Analysis of a Compact 4-shaped Annular Ring Ultra Wideband Monopole Antenna Using Characteristic Modes

Authors

  • Bhaskara Rao Perli Research Scholar, ECE Department, Jawaharlal Nehru Technological University Anantapur (JNTUA), Anantapur
  • Maheswara Rao Avula Associate Professor, ECE Department, PBR Visvodaya Institute of Technology and Science (PBRVITS), Kavali

Abstract

This communication proposes a compact 4-shaped monopole annular ring UWB antenna design. The proposed structure contains multiple radiating strips inside the annular ring, in the form of a 4-shaped and a 50Ω microstrip feed line. A tapered structure with a feed point is chosen to achieve wideband characteristics. The proposed model is printed on a low-priced FR4 substrate with a size of 0.180 0.225 (20 25mm2). The proposed model achieves a fractional bandwidth of 133.74% in the 2.7 to 13.6 GHz range with S11<-10dB and covers the 3.1-10.6 GHz unlicensed band approved by FCC in 2002 and X-band applications. The antenna exhibits stable and Omni-directional radiation patterns in the operating frequency range. The analysis of the proposed monopole antenna using characteristic modes is performed to obtain a physical understanding of the radiation process occurring on the radiating antenna. The modal significance curves and the modal current distributions are used to analyze the radiating antenna using the first six characteristic modes. The measurement and simulation results show a good agreement.

References

KL. WONG, Compact and broadband microstrip antennas, 1st edition, 2002, Wiley, New York.

G. KUMAR, and K. P. RAY, Broadband microstrip antennas, 1st edition, 2003, Artech House, USA

FCC Report and Order for Part 15 Acceptance of Ultra Wideband (UWB) Systems from 3.1 –10.6 GHz, FCC, Washington, DC, 2002.

R. Cicchetti, E. amiozzi, and O. Testa, “Wideband and UWB antennas for wireless applications: a comprehensive review,” Int. J. Antennas Propag., Vol. 2017, pp. 1-45, 2017.

N. Prombutr, P. Kirawanich, and P. Akkaraekthalin, “A bandwidth enhancement of UWB microstrip antenna with a modified ground plane,” Int. J. Microw. Sci.Technol., Vol. 2009, pp. 1-7, 2009.

T. Ali, B. K. Subhash, S. Pathan, and C. B. Rajashekhar, “A compact decagonal-shaped UWB monopole planar antenna with truncated ground plane,” Microw. Opt. Technol. Lett., Vol. 60, no. 12, pp. 2937–2944, 2018.

M.A. Matin, “A new design and analysis of microstrip-fed ultra-wideband printed monopole antenna,” Int. J. Commun., Vol. 9, pp. 15–18, 2015.

K. P. Ray, and S. S. Thakur, ”Modified trident UWB printed monopole antenna”, Wirel. Person. Commun., Vol. 109, pp.1689–1697, 2019.

A. A. Omar, O. A. Safia, and M. Nedil, “UWB coplanar waveguide-fed coplanar strips rectangular spiral antenna,” Int. J. RFMicrow. Comput. Aided Eng., Vol. 27, no. 7, e21115, 2017.

Y-J Ren, and K. Chang, “An annual ring antenna for UWB communications,” IEEE Antennas Wirel. Propag. Lett., Vol. 5, pp. 274–276, 2006.

S. Ayman, Al-zayed and V. A. Shameena, “A novel FGCPW-fed flag-shaped UWB monopole antenna,” Int. J. Microw. Wirel. Technol., Vol. 8, no. 2, pp. 319–326, 2016.

M. J. Hossain, M. R. I. Faruque, and M. T. Islam,” Design of a patch antenna for ultra wide band applications,” Microw. Opt. Technol. Lett., Vol. 58, no. 9, pp. 2152–2156, 2016.

A. Joshi, and R. Singhal, “Probe‑fed hexagonal ultra wideband antenna using flangeless SMA connector,” Wirel. Personal Commun., Vol. 110, pp. 973–982, 2020.

S. R. Patre, and S. P. Singh, ‘’ CPW-fed flower-shaped patch antenna for broadband applications,” Microw. Opt. Technol. Lett., Vol. 57, no. 12, pp. 2908–2913, 2015.

K. A. Obeidat, B. D. Raines, and R. G. Rojas, “Antenna design and analysis using characteristic modes,” in Proc. IEEE Antennas Propag. Society Int. Symp., 2007, pp. 5993-5996.

Z. Miers, H. Li, and B. K. Lau, “Design of bandwidth-enhanced and multiband MIMO antennas using characteristic modes,” IEEE Antennas Wirel. Propag. Lett., 2013, Vol. 12, pp. 1696-1699.

D. Wen, Y. Hao, H. Wang, and H. Zhou, “Design of a wideband antenna with stable omnidirectional radiation pattern using the theory of characteristic modes,” IEEE Trans. Antennas Propag., Vol. 65, no. 5, pp.2671-2676, 2017.

A. Kumar, J. K. Deegwal, and M. M. Sharma, “Miniaturized multi-stubs loaded rectangular monopole antenna for multiband applications based on theory of characteristics modes,” Prog. Electromagnet. Res. C, Vol. 92, pp. 177–189, 2019.

G. Farhad, P. Kevin, and A. S. Mohan, “Design of a UWB printed g-shaped monopole antenna using characteristic modes,” in Proc. 2014 Int. Wor. Antenna Technol., 2014, pp. 332-335.

H. J. Adamu, A. Anas, S. Salisu, S. Sani, T. U. Aliyu, and O. O, Mohammed, “Modal analysis of a circular slot monopole antenna for UWB application,” ELEKTRIKA- J. Electrical Eng. , Vol. 18, no. 3, pp.34-43, 2019.

W. Wu, and Y. P. Zhang, “Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes,” IEEE Antennas Propag. Mag.,, Vol. 52, no. 6, pp. 67-77, 2010.

Y. K. Chen, and C. F. Wang, Characteristic modes: theory and applications in antenna engineering, 2015, Hoboken, NJ, USA: Wiley Publishing.

Downloads

Published

2024-04-19

Issue

Section

Antennas, Radars and Radiowave Propagation