
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 1, PP. 57-62

Manuscript received January 21, 2022; revised January, 2022. DOI: 10.24425/ijet.2022.139848

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The paper presents analysis of the possibility of

using selected hash functions submitted for the SHA-3

competition in the SDEx encryption method. The group of these

functions will include the finalists of the SHA-3 competition, i.e.

BLAKE, Grøstl, JH, Keccak, Skein. The aim of the analysis is to

develop more secure and faster cryptographic algorithm

compared to the current version of the SDEx method with SHA-

512 and the AES algorithm. When considering the speed of

algorithms, mainly the software implementation will be taken into

account, as it is the most commonly used.

Keywords—secure communication; data encryption; data

security; secure transmission; secure data exchange method;

SDEx method; end-to-end data security

I. INTRODUCTION

HE result of the author's scientific work to date was the

development of an encryption method competitive to the

current AES cryptographic standard, both in terms of security

and speed. The developed method named SDEx (Enhanced

Secure Data Exchange Method) was published and presented

at conferences belonging to the leading conferences in the

world related to networks and computer communications [1-5].

It is a block cryptographic algorithm, the security of which is

based on the security of the used hash function and the Davies-

Meyer scheme. The hash function used in the method acts as a

dynamic generator of a sequence of pseudorandom bits. The

SDEx method was developed using the hash functions of the

SHA-2 family, i.e. SHA-256 and SHA-512, which are still

considered the standard nowadays - whether for verification of

message integrity or in a digital signature. Both of these

functions are characterized in that the length of the input

function block is twice as long as the hash that the applied

function generates (more detailed description of the method

can be found in Section 2).

In 2009, NIST (National Institute of Standards and

Technology) announced a competition for a new SHA-3 hash

function standard that would replace SHA-2. It was feared that

SHA-2 would be broken or weakened, as happened with MD5

and SHA-1. Five hash functions qualified for the third final

round of the SHA-3 competition: BLAKE, Grøstl, JH, Keccak,

Skein [6]. As a result, the Keccak algorithm was the winner of

the competition. In fact, choosing a winner was not easy as

This work was supported by the grant from the Polish National Science

Centre (no. 2020/04/X/ST6/00407).
Artur Hłobaż is with the Faculty of Physics and Applied Informatics,

University of Lodz, Poland (e-mail: artur.hlobaz@uni.lodz.pl).

none of the finalists was the best for all applications, hardware

or software, and offered no really convincing improvements

over the SHA-2 family of algorithms. The currently used

SHA-2, however, turned out to be more secure than assumed.

Therefore, the replacement of SHA-2 with the new standard

was postponed and continues to this day.

The choice of the Keccak algorithm as the winner of the

competition for SHA-3 was justified, among others, by the fact

that it has a large security margin, uses a new design approach

and has excellent performance in hardware implementations

(e.g. in FPGA). In the case of a software implementation,

however, it is worse than SHA-2. Due to the fact that the speed

of algorithms (of course, apart from the security aspect) is also

a key element in the selection of algorithms, the article will

analyse the possibilities of using all finalists of the SHA-3

competition in the SDEx method. The criteria that will be

considered in the analysis are:

- structure and design,

- security (mainly evaluations relating to attack resistance),

- performance (computational efficiency, which refers to

the speed of the algorithm).

The results of this analysis are presented in the paper.

The article is organized into five sections. In Section 2 the

enhanced SDEx method is given. In Section 3 the SHA-3

finalists are presented. The analysis of the possibility of use of

SHA-3 finalists in the SDEx method is presented in Section 4.

The analysis takes into account elements such as structure and

design, security analysis and performance comparison.

Conclusions and future work are drawn in Section 5.

II. ENHANCED SECURE DATA EXCHANGE (SDEX) METHOD

The SDEx (Enhanced Secure Data Exchange) method was

generally presented in [2] and its cryptanalysis was presented in

[3]. The main idea of the developed method is the possibility

of creating a fast and secure mechanism for end-to-end

communication. Its security is based on security of hash

function used and Davies-Meyer schema which makes hash

function collision resistant [7]. All hash functions are

iteratively constructed and divide the input data into a

sequence of fixed size blocks M1, M2, …, Mi. Message blocks

are sequentially processed using a hash function to the

intermediate state of constant size [8]. The hash function used

Analysis of the Possibility of Using Selected

Hash Functions Submitted for the SHA-3

Competition in the SDEx Encryption Method
Artur Hłobaż

T

58 A. HŁOBAŻ

in SDEx encryption method (Fig. 1) acts as a dynamic

pseudorandom string of bits generator.

