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Abstract—The multiply-accumulator (MAC) unit is the basic 

integral computational block in every digital image and digital 

signal processor. As the demand grows, it is essential to design 

these units in an efficient manner to build a successful processor. 

By considering this into account, a power-efficient, high-speed 

MAC unit is presented in this paper. The proposed MAC unit is a 

combination of a two-phase clocked modified sequential multiplier 

and a carry-save adder (CSA) followed by an accumulator register. 

A novel two-phase clocked modified sequential multiplier is 

introduced in the multiplication stage to reduce the power and 

computation time. For image blurring, these multiplier and adder 

blocks are subsequently incorporated into the MAC unit. The 

experimental results demonstrated that the proposed design 

reduced the power consumption by 𝟓𝟐% and improved the 

computation time by 𝟒% than the conventional architectures. The 

developed MAC unit is implemented using 𝟏𝟖𝟎𝒏𝒎 standard 

CMOS technology using CADENCE RTL compiler, synthesized 

using XILINX ISE and the image blurring effect is analyzed using 

MATLAB. 

 
Keywords—Multiply-accumulator (MAC) unit; modified 

sequential multiplier; finite state machine (FSM); two-phase 
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I. INTRODUCTION 

ultiply-accumulator units are the essential computational 

blocks that perform complex operations in the majority 

of the digital signal and image processors. Apart from their 

widespread use in processors, they are also used in a variety of 

other applications. 

A typical MAC consists of a multiplier, adder, and 

accumulator register. The multipliers are the slowest component 

in terms of computing, requires a large area in the hardware 

resources, and consumes more power in the architecture. There 

have been numerous studies conducted on developing different 

types of multipliers to meet the requirements of reducing power, 

area consumption, and speeding up the computation. Most of 

the time, researchers were able to accomplish a reduction in 

power with less area, but at the expense of processing speed, and 

vice versa. The traditional method of multiplication follows 

add- shift method, which requires less area with certain power 

limitations. In [1], a novel energy-efficient approximate MAC 

architecture is developed with an overhead of area for error-

resilient, image processing applications. The presented idea was 

to replace the simple shift operation. Instead of the conventional 

shift method, an input- aware conditional approximate 

multipliers were used for power reduction. To speed up the 

multiplication, a novel iterative self-timed clocking scheme is 
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introduced [2] on a modified booth recoding algorithm. The 

developed architecture was performed based on self- timed 

independent form; the time wasted on the clock was reduced to 

a minimum with a small area. To improve the computational 

speed, authors of [3] developed a technique for high-speed 

parallel booth encoded multipliers. By using parallel 

multipliers, this architecture achieved an 8% reduction in delay. 

The parallel multiplication method enhances the computation 

speed with compromission of hardware utilization and power 

consumption. The authors of [4] have proposed pipelining 

technique to reduce the power and hardware utilization along 

with fast multiplication. Radix-based modified booth 

multipliers with 3:2 compressor adders were introduced in the 

architecture. The preceding multiplication strategies 

particularly targeted to enhance the speed of the architecture 

using combinational logic. The booth multiplier algorithm can 

be modified while encoding bit patterns. Those input bit patterns 

must be scanned and checked before encoding. The 

combinational logic will work depending on the current values 

of the multiplier inputs and it does not have to be activated by a 

clock. Therefore, it is completely time independent. There is a 

motive to construct a flexible architecture, which includes 

digital logic that decides automatically with high-speed 

processors. Sequential logic must be considered in the design to 

achieve this. The benefit of this logic is time-dependent, and it 

requires triggering.  

