Millimeter-Wave Transmitter with LTCC Antenna and Silicon Lens
Abstract
Millimeter-wave (mm-wave) transmitters are often fabricated using advanced technology and require a sophisticated manufacturing facility. Access to such technologies is often very limited and difficult to gain particularly at the initial stage of research. Therefore, to increase the accessibility of mm-wave transmitters, this study proposes a design that can be assembled in a standard microwave laboratory from commercially available or externally ordered components. The transmitter demonstrated in this paper operates above 100 GHz and is based on a low-temperature co-fired ceramic board in which the antenna array, microstrip lines, and power-supply lines are fabricated in a single process. Different technologies are used to assemble the module, e.g., wire-bonding, soldering, and wax adhesion. Advantages and disadvantages of the proposed design are given based on experimental evaluation of the prototype. Although the performance of the developed transmitter is not as good as that of the similar modules available in the recent literature, the results confirm the feasibility of a mm-wave transmitter that is assembled without employing advanced technologies and superior machinery.References
Y. P. Zhang and D. Liu, “Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications,” in IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2830–2841, Oct. 2009. DOI: 10.1109/TAP.2009.2029295.
D. Liu and Y. P. Zhang, “Integration of Array Antennas in Chip Package for 60-GHz Radios,” Proc. IEEE, vol. 100, no. 7, pp. 2364–2371, Jul. 2012. DOI: 10.1109/JPROC.2012.2186101.
T. Zwick, F. Boes, B. Göttel, A. Bhutani and M. Pauli, “Pea-Sized mmW Transceivers: QFN-Based Packaging Concepts for Millimeter-Wave Transceivers,” in IEEE Microw. Mag., vol. 18, no. 6, pp. 79–89, Sept.-Oct. 2017. DOI: 10.1109/MMM.2017.2712020.
D. Dancila et al., “Differential microstrip patch antenna as feeder of a hyper-hemispherical lens for F-band MIMO radars,” Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, Finland, 2016, pp. 1–4. DOI: 10.1109/GSMM.2016.7500312.
A. Bisognin et al., “Ball Grid Array Module With Integrated Shaped Lens for 5G Backhaul/Fronthaul Communications in F-Band,” in IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6380–6394, Dec. 2017. DOI: 10.1109/TAP.2017.2755439.
B. Goettel, W. Winkler, A. Bhutani, F. Boes, M. Pauli and T. Zwick, “Packaging Solution for a Millimeter-Wave System-on-Chip Radar,” in IEEE Trans. Compon. Packag. Manuf. Technol., vol. 8, no. 1, pp. 73–81, Jan. 2018. DOI: 10.1109/TCPMT.2017.2758725.
M. Neshat, D. M. Hailu, M. Nezhad-Ahmadi, G. Z. Rafi and S. Safavi-Naeini, “Gain Measurement of Embedded On-Chip Antennas in mmW/THz Range,” in IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2544–2549, May 2012. DOI: 10.1109/TAP.2012.2189772.
R. Jain et al., “A 64-Pixel 0.42-THz Source SoC With Spatial Modulation Diversity for Computational Imaging,” in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3281–3293, Dec. 2020. DOI: 10.1109/JSSC.2020.3018819.
Y. Zhang and J. Mao, “An Overview of the Development of Antenna-in-Package Technology for Highly Integrated Wireless Devices,” in Proceedings of the IEEE, vol. 107, no. 11, pp. 2265–2280, Nov. 2019. DOI: 10.1109/JPROC.2019.2933267.
P. Hallbjorner, Z. He, S. Bruce and S. Cheng, “Low-Profile 77-GHz Lens Antenna With Array Feeder,” in IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 205–207, 2012. DOI: 10.1109/LAWP.2012.2188265.
S. Raman, N. S. Barker and G. M. Rebeiz, “A W-band dielectric-lens-based integrated monopulse radar receiver,” in IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2308–2316, Dec. 1998. DOI: 10.1109/22.739216.
A. Dyck et al., "A Transmitter System-in-Package at 300 GHz With an Off-Chip Antenna and GaAs-Based MMICs," in IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 3, pp. 335–344, May 2019. DOI: 10.1109/TTHZ.2019.2910511.
Y. P. Zhang, M. Sun, and W. Lin, “Novel Antenna-in-Package Design in LTCC for Single-Chip RF Transceivers,” IEEE Trans. Antennas Propag., vol. 56, no. 7, pp. 2079–2088, Jul. 2008. DOI: 10.1109/TAP.2008.924706.
T. Klein, M. Faassen, R. Kulke and C. Rusch, “A 77 GHz radar frontend in LTCC for small range, high precision industrial applications,” 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, 2012, pp. 905–908.
F. Bauer, X. Wang, W. Menzel and A. Stelzer, "A 79-GHz Radar Sensor in LTCC Technology Using Grid Array Antennas," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 6, pp. 2514–2521, June 2013. DOI: 10.1109/TMTT.2013.2260766.
F. Sickinger et al., “Automotive Satellite Radar Sensor System based on an LTCC Miniature Frontend,” 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, 2018, pp. 1–4. DOI: 10.1109/ICMIM.2018.8443535.
X. Wang and A. Stelzer, “A 79-GHz LTCC RF-frontend for short-range applications,” 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, 2011, pp. 1–4. DOI: 10.1109/MWSYM.2011.5972679.
X. Wang, C. Yu, D. Qin and W. Lu, “W-Band High-Gain Substrate Integrated Cavity Antenna Array on LTCC,” in IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 6883–6893, Nov. 2019. DOI: 10.1109/TAP.2019.2927896.
