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High Frequency Rule Synthesis in a Large Scale
Multiple Database with MapReduce

Sudhanshu Shekhar Bisoyi, Pragnyaban Mishra, and Saroja Nanda Mishra

Abstract—Increasing development in information and commu-
nication technology leads to the generation of large amount of
data from various sources. These collected data from multiple
sources grows exponentially and may not be structurally uniform.
In general, these are heterogeneous and distributed in multiple
databases. Because of large volume, high velocity and variety
of data mining knowledge in this environment becomes a big
data challenge. Distributed Association Rule Mining(DARM) in
these circumstances becomes a tedious task for an effective global
Decision Support System(DSS). The DARM algorithms generate
a large number of association rules and frequent itemset in
the big data environment. In this situation synthesizing high-
frequency rules from the big database becomes more challenging.
Many algorithms for synthesizing association rule have been
proposed in multiple database mining environments. These are
facing enormous challenges in terms of high availability, scal-
ability, efficiency, high cost for the storage and processing of
large intermediate results and multiple redundant rules. In this
paper, we have proposed a model to collect data from multiple
sources into a big data storage framework based on HDFS.
Secondly, a weighted multi-partitioned method for synthesizing
high-frequency rules using MapReduce programming paradigm
has been proposed. Experiments have been conducted in a paral-
lel and distributed environment by using commodity hardware.
We ensure the efficiency, scalability, high availability and cost-
effectiveness of our proposed method.

Keywords—Multiple Database; Frequent Itemset; Association
Rule; Rule Synthesis; MapReduce; HDFS

I. INTRODUCTION

DARM in a large database [1], [2] is rapidly becoming
the popular strategy for rule-based DSS in large-scale

multiple databases. Many larger organization maintains their
data in multiple sites. Development of communication and
information technology, adoption of digital marketing and
social media promotes the organizational data to grow expo-
nentially and distributed over multiple databases. Each local
database site of a global organization or company may contain
different categories of data in all or some local database
sites. For example, a retail sector need a database for product
details, a finance sector may need multiple databases for the
transaction like regular accounts, loan accounts and credit card,
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to build an efficient transactional model, a pharmaceutical
sector need a database for medicines etc. So integrating multi-
ple databases perfectly and extracting meaningful knowledge
from this large-scale heterogeneous and distributed databases
are becoming a challenging task. Each organization main-
tains a large amount of data in their databases regularly for
building effective mining models. The exponential growth of
data into terabyte or petabyte scale characterizes the volume
and velocity while mining at multiple databases. Because of
this, multi-database mining can be termed as Big Database
Mining(BDM). So extracting meaningful, hidden knowledge
and understandable information from the huge amount of
data stored in large multiple databases is the main concern
of BDM. This big data problem cannot be solved with the
help of traditional methods and frameworks because of the
volume, velocity and veracity [3], [4]. In a rule-based multi-
database mining process, a very large set of frequent patterns
and association rules from each database site are generated.
All these rules are transferred to a central site for designing
a global effective model for decision making [5]. Because
of the very large dataset, it is also difficult to amass all
the frequent itemset along with rule in a central storage and
synthesize these rules for the DSS. So synthesizing global
frequent rule at multiple big database environments with
the help of traditional technique, methods and systems is
a challenging task. The challenges are mainly concern with
scalability, efficiency, load balancing, storage and processing
cost etc. So during the synthesis process of high frequent rules
from a big database, the application needs to be data-centric in
nature. In this situation, frequent patterns from each database
need to be stored in a partition based distributed big data
warehouse System. Each partition or splits are replicated for
high availability and scalability. A single mining task needs
to be initiated over the specified partition or split of the data
node and collect all the mining information in a parallel and
distributed fashion [6]. To increase efficiency in distributed
storage and parallel processing on the cost of commodity hard-
ware, Hadoop becomes the de-facto open source framework
[7], [8]. It consists of HDFS as the distributed storage and
MapReduce as a parallel processing framework. It can handle
the big data challenges in the cluster of commodity hardware
[9], [10]. In this paper, we present a model to collect data from
multiple databases to HDFS for the distributed storage. High-
frequency rule selection and synthesis algorithms are proposed
by using MapReduce as the parallel and distributed processing
framework of Hadoop.
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Rest of the paper is organized as follows: In section 2, basic
terminologies and related works are described. In section 3, the
parallel and distributed rule synthesize methods are presented.
The experimental setup and result analysis are described in
section 4 and final conclusion in section 5.