The common symbols used on Figures 1-2 and equations (1-

11):

• M1, M2, . . . Mi - plaintext blocks,

• C1, C2, . . . Ci - ciphertext blocks,

• IV - initialization vector (session key),

• h0 - initialization hash – predetermined value for

the hash function,

• h1, h2, . . . hk - particular iterations of hash

computation,

• HIV - hash from the initialization vector,

• HU - hash from user password,

• ⊕ - XOR operation,

• ++ - concatenation of two strings.

The equations that describe individual encryption steps take

the following form:

C1 = M1 ⊕ HIV ⊕ HIV++h0 (1)

C2 = M2 ⊕ HU ⊕ HIV (2)

C2k+1 = M2k+1 ⊕ hk ⊕ hk−1 k ≥ 1 (3)

C2k+2 = M2k ⊕ HU ⊕ hk k ≥ 1 (4)

h1 = hash (HIV++h0; M1++M2) (5)

h2 = hash ((h1 ⊕ HIV++h0); M3++M4) (6)

hk = hash ((hk-1 ⊕ hk-2); M2k-1++M2k) k ≥ 3 (7)

The equations that describe individual decryption steps take

the following form:

M1 = C1 ⊕ HIV ⊕ HIV++h0, (8)

M2 = C2 ⊕ (HU ⊕ HIV) (9)

M2k+1 = C2k+1 ⊕ hk ⊕ hk−1 k ≥ 1 (10)

M2k+2 = C2k ⊕ HU ⊕ hk k ≥ 1 (11)

The element HIV++h0
in equations (1, 8) is just a hash from

the string created as a concatenation of IV and h0. The

enhanced encryption/decryption methods are presented in

Figures 1-2.

Fig. 1. Enhanced SDEx encryption method

Fig. 2. Enhanced SDEx decryption method

In cryptography, the parameters that characterize the quality

of a given encryption method are its speed and the level of

security it can guarantee. Because the SDEx method is based

on hash functions, the encryption speed is also associated with

them [8]. The table below (Tab. I) contains an example speed

comparison of SHA-256 and SHA-512 hash functions and

AES algorithm for two different processors – Intel Core 2 1.83

GHz and AMD Opteron 2.2 GHz [9]. We can assume that the

speed of SDEx encryption method is practically the same as

the speed of the hash function used in it (omitting several XOR

operations per cycle and the initial calculation of HIV and HU

values). Taking into account the similar level of security and

referring to the table below (Tab. I), it can be stated that the

SDEx method using the SHA-512 hash function will be

slightly faster than the AES algorithm with the 256-bit key.

TABLE I

SPEED COMPARISON OF ALGORITHMS

Intel Core 2 1.83 GHz AMD Opteron 8354 2.2 GHz

Algorithm Speed (MB/s) Algorithm Speed (MB/s)

SHA-256 116,38 SHA-256 145,75

SHA-512 103,81 SHA-512 161,48

AES (128-bit key) 145,75 AES (128-bit key) 207,62

AES (256-bit key) 100,66 AES (256-bit key) 146,80

The most general estimation of hash function security level is

half of its hash length. When the SHA-512 function is used,

the SDEx method's security level can be estimated at the level

of 256 bits. Taking this into account, it can be said that the

SDEx method based on SHA-512 hash function provides a

similar or higher level of security then AES with 256-bit key,

which nowadays is encryption standard.

III. THE SHA-3 FINALISTS

A. BLAKE

BLAKE [6, 10], like SHA-2, is a family of four hash

functions in two variants. First one, used for computing hashes

up to 256 bits long, uses 32-bit words (BLAKE-224 and

BLAKE-256) and second, used for computing hashes up to

512 bits long, which uses 64-bit words (BLAKE-384 and

BLAKE-512). Its structure is based on HAIFA construction

and ChaCha stream cipher. BLAKE compression function is

based on three basic bit operations (+, <<<, ⊕) called ARX

construct (from the words Addition, Rotation, XOR). Its

internal state is initialized using initial value, salt and a counter

(number of bits hashed so far) as shown in Figure 3. The input

ANALYSIS OF THE POSSIBILITY OF USING SELECTED HASH FUNCTIONS SUBMITTED FOR THE SHA-3 … 59

data block for a single iteration of the compression function is

twice as large as the partial hash generated by the function.

