM2 0 - BLHORE W

| Current Fiter nformaton

Magntude Responss (45|
0
50 \\

] } Do
" g
0 15 2

3
Frequency (kHz)

Magnitude (d5)

Fiter Ord: Frequency. Hagntude

v || ® et 128 unts [z N

B
]

Fs: [ss000

Fe: 10800

[Design Hethod.

OmR | gutterwortn

@FR |Window

G

o

esigning Fiter .. Done

(b) Filter designer in Matlab

Fig. 4. Software used in research

FPGA

vhdl UART module

UART/USB converter

Node.js server with
Serial and WebSocket modules

!

Firefox browser
HTML, JavaScript

Fig. 5. System interface diagram

and ready signals, which allows for simple, both synchronous
and asynchronous, data exchange with the codec.

A. LIPOWSKI, P. MAJEWSKI, S. PLUTA

The last element needed both to configure the codec and
to work with the AudiolO module is the appropriate clock
signal. According to the information included in the catalog
note, a clock frequency of 256 * f; should be used for
the sampling frequency f;. This approach provides the IP
AudioCLK module which can generate clock signals at the
frequencies needed for the codec system operation.

The code of the above-mentioned components was used
to develop a authors’ single module Audio HAL constituting
an abstraction layer for the audio codec. It allows to easily
configure the codec, read and write the audio signal directly
with a single component, what can be see in the Figure (8).

B. FIR module

The filter module has been designed to have as less in-
puts/outputs as possible and to be easy to use. The parallel
execution of 128 multiplication operations on 20-bit numbers
was divided into eight steps. In each of them, the 16 consec-
utive sample values are calculated. The subtotal is kept, and
after all steps have been completed, the total result represents
the filter output. The block diagram of the module (Figure (9))
presents the data flow between the components.

The filter module logic was implemented as a state machine
[25]. At the beginning the machine first applies the window
function to the audio samples. Then the convolution operation
is performed, which takes eight iterations. Then, data from
the respective input bus portions is entered into the computing
components. After the result is obtained, it is accumulated in
the special register.

In Delay line component which can be seen in (Figure (9))
shift register function is performed. The Shift cells create a
buffer for storing audio samples and only two clock cycles
are needed to perform the shift operation. In the tests, the
data bus width was assumed to be 20 bits.

Thanks to the modular structure of the Shift cell elements,
it is possible to freely configure the length of the Delay line
block by adding the mentioned blocks. Moreover, regardless of
the delay block length adopted, each time the action associated
with the shift of the audio samples in the memory takes place
in only two steps of the clock cycle.

C. Serial interface module

In order to implement the UART link, modules supporting
serial transmission were created, where the RX and TX lines
were connected directly to the FPGA. For this approach,
communication was handled with special values of the bitTicks
argument (the generic variable defines the number of master
clock cycles per bit transmission time), so that the signal
value could be correctly read at appropriate link mode. For
the project, a bandwidth of 115 200 bps was selected, which
means a transmission of 14,4 KB/s, through which 3-byte
packets of filter coefficients were sent. This means that the
parameter package for both channels was 128*2*3 = 768
bytes.

D. Main module

The task of the main module, the highest in the hierarchy,
is to collect and connect the sub-segments among themselves,