The FSM-based booth design was developed [5] in the 

multiplication stage. The state transition controlled by a clock if 

the multiplier bits were shifted to a two-bit window, which leads 

to a change in the bit pattern. In each iteration of the booth 

algorithm, the arithmetic operation was evaluated whenever a 

new bit shifted in. Precomputation-based sequential multipliers 

[6] were developed using priority encoders to reduce the 

switching activities. It showed 30% clock count with improved 

switching activity as compared to existing multiplication 

designs. Similarly, radix-4 based sequential circuit is 

implemented for booth multiplication [7] to impose the state 

transitions. Even though sequential multipliers were intended to 

save computing time, the resulted outcome was a considerable 

delay reduction in the circuit. To improve the speed and 

accuracy of these sequential designs, two-phase clocking 

scheme was developed from a single clock signal [8 -10]. The 

general-purpose field impulse response (FIR) filter was 

developed using the two-phase clocking technique [11]. In this 

research, demonstrations were made in transistor-level 

simulations to compare two-phase [12] clocks with single-phase 
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clocks. As a result, the two-phase clock sequential design 

generated faster outputs. 

The main contribution of this work is to implement an efficient 

sequential circuit with a modified booth multiplier by taking 

speed limits from the literature into account. The novel design 

uses a two-phase clocking approach to minimize the multiplier 

architecture's computation time and power. The developed 

multiplier and adder blocks are integrated on the MAC unit for 

image blurring applications. 

II. STRUCTURE OF THE PROPOSED MAC 

Multiply-accumulate is a typical computation method for 

calculating the product of two numbers in a sequence. The 

product is then added to an accumulator. In this work, the 

proposed MAC is constructed in three parts: a sequential 

modified booth encoder with two-phase clocking, a carry-save 

adder, and an accumulator register.  

A. Developed Modified Sequential Multiplier 

An 8-bit multiplication architecture based on a modified 

booth encoder is implemented and explained in this section. 

Register A and B are used to store the multiplicand and the 

multiplier bits respectively. The traditional modified booth 

encoder is developed priorly as a fundamental block that 

reduces the partial product generation. Initially, the LSB bit is 

added with '0' (right to left) of the multiplier then grouped into 

three input bits. After this, multiplicand will operate based on 

the encoding scheme that is mentioned in Table I. 

 

The multiplier input bits are scanned to group into 3 bits 

with LSB introduced with 0. To generate the partial product, a 

set of operations needs to be performed on the multiplicand that 

is represented as 0, 1, 2, -2 and -1. If the bits of the multiplier 

are grouped as 000 and 111, then 0 is multiplied by the 

multiplicand. Similarly, the grouped input bits grouped as 001 

and 010, the generated partial product will be added to the 

preceding output of the multiplicand that is +1. The two’s 

complemented version of the multiplicand is assigned for the 

result for the 101 and 110 bits.  For 011 and 100 inputs the result 

will be shifted to the left by 1 bit (+2) of the multiplicand and 

for the next case, the multiplicand is assigned as (-2) which is 

complemented and shifted left by one bit. The result will be a 

summation of all the partial products. 

A Moore finite state machine (FSM) is designed to perform 

booth multiplication as shown in Fig. 1. Hence the power 

required is less and the speed is high when compared to all other 

existing techniques. In each iteration, the add, sub and shift 

operation is performed, and it is decided by the memory bits 

shifted from left to the present state. The state decides the output 

and the next state depends on the current state and input. 

 

 

Fig. 1. State transition diagram of modified sequential multiplier 

Table II represents the state of input (i/p), output (o/p), 

current state (CST) and next state (NST) of the FSM. The 

detailed algorithm steps show the working of the modified 

sequential multiplication. 

The control logic in the booth algorithm is as follows: 

Step 1: Append a ‘0’ to the multiplier's LSB. 

Step 2: Starting with the LSB, group three adjacent bits to 

form the current state register. 

Step 3: The memory is used to store the next two bits, 

which are then provided as input to the FSM. 

Step 4: Based on memory, determine the next state.  
Step 5: The next state output is set as select lines of the 

booth encoder. 
Step 6: Multiplicand operands are changed (shift/add/sub) 

depending on the encoding technique.  
Step 7: The reduced partial products are combined to 

obtain the final product. 

