Optimal Method for Polarization Selection of Stationary Objects Against the Background of the Earth’s Surface

Authors

Abstract

Within the maximum likelihood method an optimal
algorithm for polarization target selection against the background
of interfering signal reflected from the earth’s surface is synthesized. The algorithm contains joint operations of spectral
interference rejection and their polarization compensation by
means of certain combinations of interchannel subtraction of
signals of different polarizations. The physical features of the
elements of the polarization scattering matrix are investigated
for the technical implementation of the synthesized algorithm.

References

H. Oriot and M. Flecheux, ”Moving target detection using 2 SAR

images,” 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA,

, pp. 1064-1068, doi: 10.1109/RADAR.2017.7944362.

H. Xu, Z. Yang, R. Zhang and G. Liao, ”Shadow-aided method for

ground slow moving targets detection of airborne high-resolution SAR

images,” 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015, pp. 831-834, doi: 10.1109/APSAR.2015.7306332.

T. Leonard, T. Lamont-Smith, R. Hodges and P. Beasley, ”94-GHz

Tarsier radar measurements of wind waves and small targets,” 2011 8th

European Radar Conference, Manchester, UK, 2011, pp. 73-76.

Y. Zhang et al., ”Demonstration of ocean target detection by Tiangong-

interferometric imaging radar altimeter,” 2018 22nd International

Microwave and Radar Conference (MIKON), Poznan, Poland, 2018, pp.

-264, doi: 10.23919/MIKON.2018.8405194.

Chao-Hsiang Liao, Li-Der Fang, Powen Hsu and Dau-Chyrh Chang,

”A UWB microwave imaging radar system for a small target detection,”

IEEE Antennas and Propagation Society International Symposium,

San Diego, CA, USA, 2008, pp. 1-4, doi: 10.1109/APS.2008.4619667.

J. Moulton, S. Kassam, F. Ahmad, M. Amin and K. Yemelyanov,

”Target and change detection in synthetic aperture radar sensing of urban

structures,” 2008 IEEE Radar Conference, Rome, Italy, 2008, pp. 1-6,

doi: 10.1109/RADAR.2008.4721104.

C. Debes, A. M. Zoubir and M. G. Amin, ”Enhanced Detection Using

Target Polarization Signatures in Through-the-Wall Radar Imaging,” in

IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5,

pp. 1968-1979, May 2012, doi: 10.1109/TGRS.2011.2170077.

X. Mou, X. Chen, J. Guan, B. Chen and Y. Dong, ”Marine Target

Detection Based on Improved Faster R-CNN for Navigation Radar PPI

Images,” 2019 International Conference on Control, Automation and

Information Sciences (ICCAIS), Chengdu, China, 2019, pp. 1-5, doi:

1109/ICCAIS46528.2019.9074588.

Z. Xu, C. Fan, S. Cheng, J. Wang and X. Huang, ”A Distribution

Independent Ship Detector for PolSAR Images,” in IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing,

doi: 10.1109/JSTARS.2021.3068843.

J. Bai, S. Li, L. Huang and H. Chen, ”Robust Detection and Tracking

Method for Moving Object Based on Radar and Camera Data Fusion,”

in IEEE Sensors Journal, doi: 10.1109/JSEN.2021.3049449.

V.K. Volosyuk and V.F. Kravchenko, ”Statistical Theory of Radio Engineering Systems of Remote Sensing and Radar” in , Moscow:Fizmatlit,

V. K. Volosyuk and S. S. Zhyla, ”Optimal radar cross section estimation

in synthetic aperture radar,” 2017 IEEE First Ukraine Conference on

Electrical and Computer Engineering (UKRCON), Kyiv, UKraine, 2017,

pp. 189-193, doi: 10.1109/UKRCON.2017.8100471.

V. K. Volosyuk, S. S. Zhyla, M. O. Antonov and O. A. Khaleev, ”Optimal

acquisition mode and signal processing algorithm in syntetic aperture

radar,” 2017 IEEE 37th International Conference on Electronics and

Nanotechnology (ELNANO), Kiev, 2017, pp. 511-516, doi: 10.1109/ELNANO.2017.7939804.

V. Volosyuk, S. Zhyla, N. Ruzhentsev, E. Tserne, D. Kolesnikov

and D. Vlasenko, ”Optimal Method of RCS Estimation in Synthetic

Aperture Radar with Linear Antenna Array,” 2020 IEEE Ukrainian

Microwave Week (UkrMW), Kharkiv, Ukraine, 2020, pp. 1-6, doi:

1109/UkrMW49653.2020.9252648.

Futatsumori, S., Morioka, K., Kohmura, A., Shioji, M. and Yonemoto,

N., ”Evaluation of polarisation characteristics of power-line RCS at 76

GHz for helicopter obstacle detection”, Electron. Lett., 51: 1110-1111

(2015).

Shunichi Futatsumori, Capucine Amielh, Kazuyuki Morioka, Akiko

Kohmura, Norihiko Miyazaki, et al.., ”Investigation of circular polarization for 76 GHz helicopter collision avoidance radar to improve

detection performance of high-voltage power lines”, EURAD 2017, 14th

European Microwave Conference, Nuremberg, Germany. pp.Pages 295-

(2017).

K. Sarabandi and Moonsoo Park, ”A radar cross-section model for

power lines at millimeter-wave frequencies,” in IEEE Transactions on

Antennas and Propagation, vol. 51, no. 9, pp. 2353-2360, Sept. 2003,

doi: 10.1109/TAP.2003.816380.

Ya. D. Shirman, ”Resolution and Compression of Signals”, Sov. Radio,

Moscow, 1974.

Ya. D. Shirman, ”Radioelectronic Systems: Design Foundations and

Theory, 2nd ed.”, Radiotekhnika, Moscow, 2007.

Ya. D. Shirman, ”Statistical analysis of optimum resolution”, Radio

Engineering and Electronics, 6 (8), pp. 1237-1249 (1961).

V. K. Volosyuk, V. V. Pavlikov and S. S. Zhyla, ”Phenomenological

Description of the Electromagnetic Field and Coherent Images in Radio

Engineering and Optical Systems”, 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET),

pp. 302-305, 2018.

V. K. Volosyuk, S. S. Zhila and D. V. Kolesnikov, ”Phenomenological

description of coherent radar images based on the concepts of the

measure of set and stochastic integral”, Telecommunications and Radio

Engineering (English Translation of Elektrosvyaz and Radiotekhnika),

vol. 78, no. 1, pp. 19-30, 2019

A. Ishimaru, ”SWave Propagation and Scattering in Random Media”,

New York, Academic Press, 1978.

Ya. D. Shirman, ”Theoretical Foundations of Radar”, Sovetskoe radio,

Moscow, 1970.

Downloads

Published

2024-04-19

Issue

Section

Microwaves and Radiolocation