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 Abstract—In this paper, a new proof of ambiguity of the formula 

describing the aliasing and folding effects in spectra of sampled 

signals is presented. It uses the model of non-ideal sampling 

operation published by Vetterli et al. Here, their model is modified 

and its black-box equivalent form is achieved. It is shown that this 

modified model delivers the same output sequences but of different 

spectral properties. Finally, a remark on two possible 

understandings of the operation of non-ideal sampling is enclosed 

as well as fundamental errors that are made in perception and 

description of sampled signals are considered.  

 
Keywords—signal sampling; occurrence of spectrum aliasing 

and folding; modelling of non-ideal signal sampling operation; 

Vetterli’s model 

I. INTRODUCTION 

ANY researchers working in the areas of computer 

science, telecommunications, electrical and electronics 

engineering, and signal processing still believe that this highly 

celebrated and commonly used [1]–[3] expression  

 ( ) ( )
1

s

k

X f X f k T
T



=−

= −  (1) 

for describing the spectrum aliasing and folding effects in the 

signal sampling is fully correct – despite receiving from the 

author of this paper a strong evidence that just the opposite 

might be valid [4]. Probably, this is due to the fact that they do 

not read journals such as the Intl Journal of Electronics and 

Telecommunications. It appears that they simply consider it to 

be a low-ranking journal, which is not worth reading. Unduly. 

 However, the purpose of this paper is not to present the results 

achieved in [4] from another perspective. Here, we aim in 

presenting a new proof of what has been shown in [4] with the 

use of quite different tools. 

In (1), ( )X f  means the spectrum of an energy, bandlimited 

signal ( )x t ; ( )X f k T−  is this spectrum shifted by k T  (to 

the left or to the right, depending upon a sign of the integer k ) 

on the frequency f  axis. Further, sf  stands for the sampling 

frequency (rate) used in sampling the signal ( )x t , where t  is a 
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continuous time variable. Moreover, 1 sT f= , where T  is 

a sampling period. 

Furthermore, let us denote by ( )sx t  the signal ( )x t  sampled 

ideally or non-ideally (the difference between these two cases 

will be explained later). So, with this, ( )sX f  in (1) means the 

Fourier transform of ( )sx t . That is it is a spectrum of the 

sampled signal.  

As already mentioned, this paper contains a quite different 

approach to the problem mentioned above to show that (1) is not 

a relevant formula for a correct description of the spectrum of 

a sampled signal (independently of whether the sampling 

operation is carried out ideally or not). Here, the model of signal 

sampling published in [5], together with the principles 

accompanying its construction, are exploited. Whereby this 

model is slightly modified in this paper. But, it is shown that its 

modification is fully legitimate. 

As well known, see, for example, [1]–[3], the form of (1) 

follows exclusively from modelling the sampled signal ( )sx t  

as a series of Dirac deltas (impulses). That is as 

 ( ) ( ) ( ) ( ),s T D Tx t t x t x t=  =  , (2) 

where the Dirac comb ( )T t  is defined as 

 ( ) ( )T

k

t t kT 


=−

= −  (3) 

with ( ) ,  ., 1,0,1,.,t kT k − = −  meaning the time-shifted Dirac 

deltas. Furthermore, note the use of an equivalent notation 

( ),D Tx t  in (2) for ( )sx t . In it, the first index, D, stands for the 

name of Dirac. The latter notation (not ( )sx t ) will be used in 

what follows to distinguish one another possible manner of 

modelling of the sampled signal from the one given by (2). 

The remainder of the paper is organized as follows. In the 

next section, we present a description of the model of the signal 

sampling demonstrated by Vetterli et al. in [5]. Their model is 

modified in Section III and used afterwards to develop a new  
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formula for the spectrum of sampled signals. The formula 

derived differs from the one which is used in the current theory. 

Moreover, it does not predict any aliasing and folding effects in 

spectra of sampled signals; its correctness follows from the fact 

that any real analog/digital converters that produce sequences of 

Dirac deltas do not exist. The next section contains a remark on 

two possible understandings of the operation of non-ideal 

sampling. One of them is used in this paper; it corresponds to 

the model of Vetterli et al. In Section V, some fundamental 

errors that are made in perception and description of sampled 

signals are analyzed and explained in detail. The paper ends 

with a final conclusion. 