TABLE I  

MODIFIED BOOTH RECODER 

𝑖 + 1 𝑖 𝑖 − 1 
Operation 

0 0 0 0 

0 0 1 +1 

0 1 0 +1 

0 1 1 +2 

1 0 0 -2 

1 0 1 -1 

1 1 0 -1 

1 1 1 0 

 

 
 

 
TABLE I 

[TABLE TITLE] TABLE NAME 

Column 1 Column 2 Column 3 a 

xx1 yyy1 zzz1 
xxx2 yy2 zzz2 

xxx3 yyy3 zz3 

xxx4 yy4 zzzzz4 
xxx5 yyyyy5 zz5 

a[Footnote Text] Content. 

 

 

TABLE II 

MODIFIED SEQUENTIAL MULTIPLIER STATE TABLE 

i/p CST NST 
 

O/p 

0 000 000 0 

0 001 000 0 

0 010 001 +1 

0 011 001 +1 

0 100 010 -2 

0 101 010 -2 

0 110 011 -1 

0 111 011 -1 

1 000 100 -2 

1 001 100 -2 

1 010 101 -1 

1 011 101 -1 

1 100 110 -1 

1 101 110 -1 

1 110 111 0 

1 111 111 0 

 

 

 

 
TABLE I 

[TABLE TITLE] TABLE NAME 

Column 1 Column 2 Column 3 a 

xx1 yyy1 zzz1 
xxx2 yy2 zzz2 

xxx3 yyy3 zz3 

xxx4 yy4 zzzzz4 
xxx5 yyyyy5 zz5 

a[Footnote Text] Content. 
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B. Developed Two-phase clocking technique 

With a single clock, MBE's FSM operates as described in 

the preceding section. However, proposing a two-phase clock 

scheme in the architecture was the key work that was done to 

make the design fast. The toggling of a single clock's 50% duty 

cycle yields two non-overlapping clocks named 𝜙1 and 𝜙2. To 

obtain these clock pulses, the clocks were sent to a JK flip-flop, 

as indicated in Fig. 2. To accomplish toggling mode, the JK 

inputs are set to logic 1. 

 
 

Fig. 2. Block diagram of the developed multiplier  

The flip-flop and clock outputs are fed as input to the 

NAND gates to produce two-phase toggling clocks. The 

sequence control is controlled by these clocks 𝜙1 and 𝜙2. A 

state transition occurs whenever the clocks 𝜙1 or 𝜙2 reach a 

positive edge. We introduced an architecture to compute fast 

multiplication by utilizing a modified sequential multiplier with 

two-phase clocking in the current work. 

The three stages designed in the proposed method are 

explained as follows: 
  Stage 1: Generation of two-phase clocks 
With the help of a JK flip-flop, a single clock of 50 𝑀𝐻𝑧 is used 
to produce two-phase clocks of 25 𝑀𝐻𝑧 each at the first stage, 
as illustrated in Fig. 3.  
 

 

Fig. 3. Generation of two-phase clocks 

The outputs 𝑄 and �̅� of JK are connected to the NAND 

gate. As the JK enters the toggle mode, 𝑄 switches the logic at 

every negative edge of the clock. The flip-flop and clock outputs 

are sent as independent inputs to the NAND gates. The output 

of the NAND gate gives 𝜙1 and makes a ‘0’ logic when 𝑄 and 

clocks are at ‘1’. Similarly, whenever �̅� and clock becomes ‘1’, 
the NAND reaches logic ‘0’, thereby producing 𝜙2. 

Stage 2: FSM Modules 

In this stage, a modified booth algorithm is implemented in 

the form of the finite state machine. The multiplier grouped to 

three bits along with appended ‘0’ is passed to the state machine. 

This stage is synchronized with the generated two-phase clocks. 

The FSM module includes a memory of two bits to retain the 

grouped bits of the multiplier’s current state which helps in 

deciding the next state. The state transitions occur at every 

subsequent rising edge of the two-phase clocks. 