II. RELATED WORK

A. Rule Mining in Distributed Database

Knowledge mining in a distributed environment refers to
the use of distributed computing framework. A single mining
process can be initiated on more than one computing node in
parallel. Over the year many data mining methods have been
proposed to identify the scalability and performance of associ-
ation rule mining in multiple distributed databases [11], [12].
Many large and small organization having multiple branches
are geographically distributed with own database. Generation
of global high frequent rules concern to all sites of the organi-
zation is a challenging task. In the recent years, many methods
have been proposed for multi-database mining. H. Liu. et.al.
[13] have proposed a method for identifying the database
relevant to a data mining task. A set of semantically related
database are chosen with respect to a relevance measure. This
method is used to obtain multiple relevant databases where
each of them contains certain relevant pattern or attributes. It
can be used to overcome a situation where multiple databases
are required to be joined to a single large database and carry
out the mining operation. This classification by considering
relevance factor is completely dependent on the databases
and application. Wu. X. et.al. [14] discuss the multi-database
classification based upon the similarity measure which helps
in reducing the searching cost and improves efficiency in
the performance of multi-database mining system. It helps
in the identification of pattern association by considering an
application independent method to classify the database.

Over the time each site of an organization generates a large
number of rules associated with the local database. Selecting
globally high frequent rules and synthesizing these rules
become necessary for effective DSS. S. Zhang. et.al. [15] have
proposed a multi-database model(MDM) by describing various
issues related to mono-database and multi-database mining.
They classify the patterns associated with multiple branches
of an organization broadly into 4 types. These are local,
high voting, exceptional, and suggested patterns. C. Zhang
et.al [16] proposed a new algorithm for identifying the global
exceptional pattern in multiple databases. The Candidate Ex-
ceptional Pattern(CEP) have been generated based upon the
average vote counting. The identification of CPE from the
multi-database is considered as the post-processing operation
but the focus has not been given to organizational business
database. Wu and Zhang [17] have proposed a weighted model
for selection and synthesis of high frequent rules from different
data sources. The rules generated from each site need to be
collected in a central rule base system. In their approach, they
have described how multiple database participate equally in
the DSS. The participation of database site is based upon
their weight. The database with uniform size is considered,
if not then need to be resized by preprocessing. They also
describe the use of local and global support to synthesize the

high frequent rules. Ramkumar et.al [18] extended this work
where a new approach was proposed based upon database
site weight for selection and synthesis of high frequent rules.
Their approach is based upon the varying size of database
site and may be practically applicable to the organizational
database. The weight of each database site was computed by
considering the transaction population. They have proposed a
new method for computing the global support and confidence
for the rules selected form different database sites. It has also
been proved that this support and confidence are nearly similar
while performing mono-database mining by integrating all
partitions. The author has proposed a procedure for synthe-
sizing global negative association rule in multiple database.
The local pattern analysis strategy was adapted for mining
negative association rule from frequent items. The global
negative rules were synthesized with the help of forwarding
negation relations. They have also proposed a weighting
model based on transaction population for synthesizing global
negative association rule where uninterested negative rules
are pruned by effective vote rate [19]. Adhikari et.al [20],
have proposed an algorithm for effective database grouping
in multi-database mining. They have introduced an approach
for non-local pattern analysis(NLPA) by combining database
grouping algorithm and pipelined feedback technique(PFT)
while mining multiple databases. They have judged the im-
provement in global pattern mining by sacrificing local pattern
properties in multiple databases.

The different proposed methods for synthesizing rules in the
multiple databases leads to the difficulty in data storage and
processing as described earlier. Each database site has a large
number of frequent patterns. They generate a large number
of possible association rules individually. Synthesizing high
frequent rules by the traditional algorithms leads to a huge
search space and reduce the efficiency. So to synthesize high
frequent rules from a large number of possible rules leads to
the big data problem in multiple databases.

B. MapReduce Based Association Rule Mining

Many parallel and distributed algorithms have been pro-
posed for the Apriori-based association rule mining. Most of
them are having some limitations with respect to speed up,
scalability, fault tolerance, high-availability, load balancing,
data distribution etc. Among all the proposed method MapRe-
duce based Apriori algorithm for association rule mining
is becoming very much popular because of its processing
capabilities [21]–[23]. MapReduce programming paradigm
implemented by Apache Hadoop is most popular and cost-
effective framework for solving the computational complexity
of big data [24]. The main components of Hadoop which make
it more scalable, robust and fault tolerance are MapReduce
for processing, HDFS for storage and YARN for efficient task
scheduling [25]. Hadoop can be more comfortably configured
with the commodity hardware to prepare a parallel and dis-
tributed execution framework with a master-slave architecture
[26]. The tasks using MapReduce are processed with the help
of following steps:

1. Mapper: It generates map task by providing input in the
form of key-value pairs. These key-value pairs are prepared
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by input reader. The inputs can be taken from the database
or flat files with many supported file format. The data are
collected in the form of blocks which is by default 128MB in
Hadoop-2.x.x and can be configurable. The input reader read
each block and prepare the splits. Mapper generates map task
based upon the split and outputs the result in a key-value pair.
This is stored in the main memory buffer and then spills into
the secondary storage.

2. Combiner: It usually play the role of local reducer and
comes into action after the mapper. It is prepared with help
of UDFs or same reducer may be used as the combiner and is
optional to have a combiner. It is used in specific cases where
each map task have repetition in intermediate keys. It collect
all values of the key locally and sum them up and produce
output to the reducer.