II. DESCRIPTION OF THE VETTERLI’S MODEL OF SIGNAL 

SAMPLING 

 A model of signal sampling that takes into account non-

idealities occurring in carrying out this operation by real 

sampling devices (real A/D converters) has been demonstrated 

in an article [5] written by Vetterli et al. This model is shown 

here on Fig. 1, after [5, see Fig. 1]. 

 

Fig. 1. Graphical representation of the Vetterli’s model of signal sampling 

operation that reflects formula (1) complemented with the preceding and 

following operations (averaging of sampled signal and picking up samples, 

respectively). 

 

In Fig. 1, the whole non-ideal behavior of a real A/D 

converter is “put into” the first block named “ ( )h t ”. And, it is 

modelled by a linear filter possessing an impulse response ( ) ,h t  

which represents a local signal averaging process or any other 

appropriate one [6]. Hence, we can express the signal ( )y t  in 

Fig. 1 as a result of a convolution of the continuous time signal 

( )x t , which is applied to the input of the A/D converter, with 

( )h t . The resulting signal is then sampled ideally as foreseen 

by formula (2), where obviously ( )T t  in Fig. 1 (as in (2)) 

means the Dirac comb. (The symbol   in Fig. 1 means a 

multiplication.) In effect, we get the signal ( ),D Ty t  (replacing 

now the signal ( )sx t  standing on the left-hand side of (2)).  

Finally, ( ), sD Ty kT   on the right-hand side of Fig. 1 stand for 

the samples of the signal ( )y t . They are picked up from the 

signal ( ),D Ty t  in the block named „C/D” (in fact, picking up the 

samples from ( ),D Ty t  is the only task of this processing unit). 

Note now that in the current theory of signal sampling the 

spectra of the signals ( ),D Ty t  and ( ),D Ty kT  occurring at the 

input and output of the C/D block, respectively, are the same. 

This is so because we have 
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where the symbol   stands for the convolution operation and 

( )F  means performing the Fourier transform of a signal 

indicated (for example, ( )( ) ( )y t Y f=F . Or, alternatively, 

( )( ),D Ty tF  can be calculated as 
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Moreover, observe that the right-hand side of (5) is in fact 

nothing else than (per definition; see, for example, [3]) the 

Discrete Time Fourier Transform (DTFT) of the sequence of 

( ), sD Ty kT  . Hence, we can write  

 ( )( ) ( ) ( )
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, ,
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exp 2

DTFT  .

D T D T
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= − =
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F  (6) 

(Note that all the derivations presented in (4), (5), and (6) are 

standard. They use standard properties of Fourier transforms 

and Dirac deltas referenced to in textbooks; see, for instance,  

[1]–[3].) 

Furthermore, the spectrum of the sequence of discrete values, 

as these ones ( ), sD Ty kT   at the output of the C/D processing 

unit in Fig. 1, is well defined in the literature. It is just the 

( )( ),DTFT D Ty kT  in this case. 

III. MODIFICATION OF THE VETTERLI’S MODEL AND PROOF OF 

ANOTHER FORMULA FOR THE SAMPLED SIGNAL SPECTRUM  

As noted in the previous section, the only task of the 

processing unit „C/D” of Fig. 1 is picking up the samples 

( ), sD Ty kT   associated with the signal ( ),D Ty t . 

In what follows, we explain this in more detail; and, to this 

end, we start with rewriting (2) – with ( )x t  and ( ),D Tx t  

replaced now by ( )y t  and ( ),D Ty t , respectively – in the 

following form: 
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  (7) 

Now, we see in (7) that the samples ( ) ( ), sD Ty kT y kT =  are 

the coefficients which multiply the successive time-shifted 

Dirac deltas ( ) ,  ., 1,0,1,...t kT k − = − . Thus, the processing 

unit C/D simply identifies them and transports to its output. 

x(t) 

y(t) yD,T(t) 

yD,T(kT) 
h(t) 

δT(t) 