ANALYSIS OF A NOVEL FPGA-BASED SYSTEM FOR FILTERING AUDIO SIGNALS USING A FINITE IMPULSE RESPONSE FILTERS 23

Allto 0 | send fir sliders | | send window sliders

Window Rect Window Hann

#Type: high, Cutoff: 6400, Length: 128 ~
#Type: high, Cutoff: 6500, Length: 128
#Type: high, Cutoff: 6600, Length: 1268
#Type: high, Cutoff: 6700, Length: 128
#Type: high, Cutoff: 6800, Length: 128
#Type: high, Cutoff: 6900, Length: 128
#Type: high, Cutoff: 7000, Length: 128
#Type: high, Cutoff: 7100, Length;: 128
#Type: high, Cutoff: 7200, Length: 128
#Type: high, Cutoff: 7300, Length; 128
#Type: high, Cutoff: 7400, Length: 128
#Type: high, Cutoff: 7500, Length: 128
#Type: high, Cutoff: 7600, Length: 128
#Type: high, Cutoff: 7700, Length: 128
#Type: high, Cutoff: 7800, Length: 128
#Type: high, Cutoff: 7900, Length: 128
#Type: high, Cutoff: 8000, Length: 128
#Type: high, Cutoff: 8100, Length: 128
#Type: high, Cutoff: 8200, Length: 128
#Type: high, Cutoff: 8300, Length: 128
#Type: high, Cutoff: 8400, Length: 128
#Type: high, Cutoff: 8500, Length: 128
#Type: high, Cutoff: 8600, Length: 128
#Type: high, Cutoff: 8700, Length: 128
#Type: high, Cutoff: 8800, Length: 128
#Type: high, Cutoff: 8500, Length: 128
#Type: high, Cutoff: 9000, Length: 128
#Type: high, Cutoff: 9100, Length: 128
#Type: high, Cutoff: 9200, Length: 128
#Type: high, Cutoff: 9300, Length: 128
#Type: high, Cutoff: 9400, Length: 128
#Type: high, Cutoff: 9500, Length: 128
#Type: high, Cutoff: 9600, Length: 128
#Type: high, Cutoff: 9700, Length: 128
#Type: high, Cutoff: 9800, Length: 128
#Type: high, Cutoff: 9900, Length: 128
#Type: high, Cutoff: 10000, Length: 126
#Type: high, Cutoff: 10100, Length: 128
#Type: high, Cutoff: 10200, Length: 128
#Type: high, Cutoff: 10300, Length: 126
#Type: high, Cutoff: 10400, Length: 128
#Type: high, Cutoff: 10500, Length: 126
#Type: high, Cutoff: 10600, Length: 128
#Type: high, Cutoff: 10700, Length: 126
#Type: high, Cutoff: 10800, Length: 128
#Type: high, Cutoff: 10900, Length: 126
#Type: high, Cutoff: 11000, Length: 128
#Type: high, Cutoff: 11100, Length: 128
#Type: high, Cutoff: 11200, Length; 128
#Type: high, Cutoff: 11300, Length: 128

(a) List of filters in the user interface

Fig. 6. Partial view of the user interface

|System: sudel0 Path: e 0

Audio
Biers i svaion_sdo

audio

[tntedace settings | o
von Type: ™
Sreamng]
[+ Audio Direction | L ol
= et rvamt
S avalon_ieft_channel_sink P S
B Aundo Gt 80c_lof_charmel_datag1 0] I BT e
from pd: i
se_Je_charrel_vaiel s
[Data Format _doc_lof_charre_teady .yl o S

Data Wt 32 o
= wvakon_right_channal_sink

sise rigpt_eharewel a1 0]

oc_1ight_channel_vakd

e)
pErm——
svconr

e

hveimcr -
wpar |
) DACDAT epan
1O _DACLACH. facpon

0 rrors, 0 Warnirgs

Fig. 7. AudiolO TP block

as well as to describe the signals that can be led out. Only
from this unit, signals can be assigned to the physical pins
of the FPGA. All the previously described components have
been integrated into the main module. In the mentioned system
there is also a logic which realizes buffering of coefficients
sent via UART link. The bytes received over the serial link
are sequentially folded into 20-bit coefficients and written to
the window buffer or FIR filter.

E. Generation of FIR coefficients in Matlab

The practical system verification required the generation of
correct coefficients for the FIR filter. For this purpose, a script
was developed in the Matlab environment, which, using the
default function “firl(.)”, generated a text file containing a

~| | Przegiadaj... = FIRlistHann.bd

-3

D 12700078

a
v
+

(b) Sliders for changing the filter coeffi-
cients

Audio codec chip
instruction and data

Audio HAL

AV Config

Audio CLK

Custom logic

v AudiolO

2x32 bits 2x32 bits

ADC bus
left and right channel

DAC bus
left and right channel

Fig. 8. Block diagram of the VHDL author’s Audio HAL module

number of filters with given parameters. The arguments of
the mentioned function are filter type, order and bandwidth,
as well as additional metadata containing basic information
about filters.

24

Input sample

l 20 bits

A. LIPOWSKI, P. MAJEWSKI, S. PLUTA

partial output sample

20 bits
+ 128x20 16x20 16x20
. ' array |mm—————————————— 1 array array
- 27cels]) F Vector Mult Vector MAC
. 1 : : applying window performing FIR
1 1
i ' 16x20
: : array 16x20
i Multiplexing, i array
soo | Summing ;
aray | and control logic
Window coefficients ! '
1 1
128x20 i i 20 bits
- array
FIR coefficients e, : » Output sample
1
e .
Fig. 9. Block diagram of the VHDL FIR module
ﬂ USB
ommmmmmfemeol, el
! ' UsB/UART | i R S .
! PC :1=D: GPIO ! digital ! |
e J i GPIO || Logic analyzer |
1
! DE2-115 | S 5
________________ ' i
: F t." : analog : : I-_______________-I
i unction | e | line in audio out | co— | CH 2 !
! generator H ! i ! !
sommmmmmoooooed e GhGET R . | Oscilloscope |
i i
$CH1 i
1 1