3. Shuffle and Sort: The mapper output is shuffled, sorted
and grouped by keys in each slave machine. This step prepares
a list by collecting values of similar keys so that each value
of the key can be iterated and processed easily. It is used to
shuffle and sort the output generated by the combiner.

4. Partitioner: A Partitioner is called before writing the
final result by the reducer. A hash function is implemented to
partition the intermediate key-value output from the map tasks
to reduce tasks. The number of reducer task depends upon the
number of partitioners. It is generally used to increase the
efficiency in result analysis.

5. Reducer: The Reducer is used to produce the final output
in HDFS which is in the form of key-value pair. Reducer
generates reduce function and is invoked once for each distinct
key and process their values presented in form of a list.

In general, the processing operation of MapReduce is per-
formed through two functions known as mapper and reducer.
The input and output are in the form of key-value pairs. Each
mapper usually works on a single partition or more specifically
file splits in parallel. The number of mappers for a particular
task depends on number possible split in the dataset. The
mappers tokenize each input split into a sequence of a key-
value pair in parallel and produce the intermediate result in
key-value pairs. The reducer receives output from each mapper
as input, process it and produce the final result. The complete
flow of job execution is given in Figure 1.

Fig. 1. YARN Job Execution work flow

There is no MapReduce based association rule mining tech-
nique available for synthesizing high frequent rules for the big
database in a parallel and distributed environment. Our goal
is to collect all the transactional data from multiple database
sites into multi-partitioned HDFS storage. We will prepare
a MapReduce based algorithm to select and synthesize high
frequent association rules. The major challenges of mining
hidden knowledge from this kind of environment are:
1. Collecting all the transactions from different databases to a
multi-partitioned centralized storage system where processing
can be done in a parallel and distributed fashion.
2. Finding all the high frequent association rules from the
different partition.
3. Generate global high frequent rules from a large number
of frequent itemset.
4. Synthesize the high frequent rules for a better DSS.

Based upon all above studies the problem statement is
formulated by considering multiple large-scale databases dis-
tributed geographically over different locations, we have pro-
posed (i) a model to collect and store data from multi-
ple databases into multi-partitioned HDFS using Sqoop. (ii)
MapReduce method for high-frequent rule selection based
upon the transaction population (iii) Synthesizing these rules
based on synthesized support and confidence using MapRe-
duce. The experiments have been conducted for collecting data
in multiple partitions of HDFS and executing the algorithms
using MapReduce programming paradigm on top of Hadoop
and YARN.

III. METHODOLOGY

Synthesizing high-frequency rule is mainly concern with
large-scale multiple databases of a company. During this
process, the rules are synthesized with the help of associated
site weights. Many approaches have proposed to determine
the weight of association rule that are associated with the
individual sites of multiple databases. According to Wu and
Zhang, a rule is said to be high frequency if it is rated or
voted by multiple databases of an organization. Participation
of each database site in DSS is determined with respect to
the site weight. Our proposed technique for synthesis high
frequent rule is suitable for multiple large-scale databases of
an organization. In this paper a weighted multi-partitioned
parallel and distributed model have been proposed for rule
synthesis. The specified problem is considered to be a big
data challenge because its capability to handle large multiple
database sites. In order to make the process cost-effective and
efficient, the rule selection and synthesis are carried out by
using HDFS, MapReduce programming model and YARN of
Hadoop with the help of a cluster of commodity computing
system. The general steps are given as follows:
1. Collecting and storing huge amount of data from multiple
databases to a multi-partitioned distributed data warehouse
based upon HDFS.
2. Finding the high frequent k-itemset and association rules
using MapReduce processing.
3. Select the association rules based on the synthesized rule
weight and synthesize the global high frequent association rule
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by ranking them based on their global minimum support and
confidence using MapReduce programming paradigm.

A. Collecting Data into HDFS

It has been shown that many organization faces diffi-
culty while collecting data from the geographically different
database to a central site and analyze them for a better
organizational DSS. In order to avoid this kind of problems,
we propose HDFS based storage framework for a large-scale
database in multiple partitions. We have used SQOOP to
collect data from multiple databases into HDFS using the
partition mechanism. Appropriate compression codecs can be
used for increasing storage efficiency. This proposed model
is very much cost effective because the large-scale data can
be stored in a cluster of commodity machines. The proposed
model for data collection is given in Figure 2.

Fig. 2. Data Collection Model using SQOOP

B. MapReduce Based Rule Selection and Synthesis

Synthesizing high frequency association rule using MapRe-
duce programming paradigm on top of Hadoop in a parallel
and distributed environment is carried out with following steps.
Step-1 : Compute partition weight W

a

Pj
by using transaction

population.
Step-2 : Generate all the local frequent k-itemset for each
partition using MapReduce based Apriori algorithm.
Step-3 : Find X.Supp

G
for all the frequent k-itemset by using

X.Supp
G
=

n∑
j=1

X.Supp(Pj)×W
a

Pj
in each partition Pj .