C/D 
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Next, note that for performing the action described above we 

do not necessarily need to use a sequence of the weighted Dirac 

deltas (with the coefficients being the samples ( ), sD Ty kT  ) as 

in (7). In fact, we can use any other appropriate formula, for 

example, the following one:  

 ( ) ( ) ( ),
ˆ  sincD T

k

y t y kT t T k


=−

= −  ,         (8) 

where the function ( )sinc t  is defined as 

 ( ) ( )sinc sin   for 0   and  1 for 0t t t t t =  =  (9) 

and ( )ŷ t  means a function being an approximation of ( )y t  

shown in Fig. 1 that exploits the aforementioned set of 

( ), sD Ty kT  . 

Note that (8) can be always written and makes sense, as 

shown in [7]. In more detail, if the sampling period T in (8) is 

so chosen that the following: 

 ( )1 2 mT f          (10) 

holds, then (8) is represents the formula for a perfect 

reconstruction [1]–[3] of the signal ( )y t  from its samples 

( ) ( ), , ... 1,0,1,...D Ty kT y kT k= = − . Whereby, in (10),  

denotes the maximal frequency present in the spectrum of the 

signal ( )y t . Further, the perfect reconstruction in this case 

means that ( )ŷ t  is exactly equal to ( )y t  (i.e. ( ) ( )ŷ t y t= ) 

[1]–[3]. 

When the condition (10) is not satisfied, then (8) plays a role 

of an approximating function of the signal ( ) ,y t  as shown in 

[8]. (By the way, note that any physical signal used in 

electronics, telecommunications, and signal processing can be 

treated as a bandlimited one (for arguments, see, for example, 

[9]). Hence, the maximal frequency  in its spectrum can be 

always determined or, at least, approximated. Thereby, we can 

always check (precisely or approximately) whether (10) is 

fulfilled or not.) 

Furthermore, as shown in [8] and [10], (8) plays a role of the 

reconstruction formula for an interpolating function of the 

signal ( )y t  mentioned above. Let us denote this interpolating 

function as ( )ay t  (similarly as in [10]). Further, the latter signal 

is a bandlimited one and its maximal frequency which is present 

in its spectrum – denote it here as 
maf – is equal to ( )1 2T  (that 

is ( )1 2maf T= ). 

So, in summary of the latter case, we can rewrite (8) for 

( )ay t  as 

 ( ) ( ) ( )( ) ( ) sinca a

k

y t y kT y kT t T k


=−

= = − ,       (11) 

having in mind that ( ) ( ) ( ),a D Ty kT y kT y kT= =  also holds. 

 

What are the disadvantages and dangers of choosing the 

formula (7) in modelling of a sampled signal? The most relevant 

here is the fact that there are no physical analog/digital (A/D) 

signal converters that produce series of weighted Dirac impulses 

(as in (7)). 

The author of this paper consulted practitioners, designers of 

A/D converters on this issue and heard from them the following: 

signals inside or at outputs of real A/D converters have either a 

form of sequences of impulses of a finite duration or sequences 

of numbers of a finite value. Whereby the first form is rather 

very rarely exploited in signal processing. (By the way, 

calculation of its spectrum does not pose any problems – as 

shown in [11].) Primary form in the digital signal processing 

applying microprocessors is the second one mentioned above. 

(And here, unlike in the first case, calculation of its spectrum is 

problematic; see, for example, [4].) Further, their opinion is that 

neither of these two types of signals mentioned above can be 

perceived as sequences of weighted Dirac impulses. 

In opinion of the author of this paper, the above excludes (7) 

from the candidates, which can describe the sampled signal 

correctly. As not existing in real A/D signal converters, the 

signals expressed by (7) can obscure a true picture of what 

happens in these devices. 

Contrary to the above, a natural and a reasonable choice 

offers the description (8). Simply because signals of the type 

given by (8), that is ( )ŷ t , are present in real A/D signal 

converters. Obviously, this choice still remains an arbitrary one. 

But, there is no danger that it will introduce any undesirable side 

effects into the description.  

Having the above in mind, let us modify the Vetterli’s model 

of Fig. 1 accordingly. It is shown in Fig. 2. 
 