Stage 3: Generation of partial products 

The state determined at the previous module is the input to 

this stage. In this stage, the partial products are generated based 

on the booth conditions for the occurred input state. The 

conditions of the encoders are applied to the multiplicand bits. 

Finally, the partial products are added using carry save adders 

to obtain the product. 

C. Carry Save Adder 

In the partial product stage, the modified booth multiplier 

design employs carry-save adders. Three operand additions can 

be done at the same time by using CSA [13]. To calculate the 

partial product terms in an 8-bit architecture, four blocks are 

required as illustrated in Fig. 3. These logic blocks are built as a 

combination of an encoder and a multiplexer that provide the 

multiplicand bits in accordance with the three-bit condition of 

multiplier. Three adders are used to obtain the final product, one 

of which is a ripple carry adder and remaining two are carry-

save adders. The use of CSA blocks allows for simultaneous 

three-term addition. In the ripple carry adder stage, separately 

generated sum and carry terms are combined. 
 

 

Fig. 4. CSA blocks in Proposed MAC 

III. PROPOSED MAC FOR IMAGE BLURRING 

 

The main function of the MAC unit is to multiply, add, 

shift, and store. Fig. 5 depicts the proposed MAC architecture. 

The following typical equation represents the main function the 

proposed MAC for 2D convolution scheme: 
 

       𝑍(𝑥, 𝑦) = ∑ ∑(𝑥 + 𝑚, 𝑦 + 𝑛)

𝐾−1

𝑛=0

𝐾−1

𝑚=0

. ℎ(𝑚, 𝑛) +  𝑌(𝑥, 𝑦)          (1)   

 

Where 𝐼(𝑥, 𝑦) stands for input pixels, ℎ(𝑚, 𝑛) stands for 

kernels and window lengths 𝑚, 𝑛 = 0: 𝐾 − 1, image width 𝑥 =
0: 𝑀 − 1, 𝑦 = 0: 𝑁 − 1, and 𝑌(𝑥, 𝑦) stands for accumulator 

registers. 𝑍(𝑥, 𝑦) generates the filtered image in a first in, first 
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out (FIFO) manner. Image pixels are stored in D-flipflop 

registers. In FIFO, 𝑀 − 𝑘 shift registers are employed. This 

module's main target is to shift the window plane ℎ(𝑚, 𝑛) over 

the image 𝐼(𝑥, 𝑦). At each clock cycle, the convolver applies 𝐾2 

MAC units to the image. For image pixels and kernels, 8-bit 

signed integers are used as operands. 
 

 

Fig. 5. Proposed MAC unit 

A. Simulation steps 

MATLAB: 

1. An image comprising 8-bit signed integers is convolved 

with a desired filter kernel with an 8-bit fixed point or 8-

bit integer. The Gaussian kernel is used in the current 

study. 

2. To retain the background pixels while performing the 

convolution, the image matrices are padded with zeros. 

3. The kernel and image matrices are transformed to text 

format as vectors ℎ𝑖 and 𝐼𝑗, with 𝑖 = 0 equaling 𝐾 − 1 and 

𝑗 = 0 equaling 𝑀𝑁 − 1 respectively. The image vectors 

are in hexadecimal format. 
 

Xilinx ISE: 

1. The convolution test bench module imports the hex file 

containing image pixels from MATLAB into memory 

locations. 

2. To convolve the image with the specified kernels, MAC 

units are invoked from the test bench. 

3. The convolved results are written to a text file in 

hexadecimal format and kept in a separate memory block. 

IV. RESULT ANALYSIS  

The proposed MAC unit was implemented using 180nm 

standard CMOS technology to compare the power, delay. The 

simulation was carried out using XILINX ISE. For evaluating 

the image blurring effect MATLAB is used. This section 

explains the findings of the developed MAC performance 

metrics. 

