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Abstract—In this paper, we design and analyse the Circuit for 

Grover’s Quantum Search Algorithm on 2, 3 and 4-qubit systems, 

in terms of number of gates, representation of state vectors and 

measurement probability for the state vectors. We designed, 

examined and simulated the quantum circuit on IBM Q platform 

using Quantum Programming Studio. We present the theoretical 

implementation of the search algorithm on different qubit 

systems. We observe that our circuit design for 2 and 4-qubit 

systems are precise and do not introduce any error while 

experiencing a small error to our design of 3-qubit quantum 

system. 

 
Keywords—quantum search; Oracle; Qubit; Hadamard 

transform; phase shift 

I. INTRODUCTION 

UANTUM Search [9], [10] is a technique that can be 
used to speed up many classical search algorithms. It 
performs a generic search for a potential solution to a 

very wide range of problems. For example, given a large 
integer of size 𝑁, the problem is to determine whether an 
numeral p is a non-trivial factor of 𝑁 with no prior knowledge 
about the structure of the information. A simple strategy for 
finding the non-trivial factors is to search through the set until 
found. Classically, this problem requires approximately N 
operations, but a Grover’s search algorithm requires 
approximately √𝑁 operations with probability > 1/2.   
 Grover’s Algorithm can be used to searching an actual 
database but no research has been published on this area. 
Researchers consider Oracle as Virtual Database to perform 
searching. The searching time on the database depends upon 
the size of the database and the quantum hardware. Therefore 
it is necessary to provide an analysis on designing the quantum 
circuit using simulation tools. In this paper, we used quantum 
programming studio for precisely designing the quantum 
circuit for Grover’s search algorithm on 2, 3 and 4-qubit 
system so as to reduce the errors in the design. We have also 
presented the step-wise procedure of Grover’s algorithm 
theoretically for better knowledge on the algorithm. 
 The paper is organized as follows: Section 1 presents the 
significance of Quantum Search Algorithm and its 
applications. Section 2 provides analysis of existing 
approaches and their observations on Grover’s search 
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algorithm. Section 3 presents a brief overview on the working 
principle of Grover’s algorithm, Section 4 presents the 
implementation and performance results of Grover’s 
Algorithm for 2, 3, and 4-qubit systems and finally we 
conclude in Section 5. 

II. LITERATURE SURVEY 

 In [2], a 4-qubit quantum algorithm was implemented on 
ibmqx5 architecture which was largely published and currently 
possible and the performance accuracy of their implementation 
results were compared with simulation results. Their 
implementation performance requires more hardware support 
as they faced a complexity in circuit design. In [4], a classical-
quantum search algorithm was proposed to find the shortest 
path of a given graph. Grover’s algorithm cannot be applied to 
search an item in an actual database. In [5], the theoretical 
operation of quantum error correction process was 
demonstrated using QCAD simulator with possible results. 
Grover’s algorithm can be used to search a single object in an 
unsorted database. In [6], a generalized Grover’s Algorithm 
was framed to support multi-object search in a large and 
unsorted database and they have provided consistent results 
with Grover’s algorithm for single-object search. The authors 
in [8] implemented Grover’s algorithm on a real ibmqx4 5-
qubit quantum computer. A 4-qubit implementation of 
Grover’s Search Algorithm was proposed in [11] with test 
results in which it was observed that quantum computers can 
accurately solve only simple problems with small amounts of 
data. In [14], a two-transmon-qubit interaction was designed in 
a circuit QED to improve the implementation time of Grover’s 
search algorithm in nanosecond-scale. The Grover’s algorithm 
was implemented using two trapped atomic ion qubits in order 
to improve the searching speed. In [15], the Grover’s algorithm 
was tried in a scalable system to improve the success 
probability of the search item. Implementation of 2-Qubit 
quantum algorithm was performed in [12] using a linear 
optical chip and a 3-qubit quantum circuit was designed and 
implemented in [13].  

III. GROVER'S QUANTUM SEARCH ALGORITHM 

Lov Grover in 1996 [1] invented the Grover Search 

algorithm to perform the fastest possible quantum search for 

an unsorted database which takes O(√n) time and O(logN) 
storage space. This mean that, for a list of 108 elements, the 

number of iterations required to search a desired item is order 

of 10000 and the obtained result will be accurate with a 

probability close to 1. Although Grover's algorithm provides 

only a quadratic speedup, it is considerable when the size of 

N is large. TABLE 1 shows the Grover’s algorithm and Fig. 1 

shows its circuit representation.  
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Figure 1. Circuit Representation of Grover’s search algorithm 

 

 Consider an unsorted database with N entries forming a 

set  X =  {x0, x1, . . . , xN−1 } and given a boolean function f ∶
 X →  {0, 1} the goal is to find an element x in X such that 

f(x) =  1. Unstructured search is often alternatively formulated 

as a database search problem in which we are given a database 

and we want to find an item that meets some specification. For 

example, given a database of N names, we might want to find 

where your name is located in the database.  