Fig. 2. Modified Vetterli’s model of Fig. 1. 
 

Let us now note the changes in Fig. 2 when compared with 

Fig. 1. We see two graphical changes. Instead of the signal 

( )T t  (a sequence of Dirac impulses), we have now the signal 

  ( )?  sinc
k

t T k


=−

−  with unknown coefficients. These 

coefficients depend upon the index k and are “worked out” in 

the element marked as       (which replaces here the operation of 

multiplication   of Fig. 1). Its task is to calculate the values of 

the signal ( )y t  at the successive instants for which the function  

( )sinc t T k−  achieves its maxima (equal to 1), when the index 

k changes. And afterwards, to substitute them in places of  ? ’s 

in   ( )?  sinc
k

t T k


=−

− . 

mf

mf
x(t) 

y(t) ŷ(t) 

ŷ(kT)= 

yD,T(kT) 

h(t) 

∑ {? }sinc(𝑡 𝑇 − 𝑘⁄ )

∞

𝑘=−∞

 

C/D 
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The third difference between Figs. 1 and 2 (not visualized in 

Fig. 2) regards the description of the processing unit C/D. Now, 

in Fig. 2, this unit picks up, successively, as the index k changes, 

the coefficients of the expanded signal 

( ) ( ) ( )ˆ  sinc
k

y t y kT t T k


=−

= −  at the instants kT for which the 

function  ( )sinc t T k−   achieves its maximum. Moreover, we 

recall here that ( ) ( ) ( ),
ˆ

D Ty kT y kT y kT= =  holds. This means 

that the output signal of the device in Fig. 2 is exactly the same 

as the one of the device of Fig. 1. 

In [5], in constructing the model visualized in Fig. 1, it has 

been assumed that the input and output signals of the processing 

unit C/D have the same spectrum. This principle is taken over 

in our model presented in Fig. 2. That is the spectra of the 

signals ( )ŷ t  and ( ) ( ) ( )( ),
ˆseq D Ty kT y kT y kT= = , where 

“seq” stands for a sequence of the indexed elements (k plays 

here a role of an index), are the same. 

To proceed further, let us now calculate the spectrum of the 

signal ( )ŷ t . And, to this end, note that this spectrum depends 

upon whether the signal ( )y t  was sampled in a way enabling 

its perfect reconstruction or not (that is it was under-sampled); 

for more details regarding this point, see [8]. In other words, it 

depends upon whether the condition (10) is satisfied or not; 

using the results presented in [8], we can write 
 

 ( )( )
( ) ( )

( ) ( )

  when  1 2  
ˆ

  when  1 2  ,

m

a m

Y f T f
y t

Y f T f


= 



F  (12) 

where ( ) ( )( )Y f y t= F  and ( ) ( )( )a aY f y t= F  mean the 

spectra of the signals ( )y t  and ( )ay t , respectively. 

In the next step, we apply the principle regarding the spectra 

of the input and output signals of the processing unit C/D  

mentioned above (which says that they are the same). Hence, 

we write 
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m

a m

y kT y kT y kT

Y f T f
y t

Y f T f

= = =


= = 



F

 (13) 

where a new symbol ( )SPECT   for denoting the spectrum of 

a sequence of indexed values indicated in the brackets is used 

because it obviously differs from ( )( ),DTFT D Ty kT . 

Finally, note that the result (13) does not predict any aliasing 

and folding effects in the spectra of sampled signals, in contrast 

to the theory in force. 

IV. REMARK ON SAMPLES OF IDEALLY AND NON-IDEALLY 

SAMPLED SIGNALS 

What does the notion of an ideal or a non-ideal sampling of 

a continuous time signal mean? And, what is the difference 

between them? Here, we remark shortly on our understanding 

of this issue. 

A continuous time signal is sampled ideally, when the 

samples emerging in operation of its sampling are exactly equal 

to its values at the corresponding instants , .., 1,0,1,..kT k = − . 

So, interpreting this with the use of the model of Fig. 1 or of Fig. 

2, we assume that then the block named “ ( )h t ” does not occur 

and the output sequence at the processing unit C/D is ( ) sx kT  . 