Step-4 : Generate the association rules in each partition based
upon the X.Supp

G
.

Step-5 : Apply RuleSelectionMR for selecting high-frequent
association rules based upon the synthesized rule and partition
weights.
Step-6 : Apply RuleSynthesizerMR for synthesizing high-
frequent association rules based upon their global rule support
and confidence.

The following notations are used in the rule selection and
synthesis process.

– n : Number of rules
– m : Number of partitions
– t : Number of transactions
– W

a

Ri
: Actual weight of rule Ri

– W
t

R : Total rule weight
– W

s

Ri
: Synthesized weight of rule Ri

– W
a

Pj
: Actual weight of the partition Pj

– W
t

P : Total partition weight
– W

s

Pj
: Synthesized weight of partition Pj

– minSynWt: minimum rule synthesis weight.
– Ri.SuppS

: Synthesized support of Ri.
– Ri.Conf

S
: Synthesized confidence of Ri.

– δ1: minimum synthesized support
– δ2: minimum synthesized confidence

The Association Rule selection and synthesis methods are
having the following computations.

Synthesized Partition Weight: It is the ratio of partition
weight to the sum of weights of all partitions. It can be

computed as W
s

Pj
=

W
a

Pj
m∑

j=1

W
a

Pj

Rule Weights: Rule weight W
a

Ri
is sum of weights of

partitions containing the rule Ri which can be expressed as

W
a

Ri
= {

m∑
j=1

W
a

Pj
|Ri ∈ Pj}

Total Rule Weights: It is the total weights of all the rules Ri

in all the partition which can be computed as W
t

R =
n∑

i=1

W
a

Ri

Synthesized Rule Weights: The synthesized rule weight is the
ratio of actual rule weight to the total rule weight. It is given

as W
s

Ri
=

W
a

Ri

W
t

R

Assumption: From this point we assume that the actual
partition weight and the association rule in each individual
partition has been computed.

Example 1: Let us consider any 4 partition and correspond-
ing weights, 5 selected rules are distributed in each partition
along with their support and confidence. These values are
tabulated in Table I.

TABLE I
DATA FOR EXAMPLE-1

Pi Rules(Ri) Ri.Supp Ri.Conf W
a

Pi

P1

R1 : I1 → I5 0.2 0.5
0.8R2 : I1I2 → I6 0.3 0.5

R4 : I1I3 → I4 0.3 0.6

P2

R1 : I1 → I5 0.3 0.5
0.7R2 : I1I2 → I6 0.2 0.7

R3 : I3 → I7 0.2 0.4

P3

R1 : I1 → I5 0.3 0.5
0.5R4 : I1I3 → I4 0.2 0.6

R5 : I3I5 → I6 0.1 0.4

P4

R1 : I1 → I5 0.2 0.5
0.5R5 : I3I5 → I6 0.3 0.5
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Our proposed MapReduce based high-frequent rule selection
and synthesis method are described in following steps.
Step-1: Rule weight count: The actual weight of the rules are
calculated by considering the partition weights in which the
rule has a participation. This is given as follows:
W

a

R1
= 0.8 + 0.7 + 0.5 + 0.5 = 2.5

W
a

R2
= 0.8 + 0.7 = 1.5

W
a

R3
= 0.7

W
a

R4
= 0.8 + 0.5 = 1.3

W
a

R5
= 0.5 + 0.5 = 1.0

The total rule weights is computed as
W

t

R = 2.5 + 1.5 + 0.7 + 1.3 + 1.0 = 7.0

Step-2: Rule Selection: The rules are selected based upon
their synthesized weight which is calculated as follows:
W

s

R1
= 1.5

7.0 = 0.3571 W
s

R2
= 2.5

7.0 = 0.2142

W
s

R3
= 0.7

7.0 = 0.1000 W
s

R4
= 1.3

7.0 = 0.1857

W
s

R5
= 1.0

7.0 = 0.1428

Let us consider the minimum synthesis rule
weight(minSynthWt) a user-specified value for rule selection.
If minSynthWt > 0.15 then the rules R1, R2, R4 are
selected and written into HDFS.

Step-3: Synthesizing rules: All the selected rules are
now synthesized based upon their synthesized support and
confidence. In order to compute these two value first, we
have to calculate synthesized partition weights.
Total weight of all the partition is:
WP

t

= 0.8 + 0.7 + 0.5 + 0.5 = 2.5
Synthesized weight of each partition are:

W
s

P1
= 0.8

2.5 = 0.32 W
s

P2
= 0.7

2.5 = 0.28

W
s

P3
= 0.5

2.5 = 0.20 W
s

P4
= 0.5

2.5 = 0.20

The synthesized support and confidence value of the selected
rules R1, R2, R4 are computed as follows:
R1 : I1 → I5
R1.SuppS