Fig. 3. BLAKE compression function

B. Grøstl

Grøstl [6, 11] is a family of hash functions, which can return

message digests from 8 to 512 bits. The most popular variants

are these returning hashes equal to 256 and 512 called Grøstl-

256 and Grøstl-512, respectively. Grøstl divides the padded

input message M into l-bit message blocks m1, m2 ,…, mt and

iteratively computes hi = f(hi−1, mi) , where hi−1 is l-bit chaining

input with an initial value of ho = IV (see Figure 4). The

compression function f is based on a pair of l-bit permutation

functions P and Q which are heavily based on the Rijndael

(AES) block cipher. The result of each iteration of the

compression function is a partial hash that is at least twice the

size of the final size of the hash. In the last step of hash

computing the output transformation Ω, after the processing of

the last message block, truncates the output to the desired size

n (usually 256 or 512 bits).

Fig. 4. Grøstl compression function

C. JH

JH family [6, 12] includes four hash functions: JH-224, JH-

256, JH-384 and JH-512. The F8 compression function

structure is based on large block cipher, in which AES design

methodology is applied, with constant key. It sequentially

processes the split message blocks m1, m2 ,…, mt, starting with

an initial vector IV = ho (see Figure 5). Each iteration of the

compression function takes on input the m-bit message block

mi and the 2m-bit hash value h(i-1) and generates the 2m-bit h(i).

Therefore, the partial hash generated by the compression

function is twice as large as the message block on its input.

Final message digests are obtained by truncating the final

output to the desired hash sizes.

Fig. 5. JH compression function

D. Keccak

Keccak [6, 13] is a family of hash functions that can have

many variants. It is based on sponge construction (see Figure

6). The main function of Keccak is permutation f. Permutation

size and state size in the sponge construction can take values

such as 25, 50, 100, 200, 400, 800, 1600. In the competition

for SHA-3, the Keccak algorithm was submitted with the

largest permutation size (1600 bits). The message block size is

referred to as r (for rate). The difference between the

permutation size and the message block size r is referred to as

c (for capacity). Therefore, the message block size mi varies

according to the output size: Keccak-512 has a block size of

576 bits, Keccak-384 has 832 bits, Keccak-256 has 1088 bits,

and Keccak-224 has 1152 bits. In conclusion, the bigger output

of the compression function the smaller the message block that

is processed by each compression-function call. As a result the

bigger the hash of the message, the slower the Keccak

algorithm runs.

Fig. 6. Sponge construction of Keccak

E. Skein

Skein [6, 14] is an iterative hash function that is built on a

tweakable block cipher Threefish, which is defined for 256,

512 and 1024-bit block sizes. Threefish uses only three

mathematical operations: Addition, Rotation and XOR (ARX

construct). The key is the same size as the block, and the tweak

value is 128 bits for all block sizes. Its compression function is

based on Threefish and a modified Matyas-Meyer-Oseas. This

structure is often referred to as Unique Block Iteration (UBI).

Fig. 7. Skein normal hashing scheme

IV. ANALYSIS OF THE POSSIBILITY OF USE OF SHA-3

FINALISTS IN THE SDEX METHOD

A. Structure and design

To be able to use the selected hash function in the SDEx

method, certain dependencies must be met. The most

important and the main one is the dependence related to the

size of the message data block, on which the hash function

operates, and the hash generated by it, i.e. the input message

block size should be twice as large as the hash size generated

by this function. Based on the analysis of the finalists on SHA-

3, this criterion is fulfilled by three hash functions, i.e. Blake,

Grøstl and Skein (see Tab. II).

The second important dependence is that for individual

iterations of the hash function, the generated partial hash,

called the internal state of the hash function or "internal hash

sum" after each compression, should also be half shorter than

the size of the input message block. In this case, out of the

three above-mentioned functions, the condition is fulfilled only

by BLAKE algorithm (Tab. II). For the Grøstl and Skein, each

https://en.wikipedia.org/wiki/Rijndael

60 A. HŁOBAŻ

iteration of the hash function produces a partial hash of the

same length as the input message block. The final hash it

generates is half the length of the partial hash due to cutting off

half its length in the last iteration of the hash count. Therefore,

the only finalist of the SHA-3 competition that could be used

in the SDEx method without modifying it is BLAKE.