(The above understanding of ideal sampling was exploited in 

the analysis presented in [4].) 

Now, note that the non-ideal case of sampling can be 

understood in two different ways. The first of them is as 

visualized in Figs. 1 and 2. In these two models, the non-ideality 

of sampling is taken into account by introducing the block “

( )h t ”. This causes that the values of samples at the output of 

the processing unit C/D, ( ), sD Ty kT  , differ from those 

following from the ideal case, ( ) sx kT  . 

Next, observe that both the cases of ideal and of non-ideal 

sampling defined above are identical with respect to the 

spectrum considerations presented in this paper because they 

lead to the same form of the formula: (1) or (13), depending 

upon the model used. Only thing which must be then done is an 

appropriate interpretation of the quantities used in the 

aforementioned formulas – what follows from the fact that we 

are dealing then with either the sequence of ( ) sx kT   or the 

sequence of ( ), sD Ty kT  . So, in this context, see that the 

( ), sD Ty kT   can be treated as the corrupted ( ) sx kT   when we 

write ( ) ( ) ( ),D Ty kT x kT e kT= + , .., 1,0,1,..,k = −  where 

( ) ,  .., 1,0,1,..e kT k = −  mean the successive differences 

between the ideal and non-ideal values of samples. (Note that a 

similar scheme is used in acoustic signal processing to describe 

the quantization noise.)  

A quite different is the second possible way of modelling the 

non-ideal sampling operation. This approach uses a sampled 

signal description in form of a sequence of short impulses; see, 

for example, [11]. However, it is rather very rarely exploited in 

signal processing. 

Additionally, we would like to underline here that the 

calculations of the sampled signal spectrum, which have been 

presented in [11], apply exclusively to the case of a description 

of the sampled signal in form of a sequence of short impulses. 

And that the model developed in [11] is principally different 

from those given in Figs. 1 and 2.  

V. FUNDAMENTAL ERRORS IN PERCEPTION AND DESCRIPTION 

OF SAMPLED SIGNALS 

The first version of this article was intended to consider only 

the modified Vetterli’s model of Fig. 2 and to show 

consequences of such modelling on the form of the sampled 

signal spectrum. It has been read by many experts in the area, 

who gave the author a lot of feedback. Some of their opinions 

were, however, surprising. Moreover, their opinions were in 

many cases contradictory and, obviously, still remain so. Or, 

they reject a priori other points of view. 
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In opinion of the author of this paper, the controversies 

mentioned above should not be ignored, under no 

circumstances. On the contrary, something has to be done about 

this. These controversies should be given full attention because 

they touch on fundamental aspects of signal sampling process. 

And, for this reason, they should be thoroughly examined (once 

again); a task of performing this (even briefly) has been 

undertaken in the present section. By the way, it is also worth 

noting that this attempt of clarification of ambiguities associated 

with the perception and description of the signal sampling 

process was supported by the Editors of the Intl Journal of 

Electronics and Telecommunications. 

A standard, and it can be even said, a flagship argument for 

the use of the weighted Dirac comb in description of the 

sampled signal is a belief that it is analogous to describing the 

so-called point masses by physicists. 

 Let us take a closer look at the latter and, to this end, let us 

consider a single point mass for simplicity, which corresponds 

(in its mathematical description) to a single element in the 

weighted Dirac comb (that is to a Dirac impulse multiplied by a 

number which in our case of a mass point has a meaning of the 

mass located at this point). But, before starting with this 

situation, let us consider first a simpler environment that is a 

mass distributed in some volume. Further, for simplicity, 

consider a one-dimensional case. This environment is illustrated 

in Fig. 3. 
 

 

Fig. 3. Illustration to an example of a mass distributed in some “one-dimensional 

volume” extending from 0x =  to 
0x x=  and described by a mass density 

function ( )x  shown in this figure. 