S. Beer, L. Pires, C. Rusch, J. Paaso and T. Zwick, “A 122 GHz Microstrip Slot Antenna with via-fence resonator in LTCC technology,” 6th Europ. Conf. Antennas Propag. (EUCAP), Prague, Czech Republic, 2012, pp. 1329–1332. DOI: 10.1109/EuCAP.2012.6205894.
P. Piasecki, Y. Yashchyshyn, “Study of D-band LTCC Leaky Wave Antenna Optimized for Broadside Radiation,” Radioengineering, vol. 27, no. 2, pp. 463-468, June 2018. DOI: 10.13164/re.2018.0463.
J. Xiao, X. Li, Z. Qi and H. Zhu, “140-GHz TE340-Mode Substrate Integrated Cavities-Fed Slot Antenna Array in LTCC,” in IEEE Access, vol. 7, pp. 26307–26313, 2019. DOI: 10.1109/ACCESS.2019.2900989.
M. Henry et al., “Integrated air-filled waveguide antennas in LTCC for G-band operation,” 2008 Asia-Pacific Microwave Conference, Macau, 2008, pp. 1–4. DOI: 10.1109/APMC.2008.4957967.
J. Xu, Z. N. Chen and X. Qing, "270-GHz LTCC-Integrated Strip-Loaded Linearly Polarized Radial Line Slot Array Antenna," in IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1794–1801, April 2013. DOI: 10.1109/TAP.2012.2237007.
T. Tajima, H. Song, K. Ajito, M. Yaita and N. Kukutsu, “300-GHz Step-Profiled Corrugated Horn Antennas Integrated in LTCC,” in IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5437–5444, Nov. 2014. DOI: 10.1109/TAP.2014.2350520.
M. Lahti, K. Kautio, M. Karppinen, K. Keränen, J. Ollila, and P. Karioja, “Review of LTCC Technology for Millimeter Waves and Photonics”, International Journal of Electronics and Telecommunications, 2020, vol. 66 no. 2, pp. 361-367. DOI: 10.24425/ijet.2020.131886.
S. Beer and T. Zwick, “122 GHz antenna-integration in a plastic package based on a flip chip interconnect,” 2011 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies, Sitges, 2011, pp. 37–40. DOI: 10.1109/IMWS3.2011.6061881.
R. Shireen, S. Shi, P. Yao and D. W. Prather, “Multi-Chip Module Packaging For W-Band LiNbO3 Modulator,” in IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp. 145–147, March 2011. DOI: 10.1109/LMWC.2010.2103375.
V. Valenta, T. Spreng, S. Yuan, W. Winkler, V. Ziegler, D. Dancila, A. Rydberg, and H. Schumacher, “Design and experimental evaluation of compensated bondwire interconnects above 100 GHz,” International Journal of Microwave and Wireless Technologies, vol. 7, no. 3-4, pp. 261–270, 2015. DOI: 10.1017/S1759078715000070.
A. Bhutani, B. Göttel, A. Lipp and T. Zwick, “Packaging Solution Based on Low-Temperature Cofired Ceramic Technology for Frequencies Beyond 100 GHz,” in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 5, pp. 945–954, May 2019. DOI: 10.1109/TCPMT.2018.2882062.
L. Wu, S. Liao and Q. Xue, “A 312-GHz CMOS Injection-Locked Radiator With Chip-and-Package Distributed Antenna,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2920–2933, Nov. 2017. DOI: 10.1109/JSSC.2017.2727046.
Z. Tong, A. Fischer, A. Stelzer and L. Maurer, “Radiation Performance Enhancement of E-Band Antenna in Package,” in IEEE Trans. Compon. Packag. Manuf. Technol., vol. 3, no. 11, pp. 1953–1959, Nov. 2013. DOI: 10.1109/TCPMT.2013.2272039.
P. Bajurko et al., “A 110 GHz Hybrid Integrated Transmitter Design,” 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 2020, pp. 367–370. DOI: 10.23919/MIKON48703.2020.9253943.
P. R. Bajurko, "Millimeter wave permittivity and loss tangent measurements of LTCC materials," 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, 2016, pp. 1–4. DOI: 10.1109/MIKON.2016.7492104.
Y. Yashchyshyn et al. , “Experience in developing LTCC technologies for mm-Wave antennas,” 11th Eur. Conf. Antennas Propag. (EUCAP), Paris, France, 2017. DOI: 10.23919/EuCAP.2017.792808.
J. Sobolewski and P. R. Bajurko, “Design of LTCC patch antenna for increased bandwidth and reduced susceptibility to fabrication process inaccuracies,” 22nd Int. Microw. Radar Conf. (MIKON), Poznan, Poland, 2018, pp. 218–221. DOI: 10.23919/MIKON.2018.8405182.
C. A. Balanis, Antenna theory: analysis and design, John Wiley & Sons 2016, chapter 2, section 6 “Directivity”.
H. Y. Kim et al., “A 60 GHz LTCC antenna in package with low power CMOS radio,” Asia-Pacific Microw. Conf. Proc. (APMC), Seoul, Republic of Korea, 2013, pp. 155–157. DOI: 10.1109/APMC.2013.6695222.
P. Pursula et al., “60-GHz Millimeter-Wave Identification Reader on 90-nm CMOS and LTCC,” in IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 1166–1173, April 2011. DOI: 10.1109/TMTT.2011.2114200.
A. Vahdati et al., “90 GHz CMOS Phased-Array Transmitter Integrated on LTCC,” in IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6363–6371, Dec. 2017. DOI: 10.1109/TAP.2017.2743009.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 International Journal of Electronics and Telecommunications
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.
2. Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.
3. User Rights
Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.
4. Rights of Authors
Authors retain the following rights:
- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.
5. Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or the Journal Owner upon two months’ notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party’s notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.
8. Miscellaneous
The Journal Owner will publish the article (or have it published) in the Journal if the article’s editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.
By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.