Due to the fact that the BLAKE algorithm has its successors,

i.e. BLAKE2b (successor of BLAKE-512), BLAKE2s

(successor of BLAKE-256) [15] and the latest version of the

BLAKE3 algorithm from 2020 [16], they will also be

considered in further analysis. They also meet the main

conditions for using them in the SDEx method and, what is

important, they have much better properties than the basic

version of BLAKE.

TABLE II

ANALYSIS OF THE STRUCTURE AND DESIGN OF FINALIST SHA-3 CANDIDATES

Hash

Algorithm

Hash

size

(bits)

Message

Block size

(bits)

Internal

state size

of hash

function

(bits)

Rounds of

Compression

BLAKE-256 256 512 256 14

BLAKE-512 512 1024 512 16

Grøstl-256 256 512 512 9

Grøstl-512 512 1024 1024 10

JH-256 256 128 256 42

JH-512 512 256 512 42

Keccak-224 224 1152 1600 24

Keccak-256 256 1088 1600 24

Keccak-384 384 832 1600 24

Keccak-512 512 576 1600 24

Skein-512 256 512 512 72

Skein-1024 512 1024 1024 72

B. Security analysis

Taking into account the security analysis of the five

candidates of the SHA-3 competition [6], it can be concluded

that after several years of intensive analysis, no attack came

close to threatening the basic security properties of any of

them. Additionally, neither of them was identified as a clear

winner or loser in this category. Therefore, it is currently

considered that the minimum security level of each of the

SHA-3 and SHA-2 finalists is estimated at half the length of

the hash that the function generates.

Instead, there are differences in the size of their security

margins [6,17], where the security margin is defined as the

fraction of the hash or compression function that has not been

successfully attacked. For example, an attack on six rounds of

a ten-round hash function would give a 40% security margin.

Based on the table below (Tab. III), it can be concluded that

Keccak has the greatest security margin with 79% of the hash

function still uninterrupted. BLAKE was not much worse

(71%), while JH turned out to be the weakest (38%).

The depth of the hash function analysis performed [17],

which is a rather subjective measure, may also take an

important role (see Tab. III). It takes into account not only the

number of published works on the cryptanalysis of individual

hash functions, but also the depth and maturity of the analysis

and the tools used for the cryptanalysis of the algorithm. On

this basis, it can be concluded that the hash function most

thoroughly examined during the SHA-3 competition was

Grøstl, followed by BLAKE and Skein, and only then Keccak

- the winner of the competition.

TABLE III

SECURITY MARGINS FOR THE FIVE FINALISTS BASED ON COLLISION-TYPE

ATTACKS

Algorithm
Best Attack on

Algorithm

Security

Margin
Depth of Analysis

BLAKE
Semi-free-start

near collision
71% High

Grøstl
Semi-free-start
collision

40% Very high

JH
Semi-free-start

near collision
38% Low

Keccak Near collision 79% Medium

Skein
Semi-free-start

near collision
56% High

SHA-2 Collision 62% Medium

C. Performance comparison

The speed of algorithms can be considered in two categories

- depending on whether they are implemented in software or in

hardware. Certain algorithms may turn out to be faster in the

development implementation but have lower performance in

hardware, or vice versa. In the article, the author will focus

mainly on the first category - software implementation of

algorithms - because it is the most widely researched and most

often used in practice, and it is also related to his scientific

work to date.

In the SHA-3 competition, the performance in the case of

software implementation was measured for various classes of

computers: various architectures and processors - both for 32

and 64 bit available on the market, such as AMD64, X86,

ARM-NEON, 32 bit RISC or embedded microcontrollers. The

vast majority of the available data on finalists' speed scores on

SHA-3 was provided by two projects: eBASH (ECRYPT

Benchmarking of All Submitted Hashes) [18] and XBX

(eXternal Benchmarking eXtension) [19]. Tests were carried

out for both shorter and longer messages. Overall, the highest

performance achieved BLAKE and Skein algorithms. What is

interesting, the Keccak algorithm was weaker. It was included

in the group of algorithms of average performance.

In 2013, a new version of the BLAKE algorithm was

presented, called BLAKE2 [15], which comes in two varieties:

• BLAKE2b, which is optimized for 64 bit platforms and

can generate hashes from 1 to 64 bytes,

• BLAKE2s, which is optimized for 8 to 32 bit platforms

and can generate hashes from 1 to 32 bytes.