 

The one-dimensional object represented by the mass density 

function  ( )x  of  Fig. 3 has a mass equal to m, which is a result 

of integration of the function ( )x  over the “volume” 

 00 x x  . That is 

 ( )
0 0

0

0 0

x x

m x dx m x dx= =   . (14) 

Observe further that when we weigh a material object with 

the use of a scale, it gives us the weight m of this object, not its 

mass density function ( )x . Moreover, note that the physicists 

use a concept called the center of mass, which can be, obviously, 

also used to characterize the “mass properties” of an object. It is 

a concrete point of the space occupied by this object. So, 

knowing this point and the value of m, we can express the “mass 

properties” of an object in another way. In our example, it will 

look as shown in Fig. 4. 
 

Fig. 4. Another way of expressing the location of the distributed mass in a “one-

dimensional volume” occupied by our example object possessing the mass 
density function ( )x  shown in Fig. 3. This illustration is at the same 

timea descriptive definition of a quasi-function ( )M x . 

 

Note that ( )M x  defined in Fig. 4 is not a function; it would 

be a function if it were not for the shaded and dotted area. Any 

values of ( )M x  for the values of x ranging from 0 (inclusive) 

to 
0x  (also inclusive), but except the value of 

0 2x , are 

forbidden (and this is just marked in Fig. 4 by that shaded and 

dotted area). Further, we emphasize that we are talking here 

about the forbidden values, not about unknown ones or zeros. 

Therefore, ( )M x  is called here a quasi-function because it is 

well-determined except the two intervals on the Ox axis 

mentioned above. 

Now, we will draw some conclusions from a comparison of 

the two possibilities of description of the “mass properties” of 

our example object. First of all, note that these descriptions are 

not compatible with each other; they are completely different 

because the mass density function ( )x  is a well-defined 

function unlike the ( )M x , which is not a function at all. 

However, this does not mean at the same time that there is no 

relationship between them. The relationship is through the 

functional (14); obviously, this relationship is an indirect one (a 

direct one is not possible because of the nature of ( )x  and 

( )M x ). Second, the latter is clearly reflected in the frequency 

domain. That is the Fourier transform of ( )x  is well-defined 

unlike the Fourier transform of ( )M x , which does not exist at 

all.  

Let us now turn to the special case in the above descriptions, 

that is to the point mass. Then, as it is taught and explained in 

the textbooks, the case illustrated in Fig. 3 goes into the one 

presented in Fig. 5, i.e. when 
0x  goes to zero. 

Fig. 5. Version of Fig. 3 for illustration of an example of a mass m concentrated 

in one point only ( 0x = ). Here, the mass density function ( )x  equals the 

Dirac impulse ( )x  multiplied by m. 

 ρ(x) 

x  0   x0  

 m/x0 

 M(x) 

x  0   x0  

 m 

 ρ(x)=m·δ(x) 

x  0  
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Further, note that in this case, as the mathematical literature 

on distributions (see, for example, [12]) shows, an equivalent of 

the functional given by (14) exists and it can be expressed in the 

following form: 

 ( )m m x dx m 


−

=  = , (15) 

where the usual engineers’ notation for the operation of 

integration of the Dirac delta is used. Moreover, on the extreme 

right-hand side of (15), the symbol    denoting a scalar 

product of two functions is used. It indicates that m can be also 

viewed, at least formally, as a scalar product of ( )x  and m. 

Finally, in this case, the object ( )M x  defined in a descriptive 

form in Fig. 4 assumes the form which is illustrated in Fig. 6. 
 

Fig. 6. Version of  Fig. 4 for illustration of an example of a mass m concentrated 

in one point only – according to the second method discussed in this paper. 

Here, the “distributed” mass occupies only one point ( 0x = ) and has its mass 

density function ( )x  shown in Fig. 5. Furthermore, this illustration is at the 

same time a descriptive definition of a quasi-function ( )M x  for the case of the 

point mass (remark: here, ( )M x  becomes a function). 

 

Observe now that the descriptions for the point mass shown 

in Figs. 5 and 6 are not identical, similarly as the previous ones. 

They differ from each other, but in another way. In this context, 

note that ( )M x  represents a function (before it was an object 

not being a function). Unlike this, the mass density function 

( )x  is not now a function (previously it was). However, as 

before, it has a Fourier transform; its spectrum equals m for all 

frequencies. Further, ( )M x  possesses now the Fourier 

transform, which is however identically equal to zero (remark: 

the definition of the Lebesgue integral must be applied in 

calculation of the Fourier transform to get this result [4]). 