A. Sequential modified multiplier results 

The proposed sequential multiplier design simulation and test 

bench waveforms with and without two-phase clock phasing 

were examined using XILINX ISE. The Fig. 6 shows the 

multiplication output of the inputs 27 and 53 with a regular 

clock. The testbench status is changed depend on the single 

clock. The multiplication cycle took roughly 800𝑛𝑠 to 

complete. 

Fig. 6. A clock-synchronized modified sequential multiplier 

 

Fig. 7 shows another example of multiplication, this time 

with the operand’s multiplier and multiplicand. The multiplier 

is scanned for three bits with a ‘0' attached to the LSB. The first 

three bits of the operand ‘126' are set to 100, which is the 

current state. 

 

 
 

Fig. 7. Example of modified sequential multiplication 

Booth encoding is used to condition the partials. Because 

the state was ‘100, ′ the first partial product is two's compliment 

of the multiplicand bits in this case. Similarly, partial products 

are generated for all states until the grouped multiplier bits are 

completed. It must be noticed that the partial products have been 

reduced to just four subparts. To obtain the final product, the 

decreased partial products are added using CSA. 

Fig. 8 illustrates the results of multiplication with two-

phase clocking of the same bits with inputs 27 and 53. We can 

observe from the test bench waveform that the transition of 

states is dependent on both clocks 𝜙1 and 𝜙2. As a result, it is 

possible to compute faster multiplication with change of states. 

 

Fig. 8. Example of modified sequential multiplication 

TABLE III  

MODIFIED BOOTH RECODER 

Integer 

𝑖 
Current 

state 
Memory 

 

Next 

state 

 

Operation 

1 100 11 111 0 

3 111 11 111 0 

5 111 01 011 +2 
 

TABLE V 

DELAY COMPARISON OF THE PROPOSED MAC  

MAC 

structure  
Delay (ns) 

[4] 26.89 

[19] 22.38 

[20] 22.00 

Proposed 

MAC  
21.07 
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Fig. 9 shows the modified sequential multiplier with and 

without two-phase clocking for the multiplier ‘126.' In this 

example, a time scale of 0 to 160𝑛𝑠 is used. The first ‘Clock' 

corresponds to the traditional approach [14] in which the 

multiplier changes state with each rising edge of the clock. The 

multiplier's three bits grouping states took the entire cycle to 

complete. 

 

 

Fig. 9. Comparison of developed sequential multiplier with and without 

two-phase clocking 

Depending on both the rising edges of the two-phase clocks 

𝜙1 and 𝜙2, the suggested technique transits the state. The 

waveforms show that the proposed method follows both clocks, 

the timing of the process completion was minimized by 50% 

compared to the existing method. 

A. Performance comparison of the proposed MAC 

In Table IV and V shows the comparison of proposed MAC 

results with the conventional MAC. It demonstrates that the 

developed structure is both power efficient and fast. The design 

of a sequential multiplier is primarily responsible for this 

improvement. 

B. Results of Proposed MAC for image blurring 

The PSNR for developed MAC unit is evaluated using 

gaussian blurring. A normal distribution is used to construct 

the Gaussian kernel ℎ(𝑥, 𝑦), where 𝑥 and 𝑦 denote the kernel's 

pixel coordinates. 

 

                 ℎ(𝑥, 𝑦) =
1

𝜎22𝜋
 𝑒

−
(𝑥2+𝑦2)

2𝜎2                         (2)        

Table VI shows the kernels used were Gaussian filter with 

varying 𝜎 measure from 0.5 to 2. 

 

         𝑃𝑆𝑁𝑅 = 10 log10

𝑁2

𝑀𝑆𝐸
                                     (3) 

 

where 𝑁 is the maximum pixel value of the image. Since an 

example of 8-bit integer image was used in this study, the 

measure is calculated using the following equation:  

 

 𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑[𝐼𝑜(𝑥, 𝑦) − 𝐼𝑅(𝑥, 𝑦)]2 

𝑁−1

𝑦=0

                   (4)          

𝑀−1

𝑥=0

 

where 𝐼𝑜 represents the original image and 𝐼𝑅 represents the 

filtered image.  