BLAKE2b does 12 rounds, and BLAKE2s does 10 rounds,

against 16 and 14 respectively for BLAKE. By reducing the

number of rounds, while maintaining practically the same level

of security, these algorithms were approximately 25% and

29% faster, respectively, than the original version of BLAKE.

ANALYSIS OF THE POSSIBILITY OF USING SELECTED HASH FUNCTIONS SUBMITTED FOR THE SHA-3 … 61

A comparison of the speed of the most popular hash functions

from the documentation of the BLAKE2 algorithm can be

found in the Figure 8.

Fig. 8. Speed comparison of various popular hash functions [15]

In 2015, NIST published a new standard based on the

Keccak algorithm [20]. It turned out to be the fastest of all

SHA-3 finalists at that time, even from BLAKE2. The

situation changed again in 2020 with the appearance of

BLAKE3 - the evolution of BLAKE2 [16].

Fig. 9. Speed comparison of BLAKE3 to other popular hash functions [16]

BLAKE3 is a single algorithm with no variants. The

compression function works on 32-bit words, the input

message block size is 512 bits, and the generated hash and

internal state size of hash function (input chaining value) is

256 bits. Based on the length of the generated hash, it can be

assumed that the minimum security level it guarantees is 128

bits. Referring to the information by the authors of the

BLAKE3 algorithm on its speed, it is about 4 times faster than

BLAKE2b, 8 times than SHA-512 and 12 times than SHA-256

- a study conducted on Intel Cascade Lake-SP (see Figure 9).

CONCLUSIONS

The aim of the research was to conduct a literature analysis

and a preliminary cryptographic analysis of the possibility of

using selected (leading) hash functions submitted for the

competition for the SHA-3 standard in the SDEx method in

order to develop a secure and very fast encryption algorithm.

Such an algorithm would be more competitive to the current

AES encryption standard both in security and speed - mainly

in the software implementation, which is the most widely used.

The conducted analysis takes into account such elements of

the hash function as structure and design, security and

performance. Based on the structure of selected hash functions,

it can be concluded that only BLAKE function and its

successors (BLAKE2 and BLAKE3) allow its use in the SDEx

method. Like the functions of the SHA-2 family (SHA-256

and SHA-512), it meets the main requirement that the input

message block size for each iteration of the hash function

should be twice as large as the final and partial hash. Taking

into account the security aspect, the BLAKE function, along

with the winner - the Keccak algorithm, fared best compared to

the other finalists of the SHA-3 competition. A similar

situation is in comparing the speed of hash functions in

software implementation - BLAKE again proved to be one of

the best.

Summarizing the use of the BLAKE hash function, and in

particular its successors BLAKE2 and BLAKE3, in the SDEx

method will allow for quite significant improvement of it in

terms of speed, maintaining an appropriate level of security.

This method can be several (using BLAKE2) or a dozen or so

(using BLAKE3) times faster than its original version using

the SHA-2 family functions. What is important, it can also be

many times faster than the nowadays used AES algorithm, of

course taking into account a similar level of security.

ACKNOWLEDGMENTS

This work was supported by the grant from the Polish

National Science Centre (no. 2020/04/X/ST6/00407).

REFERENCES

[1] Podlaski K., Hłobaż A., Milczarski P. (2016) Secure Data Exchange

Based on Social Networks Public Key Distribution. In: Mandler B. et al.
(eds) Internet of Things. IoT Infrastructures. IoT360 2015. Lecture Notes

of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, vol 169. Springer, Cham.
https://doi.org/10.1007/978-3-319-47063-4_5

[2] Hłobaż A., Podlaski K., Milczarski P. (2017) Enhancements of

Encryption Method Used in SDEx. In: Gaj P., Kwiecień A., Sawicki M.
(eds) Computer Networks. CN 2017. Communications in Computer and

Information Science, vol 718. Springer, Cham.

https://doi.org/10.1007/978-3-319-59767-6_11

[3] P. Milczarski, A. Hłobaż and K. Podlaski, "Analysis of enhanced SDEx

method," 2017 9th IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), Bucharest, 2017, pp. 1046-1050,

https://doi.org/10.1109/IDAACS.2017.8095245

[4] A. Hłobaż, "Statistical Analysis of Enhanced SDEx Encryption Method
Based on SHA-256 Hash Function," 2019 IEEE 44th Conference on