Fig. 10. Block diagram of the test system

V. EXPERIMENTAL RESULTS AND ANALYSIS

The performance of the practical system was verify by
the devices/tools mentioned in the previous sections. The
measuring set was connected as shown in Figure (10), where
the output of the generator was connected to both the audio
input of the DE2-115 set and the input of the oscilloscope.
Logic analyzer channels was also connected to the appropriate
pins of the GPIO port of the FPGA. Therefore, the analysis of
the authors’ FPGA-based system comes down to comparing
the physically obtained results with those received from the
simulation of appropriate FIR filters.

The results of the analysis of the authors’ system in terms
of frequency responses are presented in the further part of this
section.

A. Frequency analysis

To perform the frequency analysis of the developed system
the functional generator and a digital oscilloscope, described in
previous section, were used. Both the signal fed to the input of
the processing board and the signal after the filtration process
were observed on the oscilloscope. By displaying both of them
at the same time, it was possible to measure their amplitudes
and calculate the phase shift. In addition, the Fast Fourier

© =1 0,0009KH2

CH1 = 1,08V

M 2.50ms

Fig. 11. FFT analysis

Transform (FFT) was also performed, which made it easy to
observe how the filter’s frequency response changed due to the
changes of it’s coefficients. In the presented studies, dBVrms
was adopted as the measurement unit (Figure (11)).

During the measurement studies, it was found that the noise
level was on ca. -60 dBVrms. Moreover, the tested physical
low- and high-pass filters reduced signal to the mentioned
noise level at a distance of 1 kHz and further from the cut-off
frequency (please see Figures (12(a)-12(d))). What is more,
in case of these filters for high frequency (here was 15 kHz)

ANALYSIS OF A NOVEL FPGA-BASED SYSTEM FOR FILTERING AUDIO SIGNALS USING A FINITE IMPULSE RESPONSE FILTERS 25

-10
-20
”‘é 30
2
=, Reference signal
8 -40 Filired signal in Matlab
2 Filtred signal in FPGA
c
o
I
= 501
-60
70 . . . " . " . . . ,
1 15 2 25 3 35 4 45 5 55 6
Frequency [kHz]
(a) Characteristic of the 5 kHz low-pass filter
10 F
-20
—'E -30
g
D, Reference signal
o -40 - Filtred signal in Matlab
2 Filtred signal in FPGA
S
@
= 501
-60
70 ,
4 45 5 55 6 6.5 7 75 8
Frequency [kHz]
(c) Characteristic of the 5 kHz high-pass filter
10 -
o0 b
—'E -30
>
[as]
k=3
& 40 ¢
=
S
o
@
= 501
-60 1 Reference signal
Filtred signal in Matlab
Filtred signal in FPGA
70 . R R . ,
4 4.5 5.5 6 6.5

5
Frequency [kHz]

(e) Characteristic of the 5-6 kHz band-pass filter

Fig. 12. Amplitude characteristics of selected ilters

the attenuation of signal in the stop band is much better in
authors’ develop system than in reference simulation studies
(Figures (12(b)-12(d))).

While for the physical band-pass filters the response was
obtained with a slightly higher slope on the high-frequency
side and a smaller slope on the lower-frequency direction
(Figure (12(c)-12(f))). Also in this case, the attenuation to the
noise level in the stop band, was obtained not more than 1 kHz
from the cut-off frequencies. For authors’ 15-16 kHz band-

207 \—
251

-30

rms]

=351

Reference signal
Filtred signal in Matlab
Filtred signal in FPGA

40 |

-45 |

Magnitude [dBV

-50

55 |

60 |

65 ,
" 115 12 125 13 135 14 145 15 165 16
Frequency [kHz]

(b) Characteristic of the 15 kHz low-pass filter

-20 ——/_’
25

: 7

-35

rms]

Reference signal
Filtred signal in Matlab
Filtred signal in FPGA

-40

45

Magnitude [dBV

-50

-55

14 14.5 15 15.5 16 16.5 17 17.5 18
Frequency [kHz]

(d) Characteristic of the 15 kHz high-pass filter

5

-20

251

30

rms]

35 |

-40

-45

Magnitude [dBV

-50

-55

Reference signal
60 Filtred signal in Matlab
{ Filtred signal in FPGA

-65

14 14.5 15 15.5 16 16.5
Frequency [kHz]

(f) Characteristic of the 15-16 kHz band-pass filter

pass filter the fading results in stop band are far more better
than Matlab simulation studies. Nevertheless, we can see a
slightly higher signal attenuation in the pass band (please see

Figure (12(f))).