Moreover, the “measured” quantity here, as before, is the mass   

( )0M  (well defined)  –  not the mass density at the point 0x =  

(besides, as ( ) ( )0 0m =  , it is not well defined). In other 

words, the scale provides the information about ( )0M , not 

about ( )0 . 

After discussion of the case of single masses (occupying 

some volume as well as those called point ones), let us now 

continue our example with the infinite sequences of masses. To 

this end, assume that the masses occur in our one-dimensional 

space uniformly in the distance 
0d x=  from each other. And, 

consider separately continuations of the single mass versions 

discussed before; that is of the one represented by Figs. 3 and 4, 

and of the second visualized in Figs. 5 and 6. 

Moreover, assume in the first one that our one-dimensional 

space is fully (strictly) filled with masses. That is the masses in 

the segments:    0 0..., 0 , 0 ,...x x x x−      touch each 

other. And, the mass density functions may be different in the 

successive segments. However, assume that they are fixed 

(constant) in each of these segments. So, taking all this into 

account, we can sketch the corresponding graphs as shown in 

Fig. 7. 

Next, consider the second variant which replicates what we 

have in Figs. 5 and 6, for the case of an infinite sequence of point 

masses. It is summarized in Fig. 8. 

Fig. 7. a) Illustration to the mass density function ( )1s x  for an example of an 

infinite sequence of masses having the properties described in the text; b) An 

alternative description through the object ( )1sM x , where the latter means 

extension of ( )M x  (which is shown in Fig. 4) to the case of a sequence of 

masses. 

Fig. 8. a) Illustration to the mass density function ( )2s x  for an infinite 

sequence of point masses; b) An alternative description through the object 

( )2sM x , where the latter means extension of ( )M x  (which is shown in Fig. 6) 

to the case of a sequence of masses. 
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What is common in these two different descriptions presented 

in Figs. 7 and 8 ?  Looking at the objects ( )1sM x  of  Fig. 7b 

and ( )2sM x  of Fig. 8b, we see that the values provided by the 

scales are the same in both the cases (here, the “phase shift” of 

0 2x  between them on the Ox axis has no significance; it does 

not matter). More precisely, we have: 

( )( ) ( )1 0 2 0. . . . ,  3 2 2 ,s sM x M x− = −  ( )( )1 01 2sM x− =

( )2 0 ,sM x= −     ( ) ( )1 0 22 0 ,s sM x M=     ( )( )1 03 2sM x =  

( )2 0 ,sM x=   ( )( ) ( )1 0 2 05 2 2 ,s sM x M x= . . .   .  This means 

obviously that “from the point of view of the measuring 

equipment” or, in other words, from the point of view of the 

series of weights provided by the scales, these descriptions are 

identical. However, the entire objects ( )1sM x  and ( )2sM x  are 

not identical. This is so because in the case of the former all the 

points on the Ox axis not belonging to the following set:  

( ) ( ) ( ) 0 0 0 0..., 3 2 , 1 2 , 2, 3 2 ,...x x x x− −  are forbidden (see 

Fig. 7b).  But,  unlike  this,  in  the  case  of  the  latter  all  the 

points on the Ox axis which do not belong to the set:  

 0 0 0 0..., 2 , ,0, , 2 ,...x x x x− −  are also allowed. Furthermore, all 

the values of the function ( )2sM x  at the points outside the set 

 0 0 0 0..., 2 , ,0, , 2 ,...x x x x− −  are identically equal to zero (see 

Fig. 8b). 

Comparison of Figs. 7a and 8a shows that the function 

( )1s x  and the weighted Dirac comb ( )2s x  differ 

substantially from each other. And, not only graphically. Their 

analytical descriptions are also significantly different. Because, 

as already mentioned, the first of them is a function but the 

second a distribution. 

