Optimizing the Bit-flipping Method for Decoding Low-density Parity-check Codes in Wireless Networks by Using the Artificial Spider Algorithm
Abstract
In this paper, the performance of Low-Density Parity-Check (LDPC) codes is improved, which leads to reduce the complexity of hard-decision Bit-Flipping (BF) decoding by utilizing the Artificial Spider Algorithm (ASA). The ASA is used to solve the optimization problem of decoding thresholds. Two decoding thresholds are used to flip multiple bits in each round of iteration to reduce the probability of errors and accelerate decoding convergence speed while improving decoding performance. These errors occur every time the bits are flipped. Then, the BF algorithm with a low-complexity optimizer only requires real number operations before iteration and logical operations in each iteration. The ASA is better than the optimized decoding scheme that uses the Particle Swarm Optimization (PSO) algorithm. The proposed scheme can improve the performance of wireless network applications with good proficiency and results. Simulation results show that the ASA-based algorithm for solving highly nonlinear unconstrained problems exhibits fast decoding convergence speed and excellent decoding performance. Thus, it is suitable for applications in broadband wireless networks.
References
I. B. Djordjevic, “LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation,” Opt. Express, vol. 15, no. 16, p. 10026, 2007.
S. Y. Chung, G. David Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.
J. Meng, D. Zhao, H. Tian, and L. Zhang, “Sum of the magnitude for hard decision decoding algorithm based on loop update detection,” Sensors (Switzerland), vol. 18, no. 1, Jan. 2018.
D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett., vol. 32, no. 18, p. 1645, 1996.
R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, 1962.
S. H. Kang and I. C. Park, “Loosely coupled memory-based edcoding architecture for low density parity check codes,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 53, no. 5, pp. 1045–1056, May 2006.
N. Miladinovic and M. P. C. Fossorier, “Improved bit-flipping decoding of low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1594–1606, Apr. 2005.
S. Haddadi, M. Farhang, and M. Derakhtian, “Low-complexity decoding of LDPC codes using reduced-set WBF-based algorithms,” Eurasip J. Wirel. Commun. Netw., vol. 2020, no. 1, p. 180, Dec. 2020.
I. Develi and Y. Kabalci, “A comparative simulation study on the performance of LDPC coded communication systems over Weibull fading channels,” J. Appl. Res. Technol., vol. 14, no. 2, pp. 101–107, Apr. 2016.
M. Qiu, Z. Zhang, and Y. Huang, “An Improved Bit Flipping Min Sum Algorithm with Difference to Sum Ratio Factor Based on Unreliable Received Messages,” in International Conference on Communication Technology Proceedings, ICCT, 2020, vol. 2020-October, pp. 1582–1586.
B. Attaran, A. Ghanbarzadeh, and S. Moradi, “A novel evolutionary optimization algorithm inspired in the intelligent behaviour of the hunter spider,” Int. J. Comput. Math., 2020.
Z. He, S. Roy, and P. Fortier, “Powerful LDPC codes for broadband wireless networks: High-performance code construction and high-speed encoder/decoder design,” in Conference Proceedings of the International Symposium on Signals, Systems and Electronics, 2007, pp. 173–176.
J. Kennedy, J. Kennedy, and R. Eberhart, “Particle swarm optimization,” pp. 4--1942, 1995.
A. Othman and H. Gabbar, “Enhanced Microgrid Dynamic Performance Using a Modulated Power Filter Based on Enhanced Bacterial Foraging Optimization,” Energies, vol. 10, no. 6, p. 776, Jun. 2017.
D. Bratton and J. Kennedy, “Defining a standard for particle swarm optimization,” in Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007, 2007, pp. 120–127.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.