VI. DISCUSSION

The managed studies and analysis confirm the effectiveness
of the developed system that met the assumed requirements.
Authors’ digital audio signal processing module was created

26

using the FPGA Altera DE2-115 development kit. The fre-
quency response of the system, resulting from the adopted
sampling frequency of 48kHz, was 23kHz (the requirement
of the Nyquist criterion), therefore it is sufficient for filtering
audio signals with FIR type filters. Practical analysis confirm
the effectiveness of filtration process in real time with up to
128th order of the filters. The developed authors’ user interface
allows not only to select from a list and send the previously
generated filter coefficients to the FPGA, but also to edit them.
This approach makes it possible to generate individual filter
configurations. Based on the time analysis, it can be seen that
the signal sample processing time is less than half the period
of feeding subsequent samples to the processing system. This
means that the amount of computation can be at least doubled
while maintaining real-time processing capability. The surplus
time can also be used to increase the filter order, but this
involves minor modifications to the VHDL code. As part of the
work, a two-channel filter was implemented, so it is possible
to modify the interface so that the FIR coefficients sent to the
FPGA can be different for individual channels.

REFERENCES

[1] E. Salgado-Plasencia, R.V. Carrillo-Serrano, M. Toledano-Ayala, "De-
velopment of a DSP Microcontroller-Based Fuzzy Logic Controller for
Heliostat Orientation Control”, Applied Sciences 10 (5), 1598 (2020).
https://doi.org/10.3390/app 10051598

[2] X. Gong, Z. Le, H. Wang, Y. Wu, "Study on the Moving Target Tracking Based
on Vision DSP”, Sensors 20 (11), 6494 (2020). https://doi.org/10.3390/s20226494

[3] Q. Guo, Z. Dong, H. Liu, X. You, "Nonlinear Characteristics Compensation of
Inverter for Low-Voltage Delta-Connected Induction Motor”, Energies 13 (3), 590
(2020). https://doi.org/10.3390/en13030590

[4] Ch.T. Ma, ZH. Gu, ”Design and

Three-Phase Active Power Filter”,

https://doi.org/10.3390/mil1 1020134

S. Cuoghi, R. Mandrioli, L. Ntogramatzidis, G. Gabriele, ”"Multileg Interleaved

Buck Converter for EV Charging: Discrete-Time Model and Direct Control

Design”, Energies 13 (2), 466 (2020). https://doi.org/10.3390/en13020466

GaN-Based
134 (2020).

Implementation of a
Micromachines 11 (2),

[5

[6] W. Yao, J. Cui, W. Yao, ”Single-Phase Inverter Deadbeat Control
with One-Carrier-Period ~ Lag”, Electronics 9 (1), 154 (2020).
https://doi.org/10.3390/electronics9010154

[71] G. La Tona, M. Luna, M.C. Piazza, M. Pucci, A. Accetta, “De-

velopment of a High-Performance, FPGA-Based Virtual Anemometer for
Model-Based MPPT of Wind Generators”, Electronics 9 (1), 83Li (2020).
https://doi.org/10.3390/electronics9010083

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]
[25]

A. LIPOWSKI, P. MAJEWSKI, S. PLUTA

X. Li, N. Wang, G. San, X. Guo, "Current Source AC-Side Clamped Inverter for
Leakage Current Reduction in Grid-Connected PV System”, Electronics 8 (11),
1296 (2019). https://doi.org/10.3390/electronics8111296

B. Wang, W. Tang, ”A Novel Three-Switch Z-Source SEPIC Inverter”, Electronics
8 (2), 247 (2019). https://doi.org/10.3390/electronics8020247

X. Sun, ChJ. Xue, J. Yu, TW. Kuo, X. Liu, "Accelerating data filtering for
database using FPGA”, Journal of Systems Architecture 114, 101908 (2021).
https://doi.org/10.1016/j.sysarc.2020.101908

R. Guo, ”Strength Fitness Control System and Motor balance Based on FPGA
and Wireless Sensors”, Microprocessors and Microsystems 81, 103684 (2021).
https://doi.org/10.1016/j.micpro.2020.103684

S. Kim, U. Yun, J. Jang, G. Seo, J. Kang, H.N. Lee, M. Lee, “Reduced
Computational Complexity Orthogonal Matching Pursuit Using a Novel Partitioned
Inversion Technique for Compressive Sensing”, Electronics 7 (9), 206 (2018).
https://doi.org/10.3390/electronics 7090206

A. Lipowski, "Developing DSP techniques in FPGA systems (in Polish)”, Bach-
elor’s Thesis, Opole University of Technology (2019).