Now, we go to application of the descriptions derived to 

modelling of the sampled signal. And, in this context, let us  

recall briefly what is available to us: Our first description refers 

to a series of point masses which occupy zero volumes but the 

second to a series of distributed mass centers treated as 

distributed (mass) points in a space. In the next step, we replace 

the spatial variable x in Figs. 7 and 8 with the continuous time 

variable t and 
0x d=  with the sampling period T. In this way, 

we get the following functions and objects: ( )1s t , ( )2s t ,

( )1sM t , and ( )2sM t , with the corresponding illustrations 

given by Figs. 7 and 8 (which are referred to our example, but 

now interpreted as a sampled signal). We will refer to them in 

what follows, when we will discuss on whether the first or the 

second description is more realistic. 

Note that the description given by ( )2s t  and ( )2sM t , and 

illustrated in Fig. 8 is promoted in all papers and textbooks on 

the signals theory as well as on the signal processing. This is the 

only representation for sampled signals recognized by the 

researchers. 

Looking at Fig. 8, we see immediately that by reasoning in 

this way, these researchers are making two basic errors. In an 

indefinite way, they identify the sampled signal ( )2sM t  that 

appears at the output of an analog/digital (A/D) converter with 

the object denoted here by ( )2s t . (Probably, they do this 

because of the fact that the function ( )2sM t  does not possess 

a spectrum or it is identically equal to zero (at least in the 

conventional sense of this notion, i.e. as a Fourier transform; for 

more details, see, for example, [4]. But, unlike this, ( )2s t  has 

a well-defined Fourier transform.) Secondly, ( )2s t  plays here 

a role of a “density” of some object. And, what does it mean? If 

interpreted as the “density” of the sampled signal ( )2 ,sM t  it 

does not, obviously, equal this signal (Fig. 8 demonstrates 

clearly that ( ) ( )2 2s st M t  ). So, we have inconsistencies in 

this reasoning. 

However, one can get rid of the inconsistencies mentioned 

above. For example, an approach we want to propose now is 

quite reasonable. Namely, as the sampled signal ( )2sM t  

possesses no spectrum in the conventional sense or it is 

identically equal to zero (as already mentioned above), one 

resorts to defining a substitute spectrum for ( )2sM t  by 

assuming that it is a spectrum of a function or of an object very 

closely related with ( )2sM t . Here, ( )2s t  is obviously such 

an object. And, this is precisely what in fact do the advocates of 

the sampled signal description presented in Fig. 8. However, 

this is not all we would like to say about it.  

One very important thing has been overlooked by its 

advocates. Namely, all the values of ( )2sM t  equal identically 

to zero that occur at the points of the Ox axis which are not 

contained in the set:  0 0 0 0..., 2 , ,0, , 2 ,...x x x x− −  are false. 

Why? Because the A/D converter produces nothing at these 

points, not zeros. So, in other words, we should rather interpret 

this fact as follows: these points are forbidden. And, for this 

reason, we should also ask what implications this has on the 

form of the associated (with ( )2sM t ) density object ( )2s t . 

Note now however that we have already found here a 

description for the latter situation (described above). Namely, 

the sampled signal as it is really outputted by the A/D converter 

(with no values for the forbidden points mentioned above) is 

well described by ( )1sM t , and its associated density object 

( )1s t . This is illustrated in Fig. 7. 

Further, observe that the density object ( )1s t  (see Fig. 7a) 

is in this case an ordinary function and therefore possesses a 

well-defined Fourier transform. Moreover, it can be well 

approximated by 

( ) ( )( ) ( )1 1
ˆ 1 2  sincs s

k

t M kT T t T k


=−

= + − . (16) 

We observe also that the functions ( )1s t  and ( )1
ˆ
s t  are 

not periodic ones. Therefore, their spectra are not periodic, too. 

So, in the case of this description, we cannot talk about 

occurrence of any aliasing and folding effects.  
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VI. FINAL CONCLUSION 

Once again, the main conclusion following from the results 

presented in this paper is that any aliasing and folding effects in 

spectra of sampled signals cannot occur. The primary cause of 

this lies in that there exist no real A/D signal converters which 

produce sequences of Dirac impulses. And, in our opinion, this 

fact gives an incentive to introduce some revisions into the 

existing theory. 
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