=(0.32 ∗ 0.2) + (0.28 ∗ 0.3) + (0.2 ∗ 0.3) + (0.2 ∗ 0.2)
=0.248
R1.Conf

S

=(0.32 ∗ 0.5) + (0.28 ∗ 0.5) + (0.2 ∗ 0.5) + (0.2 ∗ 0.5) =0.5
R2 : I1I2 → I6
R2.SuppS

= (0.32 ∗ 0.3) + (0.28 ∗ 0.2) = 0.152
R2.Conf

S
= (0.32 ∗ 0.5) + (0.28 ∗ 0.7) = 0.356

R4 : I1I3 → I4
R4.SuppS

= (0.32 ∗ 0.3) + (0.2 ∗ 0.2) = 0.136
R4.Conf

S
= (0.32 ∗ 0.6) + (0.2 ∗ 0.6) = 0.312

Now let us assume δ1 = 0.13 and δ2 = 0.3, with this con-
straints the rules R1, R2, R4 are synthesized for organizational
DSS.

C. Design of Algorithm

In this section, we have proposed two parallel and dis-
tribute algorithms known as RuleSelectionMR and RuleSyn-
thesizeMR on Hadoop framework by using MapReduce for
processing and HDFS for storage. All the frequent k-itemset
and Association Rules are generated by using MapReduce
based Apriori algorithm on YARN framework.

1) MapReduce Based Rule Selection: In this process,
rules will be selected parallelly from different partitions us-
ing MapReduce programming approach. It uses mapper and
reducer for selecting rules parallelly in all partition. Before
synthesizing the rules it has to select association rule from
different partition based on the rule strength. In order to
determine the rule strength, we have to find synthesized
weight W

s

Ri
of the rule Ri and effective rules are selected for

synthesis process. The task of rule selection will be carried
out with the help of two MapReduce jobs to perform the task
parallelly in all partitions. The main purpose of both tasks are:

• Calculate W
a

Ri
and W

t

R.
• Calculate W

s

Ri
and select rule based on minSynWt.

These two tasks will be carried out by using two proposed
MapReduce algorithm:

• Algorithm 1: RuleWeightCountMR.
• Algorithm 2: RuleSelectionMR.
• Algorithm 3: RuleSynthesizeMR

a) RuleWeightCountMR: This MapReduce based algo-
rithm is used to find actual weight W

a

Ri
of the rule Ri

in each partition and the total weight of all the rules W
t

R.
This algorithm has been initiated by supplying partition-wise
association rules generated by the MapReduce based Apriori
algorithm from HDFS along with W

a

Pj
as an input argument.

The MapReduce based pseudo code for mapper and reducer
is given in Algorithm 1.

Mapper: The Mapper of Algorithm 1 tokenize each rule Ri

in all partition Pj and produce the rule Ri and actual partition
weight W

a

Pj
, in the form of < Ri,W

a

Pj
> as a < K,V > pair.

Reducer: The Reducer of Algorithm 1 will receive input
from the Mapper which is in the form of {Ri, List < W

a

Pj
>}

as < K,V > pair and compute the sum of all the W
a

Pj
in the

List. It is the actual weight W
a

Ri
of the rule Ri. This reducer

is also used to calculate the total weight of all the rules by
adding W

a

Ri
. The reducer pairs < W

a

Ri
,W

t

R > and emit output
in the form of < Ri, [W

a

Ri
,W

t

R] > as < K,V > pair.

b) RuleSelectionMR: This algorithm is used to calculate
the synthesized weight of the rules W

s

Ri
in each partition

by using W
a

Ri
and W

t

R. After computing W
s

Ri
the rules are

selected based upon the minSynWt. This algorithm read output
written by the reducer of RuleWeightCountMR algorithm.
The pseudo code for this MapReduce approach is written in
Algorithm 2.

Mapper: The mapper of Algorithm 2 read lines from HDFS
which are in the form of < Ri, pair[W

a

Ri
,W

t

R] >, and split
each line into tokens such that the rule Ri and pair[W

a

Ri
,W

t

R]
are separated as < K,V > pairs and supplied to the reducer.

Reducer: The Mapper write the output in a temp partition
in the main memory. The reducer of Algorithm 2 receives
input from mapper in the form of < Ri, pair[W

a

Ri
,W

t

R] >

as < K,V > pairs, separate W
a

Ri
and W

t

R from value part.
Finally compute the synthesized rule weight W

s

Ri
and write

the rules which satisfies minSynWt.
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Algorithm 1 RuleWeightCountMR
Require: Partition wise all rules from HDFS.
Ensure: Rule Ri, W

a

Ri
and W

t

R

1: class RuleWeightCountMapper {
2: Initialize W

a

Pj
= Weight of Pj

3: Initialize total rule weighy W
t

R = 0
4: procedure MAPPER(PartitionId pid, Rules R)
5: for each partition Pj ∈ HDFS do
6: for each Rule Ri ∈ Pj do
7: Tokenize each Rule Ri

8: Emit(Ri, W
a

Pj
)