 The search is called “unstructured” because we are given 

no guarantees as to how the database is ordered. If we were 

given a sorted database, for instance, then we could perform 

binary search to find an element in logarithmic time. Instead, 

we have no prior knowledge about the contents of the 

database. With classical circuits, we cannot do better than 

performing a linear number of queries to find the target 

element. The N elements are mapped to 0 to N − 1 index 

numbers with N =  2n.The search problem can be 

appropriately denoted by a function f, which takes an integer x 
as input from the indexes 0 to N −1. By definition, f(x)  =  1 

if x is found when searched, and f(x)  =  0 if x is not found 

when searched. This can be expressed as,  

f(x) = {
0   if x ≠ u
1   if x = u

 

where u is the element to be searched. 

TABLE I:  

GROVER’S QUANTUM SEARCH ALGORITHM 
 

Input:  

i) An Oracle O that transforms |x〉|q〉
O
→ |x〉|q ⨁ f(x)〉 where f(x) = 0 

for all 0 ≤ x <  N − 1 and f(x) = 1 for x = u.  

ii) State |0〉 with n + 1 qubits. 

Output:  The matched item found. i.e. u 

Runtime: Requires O(√N) operations and succeeds with a probability 

of O(1). 
Procedure: 

Step 1: Start the algorithm with initial state |0〉⊗n. 

Step 2: Apply Hadamard transform on the first n qubits and 

Hadamard and X gate on the last qubit as, 
1

√N
∑ |x〉 [

|0〉−|1〉

√2
]N−1

x=0   

Step 3: Perform Grover’s Operation for R ≤ ⌈
π

4
√
2N

M
⌉  rounds.  

Step 3.1: Apply the Oracle O such that, |x〉
O
→ (−1)f(x)|x〉 

Step 3.2: Apply the Hadamard transform H⊗n to the state obtained in 

step 3.1 

Step 3.3: Perform Conditional Phase Shift operation on every state 

except the |0〉 state receiving a phase shift of −1, based on the 

equation, |x〉
phase
→   (−1)δx0|x〉. 

Step 3.4: Apply the Hadamard transform H⊗n. The final state 

obtained from Grover operation will be, 

 [(2|ѱ〉⟨ѱ| − I)O]R
1

√N
∑ |x〉 [

|0〉−|1〉

√2
]N−1

x=0 ≈ u [
|0〉−|1〉

√2
]  

Step 4: Measure the first n qubits. The result will be the matched item 

u. 

 The step-wise explanation of the Grover’s algorithm is 

described as follows: The algorithm begins in the state|0〉⊗n.      

Now apply Hadamard transform H⊗n on the first n qubits and 

Pauli X transform and Hadamard transform (HX) to the last 

qubit to obtain equal superposition state; the operation is 

described as, 

H⨂n|0〉⨂n = |ѱ〉 =
1

√N
∑ |x〉N−1
x=0            (2) 

HX|1〉 = [
|0〉−|1〉

√2
]                                      (3) 

where |ѱ〉 =
1

√N
∑ |i〉i   is the superposition of all basis states. 

Now apply the Grover’s operator. The quantum circuit of 

Grover iteration is broken up into four steps namely, i) Oracle 

function, ii) Hadamard transform, iii) Conditional phase shift 

operation on every computational basis state except |0> 

receiving a phase shift of −1 and iv) Hadamard transform. The 

oracle is a unitary operator, O, which performs the following 

operation: 

                       |x〉|q〉
O
→ |x〉|q ⨁ f(x)〉                               (4) 

where |x〉 is the input register that stores the index of all 

elements from 0 to N-1, ⨁ denotes addition modulo 2, |q〉  is 
the oracle qubit which is flipped if f(x) = 1, and is unchanged 

otherwise. The term ancilla or ancillary qubit can be used to 

refer the oracle qubit |q〉  as it adds some extra qubits for the 

algorithm. If x is not found, applying the oracle to the state 

does not change the state. But if x is found, then the final state 

is changed to a new state. The oracle used for Grover’s 

algorithm is very simple. Applying the oracle to inputs |x〉|q〉 
will produce output as |x〉|q ⨁ f(x)〉. The first two qubits are 

unmodified (in case when x = {0,1}). The third qubit is flipped 

if the first two qubits are 1. Thus we get, 

             |x〉 (
|0〉−|1〉

√2
)
O
→ (−1)f(x)|x〉 (

|0〉−|1〉

√2
)                      (5) 