M. Skiwski, "Cyfrowa filtracja sygnaléw z wykorzystaniem uktadéw FPGA”,
Pomiary Automatyka Kontrola 59 (6), 503-506 (2013).
C.J. Kikkert, “A Phasor Measurement Unit
Filters for FPGA Implementation”, Electronics 8
https://doi.org/10.3390/electronics8121523

F. Nekoei, Y.S. Kavian, O. Strobel, "Some schemes of realization digital FIR
filters on FPGA for communication applications”, In the proceedings of 20th
International Crimean Conference ”Microwave Telecommunication Technology”,
616-619 (2010). https://doi.org/10.1109/CRMICO.2010.5632348

R.R. Sudharsan, ”Synthesis of FIR Filter using ADC-DAC: A FPGA Implementa-
tion”, In the proceedings of IEEE International Conference on Clean Energy and
Energy Efficient Electronics Circuit for Sustainable Development (INCCES), 1-3
(2019). https://doi.org/10.1109/INCCES47820.2019.9167696

H.S.O. Migdadi, R,A. Abd-Alhameed, H.A. Obeidat, .M. Noras, E.A.A. Qaralleh,
M.J. Ngala, "FIR implementation on FPGA: Investigate the FIR order on SDA and
PDA algorithms”, In the proceedings of Internet Technologies and Applications
(ITA), 417-421 (2015). https://doi.org/10.1109/1TechA.2015.7317439

D. Datta, S. Akhtar, H.S. Dutta, "FPGA Implementation of Symmetric
Systolic FIR Filter using Multi-channel Technique”, In the proceedings of
IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS), 225-228 (2020).
https://doi.org/10.1109/VLSIDCS47293.2020.9179926

MM. Shahbaz, A. Wakeel, Junaid-ur-Rehman, B. Khan, "FPGA Based
Implementation of FIR Filter for FOFDM Waveform”, In the proceedings
of 2nd International Conference on Communication, Computing and
Digital systems (C-CODE), 226-230 (2019). https://doi.org/10.1109/C-
CODE.2019.868100510.1109/VLSIDCS47293.2020.9179926

M. Krzysiek, “Digital filters realizations for TMS320 signal processors”, Master
Thesis, Wroctaw University of Science and Technology, (2006).

Intel/Altera, "Terasic DE2-115 User manual”, Technical data sheet, (2013).
Handson Technology, "Intel Audio Core for Intel DE Series Boards”, User guide,
(2020).

Intel, “Intel Audio Core for Intel DE Series Boards”, Technical data sheet, (2020).
T. Luba, ”Synthesis of digital circuits (in Polish)”, Wydawnictwa Komunikacji i
Lacznosci, (2003).

Algorithm ~ Using IIR
(12), 1523 (2019).

https://doi.org/10.3390/app10051598
https://doi.org/10.3390/s20226494
https://doi.org/10.3390/en13030590
https://doi.org/10.3390/mi11020134
https://doi.org/10.3390/en13020466
https://doi.org/10.3390/electronics9010154
https://doi.org/10.3390/electronics9010083
https://doi.org/10.3390/electronics8111296
https://doi.org/10.3390/electronics8020247
https://doi.org/10.1016/j.sysarc.2020.101908
https://doi.org/10.1016/j.micpro.2020.103684
https://doi.org/10.3390/electronics7090206
https://doi.org/10.3390/electronics8121523
https://doi.org/10.1109/CRMICO.2010.5632348
https://doi.org/10.1109/INCCES47820.2019.9167696
https://doi.org/10.1109/ITechA.2015.7317439
https://doi.org/10.1109/VLSIDCS47293.2020.9179926
https://doi.org/10.1109/C-CODE.2019.8681005
https://doi.org/10.1109/C-CODE.2019.8681005

	Introduction
	Finite Impulse Response filter
	Hardware and software used in the research studies
	Altera DE2-115 development kit
	Converter USB/UART
	Generating and measuring equipment
	Software

	Description and configuration of the research system
	Audio interface operating module
	FIR module
	Serial interface module
	Main module
	Generation of FIR coefficients in Matlab

	Experimental results and analysis
	Frequency analysis

	Discussion
	References