9: end for
10: end for
11: end procedure
12: }
13: class RuleWeightCountReducer {
14: procedure REDUCER(Rule Ri, List< W

a

Pj
>)

15: for each W
a

Pj
∈ List< W

a

Pj
> do

16: W
a

Ri
+ = W

a

Pj

17: W
t

R+ = W
a

Ri

18: end for
19: Emit(Ri, pair[W

a

Ri
, W

t

R])
20: end procedure
21: }

Algorithm 2 RuleSelectionMR
Require: Rules produced by Algorithm-1, and minSynWt
Ensure: Selected set of Rules Ri

1: class RuleSelectionMapper {
2: Initialize synthesized rule weight W

s

Ri
= 0

3: procedure MAPPER(RuleId id, Rules R)
4: for each Rule Rj do
5: Separate Ri and < W

a

Ri
,W

t

R >

6: Emit(Ri, pair[W
a

Ri
, W

t

R])
7: end for
8: end procedure
9: }

10: class RuleSelectionReducer {
11: procedure REDUCER(Ri, List< [W

a

Ri
,W

t

R] >)
12: for each W

a

Pj
∈ List< W

a

Pj
> do

13: Extract W
a

Ri
and W

t

R

14: W
s

Ri
=

W
a

Ri

W
t

R

15: if W
s

Ri
> minSynWt then

16: Emit(Ri, W
s

Ri
)

17: end if
18: end for
19: end procedure
20: }

2) MapeRduce Based Rule Synthesis : In the MapReduce
based rule selection method, association rules are selected
by taking the synthesized rule weight into account from all
partitions in a parallel and distributed environment. Now each
partition should contain only the association rule selected by
the RuleSelectionMR algorithm. These selected rules from

each partition are synthesized with the help of local support
and confidence value. Finally, the synthesized support and
confidence are used to determine high-frequent rules. The
pseudo-code is given in Algorithm 3.

Algorithm 3 RuleSynthesizeMR

Require: Selected rules from each partition, W
s

Pj
, δ1: min-

imum synthesized support and δ2: minimum synthesized
confidence

Ensure: Synthesized high-frequent Rules Ri with Ri.SuppS

and Ri.Conf
S

1: class RuleSynthesizeMapper {
2: Ri.SuppS

= 0 ▷ Synthesized support Ri

3: Ri.Conf
S
= 0 ▷ Synthesized confidence Ri

4: procedure MAPPER(PartitionId pid, Rules R)
5: for each Partition Pj do
6: for each Rule Ri ∈ Pj do
7: Split Ri

8: get Ri.Supp ▷ Local supp. of Ri

9: get Ri.Conf ▷ Local conf. of Ri

10: supp = W
s

Pj
×Ri.Supp

11: conf = W
s

Pj
×Ri.Conf

12: Emit(Ri, [supp, conf ])
13: end for
14: end for
15: end procedure
16: }
17: procedure REDUCER(Ri, List < [supp, conf ] >)
18: for each [s, c] ∈ List < [supp, conf ] > do
19: split Ri

20: Ri.SuppS
+ = s

21: Ri.Conf
S
+ = c

22: if Ri.SuppS
> δ1andRi.Conf

S
> δ2 then

23: Emit(Ri, [Ri.SuppS
, Ri.Conf

S
])

24: end if
25: end for
26: end procedure
27: }

Mapper: This is the first phase of rule synthesis process.
Mapper of Algorithm 3 read each line of the partition contain-
ing only selected rules. The rules in each partition are asso-
ciated with local support Ri.Supp and confidence Ri.Conf
value respectively. Each line of rule from the partition is
tokenized by separating rule Ri, Ri.Supp and Ri.Conf . The
synthesized weight of each partition W

s

Pj
is multiplied with

Ri.Supp and Ri.Conf separately. These two values are paired
and finally supplied to the reducer along with Ri in form of
< Ri, [supp, conf ] > as < K,V > pairs where supp and conf
are the temporary value given by the mapper.

Reducer: This reducer of Algorithm 3 take list of support
and confidence value List < [supp, conf ] > along with rule
Ri as < K,V > pair as input. It computes the synthesized
support Ri.SuppS

and confidence Ri.Conf
S

values. Finally
synthesized high-frequent rules are produced.
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TABLE II
SYSTEM CONFIGURATION

Hardware and Software platform used
Hardware Specification

Processor Intel i5 2.5Ghz
Memory 4GB DDR3
HDD 500GB

Software Specification
O. S CentOS-7
Hadoop 2.6.0-cdh-5.5.1
Sqoop 1.4.6-cdh-5.5.1
Hive 1.1.0-cdh-5.5.1

IV. RESULT ANALYSIS

Performance of the proposed algorithm is evaluated by
considering different parameter like the number of partitions,
varying synthesized support and rule synthesizing time. The
experimental setup is made with the help of a Hadoop cluster
with 10 computing nodes. The configuration of our parallel
and distributed computing cluster is given in Out of the 10
computing node in the Hadoop cluster, one is used as the
master node with 16GB of primary memory. The YARN
framework of Hadoop is chosen because of its scheduling and
load balancing capability.