Equation (5) can be written as,  

    |x〉
O
→ (−1)f(x)|x〉                                (6) 

Steps 2, 3 and 4 can be represented as, H⨂n(2|0〉⟨0|) H⨂n =
2|ѱ〉⟨ѱ| − I and the Grover’s operator can be denoted as,  G =

(2|ѱ〉⟨ѱ|−I))O. The Grover’s algorithm is regarded as a 

rotation of R times within an angle θ/2 ≤ π/4 of |β〉 and θ is a 

real number ranging from 0 to  π/2 and it can be expressed in 

superposition state as, 

                  |ѱ〉 ≡ √
N−M

N
 |α〉 + √

1

N
 |β〉                          (7) 

where |α〉 ≡
1

√N−M
 ∑  |x〉x≠u  and |β〉 ≡ |u〉. The rotation can be 

expressed as, R ≤ ⌈
π

4
√
2N

M
⌉ and therefore, R = O(√N/M). If 

M = 1, ie., if the solution is found in one iteration of Grover’s 

algorithm, then R = O(√N). 

IV. IMPLEMENTATION AND PERFORMANCE 

ANALYSIS 

  In this section, the system design, implementation and 

performance results are discussed for 2-qubit, 3-qubit and 4-
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qubit system. We implemented the algorithm on Quantum 

Programming Studio, a web-based IDE and simulator for 

designing, inspecting and simulating/running quantum 

algorithms on platforms like IBM Q, Rigetti and Google Cirq. 

Quantum-circuit is open source simulator implemented in 

JavaScript. A Quantum-circuit runs 20+ qubit simulations at 

server (node.js) or in browser. Quantum Circuit can be 

imported from OpenQASM and Quil. After designing the 

Quantum circuit in IDE, it can also be exported to 

OpenQASM, pyQuil, Quil, Qiskit, Cirq, TensorFlowQuantum, 

QSharp, and QuEST, so it can be used for conversion between 

quantum programming languages. It is observed that, each 

quantum gate when applied, creates a small error to the 

quantum state. This is due to the circuit design and the 

interaction of each qubit with other qubits and gates.  

1) Implementation with 2-Qubits 

  Assume n = 2, the possible states are N = 22 = 4 and 

suppose the solution is found at index 2 i.e., state |10〉, then we 

get,  

              |ѱ〉 
O
→ 

1

2
(|00〉 + |01〉 − |10〉 + |11〉)                    (8) 

Thus the action of oracle operator on the state |x〉, changes 

the amplitude of that state. Now apply the Hadamard transform 

H⊗n  on these basis states and the result is shown as, 

           |ѱ〉
H⨂2

→  
1

2
(|00〉 − |01〉 + |10〉 + |11〉)                      (9) 

 Now perform a conditional phase shift on every 

computational basis state except |0〉.  Thus we get,   

           |ѱ〉   
phase
→     

1

2
(|00〉 + |01〉 − |10〉 − |11〉)           (10) 

 Again apply the Hadamard transform H⨂n to the obtained 

superposition states, we get the matched element on an index 

and for our example it is given as, 

                             |ѱ〉  →  |10〉                                            (11) 

 

 
Fig. 2. Quantum Circuit Diagram for the state |10〉 

 

  
 

Fig. 3. Vector Representation for the state |10〉 

 
 

 Thus when n = 2 for the state |10〉, we got the desired 

search with just one iteration of the Grover’s algorithm. Figure 

2 shows the quantum circuit diagram for 2-qubit system with 

22 gates. The circuit of 2-qubit system produces no error and 

thus it is free from random noise in the system. The vector 

representation and measurement probability for the 2-qubit 

state are shown in Figure 3 and Figure 4 respectively. 

 

 
 

Fig. 4. Measurement Probability of 2-qubit system for the state |10〉 

 

2) Implementation with 3-Qubits 

 Figure 5 shows the quantum circuit diagram for 3-qubit 

system with 39 gates. The circuit of 3-qubit system produces 

high error rate and thus introduces random noise in the system. 

The vector representation and measurement probability for the 

3-qubit state are shown in Figure 6 and Figure 7 respectively. 