Local Computer Networks (LCN), Osnabrueck, Germany, 2019, pp. 238-

241, https://doi.org/10.1109/LCN44214.2019.8990714
[5] A. Hłobaż, "Statistical Analysis of Enhanced SDEx Encryption Method

Based on SHA-512 Hash Function," 2020 29th International Conference

on Computer Communications and Networks (ICCCN), Honolulu, HI,
USA, 2020, pp. 1-6, https://doi.org/10.1109/ICCCN49398.2020.9209663

[6] Chang, S. H., Ray A. Perlner, W. Burr, M. Turan, J. Kelsey, S. Paul and
Lawrence E. Bassham. “Third-Round Report of the SHA-3

Cryptographic Hash Algorithm Competition.” (2012),

http://doi.org/10.6028/NIST.IR.7896
[7] Preneel B., Davies-Meyer hash function. In van Tilborg, H.C.A., ed.:

Encyclopedia of Cryptography and Security, Boston, MA, pp. 136-146,

Springer US, 2005.
[8] National Institute of Standards and Technology: Secure hash standard

(shs). Technical report, NIST, 2008.

[9] https://www.cryptopp.com/benchmarks.html

https://doi.org/10.1007/978-3-319-47063-4_5
https://doi.org/10.1007/978-3-319-59767-6_11
https://doi.org/10.1109/IDAACS.2017.8095245
https://doi.org/10.1109/LCN44214.2019.8990714
https://doi.org/10.1109/ICCCN49398.2020.9209663
http://doi.org/10.6028/NIST.IR.7896
https://www.cryptopp.com/benchmarks.html

62 A. HŁOBAŻ

[10] Aumasson JP., Meier W., Phan R.CW., Henzen L. (2014) Specification

of BLAKE. In: The Hash Function BLAKE. Information Security and

Cryptography. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-44757-4_3
[11] Grøstl documentation: https://www.groestl.info/groestl-implementation-

guide.pdf

[12] JH documentation:
https://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

[13] Keccak documentation:

https://keccak.team/keccak_specs_summary.html
[14] Skein documentation: https://www.schneier.com/wp-

content/uploads/2015/01/skein.pdf
[15] BLAKE2 documentation: https://www.blake2.net/blake2.pdf

[16] O’Connor J., Aumasson J.-P., Neves S., Wilcox-O’Hearn Z, BLAKE3

one function, fast everywhere: https://github.com/BLAKE3-
team/BLAKE3-specs/blob/master/blake3.pdf

[17] I. F. Alshaikhli, M. A. Alahmad and K. Munthir, "Comparison and

Analysis Study of SHA-3 Finalists," 2012 International Conference on

Advanced Computer Science Applications and Technologies (ACSAT),

Kuala Lumpur, Malaysia, 2012, pp. 366-371,
https://doi.org/10.1109/ACSAT.2012.64

[18] D. Bernstein and T. Lange (editors), eBASH: ECRYPT Benchmarking of

All Submitted Hashes, http://bench.cr.yp.to/ebash.html
[19] External Benchmarking Extension (XBX), http://xbx.das-labor.org/trac

[20] Announcing Approval of Federal Information Processing Standard

(FIPS) 202, SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, and Revision of the Applicability Clause of FIPS 180-

4, Secure Hash Standard:
https://www.federalregister.gov/documents/2015/08/05/2015-

19181/announcing-approval-of-federal-information-processing-standard-

fips-202-sha-3-standard

https://doi.org/10.1007/978-3-662-44757-4_3
https://www.groestl.info/groestl-implementation-guide.pdf
https://www.groestl.info/groestl-implementation-guide.pdf
https://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
https://keccak.team/keccak_specs_summary.html
https://www.schneier.com/wp-content/uploads/2015/01/skein.pdf
https://www.schneier.com/wp-content/uploads/2015/01/skein.pdf
https://www.blake2.net/blake2.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://doi.org/10.1109/ACSAT.2012.64
http://bench.cr.yp.to/ebash.html
http://xbx.das-labor.org/trac
https://www.federalregister.gov/documents/2015/08/05/2015-19181/announcing-approval-of-federal-information-processing-standard-fips-202-sha-3-standard
https://www.federalregister.gov/documents/2015/08/05/2015-19181/announcing-approval-of-federal-information-processing-standard-fips-202-sha-3-standard
https://www.federalregister.gov/documents/2015/08/05/2015-19181/announcing-approval-of-federal-information-processing-standard-fips-202-sha-3-standard