A. Data Collection and Preprocessing

A large amount of data has been collected from 4 different
retail sources to perform the analysis. The sources are having
multiple branches and each site maintains their own data in
HP VERTICA and ORACLE database. All the data have
been collected to the 10 node Hadoop cluster with the help
of Sqoop.// The data from a particular site is collected to
a partition in HDFS and then the replication factor of the
partition has been set to 3.

TABLE III
CHARACTERISTICS OF 1ST DATASET

PNO NT NI k-FI ALT NAR

P1 500K 2235 18 16 30271
P2 726K 5892 17 14 51737
P3 643K 4732 15 10 43859
P4 600K 5031 15 9 32539
P5 700K 8326 17 12 38700
P6 500K 3183 15 12 27043
P7 650K 5320 14 10 21800
P8 680K 6263 12 12 22742
P9 720K 6527 15 10 28320

P10 810K 8425 18 14 47631

The data in each partition contains a significant number
of the nulls and short transaction. All these may impart
an unexpected result during the analysis. So they need to
be preprocessed by eliminating all the anomalies. This data
cleansing operation has been done by MapReduce program.
The association rules from all the partition have also been gen-
erated with the help of MapReduce based Apriori algorithm
which has been implemented using Java. The characteristics

of the collected data from 10 different data site have been
given in the table III. It represents Partition number, Number
of Transaction in each partition(NT). Number of Items(NI),
frequent k-itemset(k-FI), Average Length of the Transaction
(ALT) and Number of Association Rule Generated(NAR).

Apart from the above mentioned dataset we have also
collected three other datasets like Retail from the anonymous
store of Belgian retail supermarket, BMS-Web-View-1 and
BMS-Web-View-2 can be found from KDD CUP 2000. The
characteristics of these datasets are given in the following
tables with their NT, NI, ALT, and AFI.

TABLE IV
CHARACTERISTICS OF 2ND DATASET

Dataset NT NI ALT AFI
Retail 88,162 10,000 11.31 99.67
BMS-Web-Wiew-1 1,49,639 1922 2.00 155.71
BMS-Web-Wiew-2 3,58,278 100 2.00 7165.56

For these datasets, 10 partitions are prepared by considering
n-lines or n-Transactions per partition. Partitions are prepared
with the help of split for the collected datasets of the table: IV.
For preparing the split we have overridden the NLineInputFor-
mat class by our own NLineRecordReader instead of default
LineReader which is by default having 1 line per mapper.
Thus we prepare our own split by assigning a fixed amount
of transaction per split by using the setNumLinesPerSplit()
method of NLineInputFormat class as follows.

NLINESTOPROCESS = getNumLinesPerSplit(context)

B. Job Execution Work-Flow

A comparative study between our proposed RuleSynthe-
sisMR and RuleSynthesis algorithm in [18] has been done.
Our total task is carried out with the help of three algo-
rithms known as RuleWeightCountMR, RuleSelectionMR and
RuleSynthesisMR which are completely written in Java-based
MapReduce program. The job workflow is designed using
OOZIE scheduler to carry out the task execution in Hadoop
which is given in Figure 3.

Fig. 3. Job Execution Workflow

C. Effect of Number of Partition in Performance

Figure 4 describes the performance of RuleSynthesisMR
and RuleSynthesis by considering number of partition and
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execution time in seconds. The execution time has been
determined by dumping all 5GB of transactional data into
HDFS after preprocessing. All these data are collected from
10 different database site of a retail company into HDFS.
The block size is configured to 128MB and approximately
we have around 42 blocks in HDFS and the replication factor
is set to 3. The split size is also configured to the max(block
size) i.e 128MB. The RuleSynthesisMR algorithm is executed
in a distributed Hadoop cluster with 10 data node. But the
RuleSynthesis algorithm is executed in a single database server.
It has been shown that our algorithm outperforms by increas-
ing the partition number because of the distributed computing
environment of Hadoop with YARN.

Fig. 4. Execution Time(sec)vs No. of Partition

D. Effect of Synthesis Rule Support
In the rule synthesis process the minimum synthesis rule

support has been considered as an important parameter for the
performance evaluation. Figure 5 shows the performance based
upon the synthesis rule support and execution time between
two algorithms. It has been shown that with an increase in
synthesis rule support our proposed RuleSynthesisMR algo-
rithm takes less time as compared to RuleSynthesis algorithm.
Our proposed algorithm has shown better performance with
varying synthesized rule support. Because of the parallel
execution environment, multiple map tasks were distributed
among different datanodes where rules have been generated
and pruned independently. The high-frequency rules have been
aggrigated and synthesized based upon the synthesized rule
support.

E. Effect of Number of Computing Nodes
Figure 6 shows the performance of RuleSynthesisMR al-

gorithm with 10 data nodes. It is clear that by increasing the
number of data node execution time decreases. This is because
of the parallel processing of the mapper and reducer.