When  n = 3, the possible states are N = 23 = 8, and suppose 

the solution is found at index 4 in state |100〉, then we get, 

|ѱ〉
O
→
1

2
(|000⟩ + |001⟩ + |010⟩ + |011⟩ + |100⟩ + |101⟩ +

|110⟩ + |111⟩)                                                                     (12) 

Thus the action of oracle operator on the |x〉, changes the 

amplitude of that state. Now apply the Hadamard transform 

H⊗n  on these basis states and the result is: 

|ѱ〉
H⨂2

→  
1

2
(|000⟩ + |001⟩ + |010⟩ + |011⟩ − |100⟩ + |101⟩ +

|110⟩ + |111⟩)                                                                     (13) 

After performing a conditional phase shift, we get 23 different 

states in superposition as, 

|ѱ〉   
phase
→     

1

2
(|000⟩ − |001⟩ − |010⟩ − |011⟩ + |100⟩ −

|101⟩ − |110⟩ − |111⟩)                                                       (14) 

Applying the Hadamard transform H⨂n to the obtained states, 

we get the matched element on an index ande it is given as, 

                        |ѱ〉  →  |100〉                                     (15) 

Thus for n = 3, the desired state is obtained in 2 iterations of 

the Grover’s algorithm.  
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Fig. 5. Quantum Circuit Diagram for the state |100〉 

 

 
 

Fig. 6. Vector Representation of 3-qubit system for the state |100〉 

 

 

Fig. 7. Measurement Probability of 3-qubit system for the state |100〉 

 

3) Implementation with 4-Qubits 

 

Figure 9 shows the quantum circuit diagram for 4-

qubit system with 34 gates and it does not produce any 

noise and error in the design of the system. The vector 

representation and measurement probability for the 2-

qubit state are shown in Figure 10 and Figure 11 

respectively. When n = 4, the possible states are N =
24 = 16, assume the solution is found at index 4 i.e., 
|0100〉, we get, 

 

 

|ѱ〉 
O
→   1/2(|0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ +

|0100⟩ + |0101⟩ + |0110⟩ + |0111⟩ + |1000⟩ +
|1001⟩ + |1010⟩ + |1011⟩ + |1100⟩ + |1101⟩ +

|1110⟩ + |1111⟩)                                                        (16) 

The state of the system after applying Hadamard 

transform H⊗n  on |x〉, is shown as: 

|ѱ〉
H⨂2

→  1/2(|0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ −
|0100⟩ + |0101⟩ + |0110⟩ + |0111⟩ + |1000⟩ +
|1001⟩ + |1010⟩ + |1011⟩ + |1100⟩ + |1101⟩ +

|1110⟩ + |1111⟩)                                                        (17) 

The result after performing a Conditional Phase Shift, on 

all the basis state except |0000〉 is shown as,  

|Ѱ〉   
phase
→     ½(|0000⟩ − |0001⟩ − |0010⟩ − |0011⟩ +

|0100⟩ − |0101⟩ − |0110⟩ − |0111⟩ − |1000⟩ −
|1001⟩ − |1010⟩ − |1011⟩ − |1100⟩ − |1101⟩ −

|1110⟩ − |1111⟩                                                         (18) 

                       |ѱ〉  →  |0100〉                              (19) 

After applying H⨂n to the states, the matching is found. 

Thus for n = 4, the desired state is obtained in 3 

iterations of the Grover’s algorithm.  

 

Fig. 8. Measurement Probability of 3-qubit system for the state |100〉 
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Fig. 9. Quantum Circuit Diagram for the state |0100〉 

 

 
 

Fig. 10. Vector Representation of 3-qubit system for the state |0100〉 
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Fig. 11. Measurement Probability of 3-qubit system for the state |100〉 

 

CONCLUSION 

Quantum Search Algorithms can be potentially applied i) for 

efficiently counting the number of solutions for a given search 

problem; ii) speedup the solution of NP-complete problems, 

iii) speed up the search for keys to cryptosystems [3], iv) 

finding the shortest path between two cities [7], and v) 

searching problems or extracting statistics in unstructured 

databases [6] more quickly than using classical computing. We 

have designed and implemented the Grover’s quantum search 

algorithm on 2, 3 and 4-qubit systems and presented our 

analysis in terms of number of gates used, vector 

representation and measurement probability. We used 

Quantum Programming Studio tool for designing the circuit 

diagram precisely on IBM Q platform. We have also provided 

theoretical knowledge on the algorithm for 2, 3 and 4-qubit 

system. In future, we will plan to use the search algorithm for 

real-time scenario. 
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