 

The PSNR in dB of processed images retrieved from the 

Verilog 𝑃𝑆𝑁𝑅𝑉 and MATLAB 𝑃𝑆𝑁𝑅𝑀 platforms is compared 

to the error values using the following expression: 

      𝑃𝑆𝑁𝑅𝑒𝑟𝑟𝑜𝑟 = 𝑃𝑆𝑁𝑅𝑀 − 𝑃𝑆𝑁𝑅𝑉              (5) 

 

The PSNR (dB) values were found to have a minimum error 

𝐸𝑀 − 𝐸𝑉 of 0.005 to 0.1 for varying 𝜎 of the kernels that is 

evaluated using MATLAB and Verilog platforms. 

Table VII shows the minimum error measurement of the 

processed image. 

Fig. 10 shows the comparison between the smoothened 

images computed in Xilinx and validated in MATLAB. Four 

subplots in Fig. 10 [a] represent the original and [b] is the 

filtered images with different kernels (k=5,7 and 9) respectively. 

 

TABLE VI 

KERNEL MATRICES REPRESENTATION FOR DIFFERENT 𝜎 VALUES 

𝜎 ℎ(𝑥, 𝑦) 

0.5 [
0.011 0.083 0.011
0.083 0.619 0.083
0.011 0.083 0.011

] 

1 [
0.075 0.123 0.075
0.123 0.204 0.123
0.075 0.123 0.075

] 

1.5 [
0.094 0.118 0.094
0.118 0.147 0.118
0.094 0.118 0.094

] 

2 [
0.101 0.115 0.101
0.115 0.130 0.115
0.101 0.115 0.101

] 

 

 

TABLE VII 

POWER COMPARISON OF THE PROPOSED MAC WITH DIFFERENT MULTIPLIER  

MAC structure 
with 

conventional 

multiplier  

Power(mW) 

[15] 9.11 

[17] 3.74 

[18] 2.74 

Proposed MAC 
with sequential 

multiplier 

1.29 

 

TABLE VII 

RESULTS OF 2D GAUSSIAN FILTER 

𝜎 
𝑃𝑆𝑁𝑅𝑀 

(𝑑𝐵)   

𝑃𝑆𝑁𝑅𝑉 

(𝑑𝐵)   

𝐸𝑀 − 𝐸𝑉 

(𝑑𝐵)   

0.5 23.94 24.04 0.1 

1 25.09 25.14 0.05 

1.5 25.27 25.30 0.03 

2 25.32 25.35 0.03 
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   The intensity values at location [38, 40] are extracted from 

both the outputs to illustrate the performance of the MAC unit. 

It was found that there was a minimum error of fixed-point 

intensities between MATLAB and Verilog ranging from 0.05 to 

0.1.   

The histograms are displayed and compared with the MATLAB 

findings to obtain the difference between the pixel values to 

validate the MAC findings, as demonstrated in Fig. 11 [a], [b] 

and [c].

 

 

 

 

Fig. 10. a. Input image, b. Blurred image with σ = 5 in MATLAB, c. Blurred image with σ = 5 in Verilog 

 

 
  

Fig. 11. Comparison in terms of histograms of filtered image a. kernel 5 x 5, b. kernel 7 x 7, c. kernel 9 x 9

V. CONCLUSION 

The current work proposes an efficient two-phase clocked 

sequential multiply -accumulator unit with the benefit of 

parallelism to considerably reduce computing power as well as 

time. Over manual clock tuning, a two-phase clocking system is 

used to reduce delay time. The findings of the suggested design 

reduced delay as well as power consumption compared to the 

standard architecture. The experimental results showed that the 

new design decrease the power consumption 𝑏𝑦 52% with 

increase in computation time by 4% than the conventional 

architectures. The attained speed is attributable to state 

transitions that happened on both the positive and negative 

edges of the two-clock phases. 
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