It has been shown that by applying the RuleSynthesizeMR
algorithm with the 2nd collection of the dataset as given
in Table IV the performance has been degraded a lot as
compared to RuleSynthesizing algorithm. This is because of
many small splits prepared for analysis in HDFS. It has been

shown that with larger dataset split our proposed algorithm
performs better than the existing high-frequency rule synthesis
algorithm.

Fig. 5. Execution Time(sec) vsSynthesized Rule Support

Fig. 6. Exec. Time(sec) vs No. of DataNode

F. Effect of Transaction length
The impact of transaction lenth measures the performance of

RuleSynthesis and RuleSynthesisMR algorithm. The synthetic
dataset T90-P5-I100k-C0.25-D10M having 18014 number of
items with varying transaction length is used for the exper-
imental analysis. It has been shown that longer transaction
generates large number of long frequent patterns. Because
of the parallel execution RuleSynthesisMR takes less time as
compared to the RuleSynthesis algorithm as show in Figure 7.
It has been observed that sometime the long transactions lead
to memory inefficiency problem and it has been considered
very carefully. For longer transaction the minimum support
value has been adjusted and the split size has been controlled
in the Mapper class for increasing the efficiency of the
proposed approach. By considering these two-synthetic large
datasets the length of transaction w.r.t execution time has
been recorded. It has also been found that without transaction
pruning the proposed RuleSynthesisMR algorithm takes very
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long time and leads to halt the total Hadoop cluster. The
possible performance bottleneck of RuleSynthesisMR algo-
rithm basically depends on the generation of high-frequent
association rules from different sites and assignment of the
rule weight. If the high-frequent rules are generated without
any memory constraints and with a balanced parallelism then
further performance can be improved considerably.

Fig. 7. Execution Time vs Transaction Length

G. Accuracy

The accuracy of our proposed rule synthesis algorithm
is determined by considering different minimum synthesis
rule support value for synthesizing high-frequent rules. It has
been shown in Figure 8 that our proposed algorithms achieve
the accuracy as compared to the Rule Synthesis algorithm
proposed in [18] where collection of weighted high-frequent
rules from different data sources was considered. With the
varying rule synthesis support from 0.01 to 0.14 our proposed
algorithm achieves better accuracy.

Fig. 8. Accuracy vs Synthesized Rule Support

Fig. 9. Execution Time(sec) vs Synthesized Rule Support

H. Scalability

Scalability is used to determine the adaptability of our
proposed method for high-frequent rule synthesis in different
dataset with varying dataset size, synthesis rule support and
with fixed average transaction length. The study of scalability
has been performed on execution time by varying the dataset
size in GiB by considering the dataset given in Table V.
Figure 9 shows the execution time by varying the size of
dataset from 1GB to 5GB and synthesis rule support with
value 0.05, 0.1, 0.15 and 0.2. It has been shown that the
proposed method maintain scalability when applied on the
10 node Hadoop cluster having 3 different datasets i.e. the
execution time remains almost same for all the three-synthetic
dataset generated by IBM Synthetic data generator.

TABLE V
SYNTHETIC DATASET FOR TESTING EFFICIENCY

ID Dataset Name NI ANI/T Size(GiB)
D1 T80-P5-I100k-C0.25-D10M 18012 79.9 4.7
D2 T90-P5-I100k-C0.25-D10M 18014 89.9 5.3
D3 T100-P5-I100k-C0.25-D10M 18015 99.9 5.9

V. CONCLUSION

Many organizations have multiple sites and each site should
have a certain important contribution to organizational DSS.
The participation of each site in the DSS is decided through
transaction population so as the site weight. Our proposed
model is very much efficient in collecting and storing many
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frequent rules from multiple database sites into a big data
warehouse. To synthesize high-frequency rules in a more
efficient, accurate and cost-effective manner a weighted multi-
partitioned model has been proposed by using a cluster of
commodity hardware. In this paper, we have successfully
collected all the data from multiple databases into multi-
partitioned warehouse based on HDFS. The data collection
is carried out using Sqoop without loss of granularity. Sqoop
pulls the data from multiple databases parallelly by using
MapReduce approach. We have implemented the MapReduce
base rule selection and synthesize algorithm in the parallel
and distributed environment using Hadoop with YARN. All
the high-frequency rules are selected based on the transac-
tion population and partition weight. Two algorithms namely
RuleWeightCountMR and RuleSelectionMR have been pro-
posed for this purpose. These selected high-frequency rules
are synthesized based on the minimum synthesized support
and confidence threshold respectively. This is carried out
through RuleSynthesizeMR. The Performance scales linearly
with increase in the computing node. Multiple replications
of each partition in the data node achieve high availability
for the processing environment. It has been ensured that the
proposed distributed storage and parallel processing model is
much more efficient and most importantly cost effective with
commodity hardware. So, our MapReduce based approach
provides an effective solution for global organizational DSS
for the companies having geographically multiple distributed
database sites.
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