
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 2, PP. 307-313

Manuscript received June 21, 2021; revised May, 2022. DOI: 10.24425/ijet.2022.139883

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The multiply-accumulator (MAC) unit is the basic

integral computational block in every digital image and digital

signal processor. As the demand grows, it is essential to design

these units in an efficient manner to build a successful processor.

By considering this into account, a power-efficient, high-speed

MAC unit is presented in this paper. The proposed MAC unit is a

combination of a two-phase clocked modified sequential multiplier

and a carry-save adder (CSA) followed by an accumulator register.

A novel two-phase clocked modified sequential multiplier is

introduced in the multiplication stage to reduce the power and

computation time. For image blurring, these multiplier and adder

blocks are subsequently incorporated into the MAC unit. The

experimental results demonstrated that the proposed design

reduced the power consumption by 𝟓𝟐% and improved the

computation time by 𝟒% than the conventional architectures. The

developed MAC unit is implemented using 𝟏𝟖𝟎𝒏𝒎 standard

CMOS technology using CADENCE RTL compiler, synthesized

using XILINX ISE and the image blurring effect is analyzed using

MATLAB.

Keywords—Multiply-accumulator (MAC) unit; modified

sequential multiplier; finite state machine (FSM); two-phase

clockin; carry-save adder (CSA); image blurring

I. INTRODUCTION

ultiply-accumulator units are the essential computational

blocks that perform complex operations in the majority

of the digital signal and image processors. Apart from their

widespread use in processors, they are also used in a variety of

other applications.

A typical MAC consists of a multiplier, adder, and

accumulator register. The multipliers are the slowest component

in terms of computing, requires a large area in the hardware

resources, and consumes more power in the architecture. There

have been numerous studies conducted on developing different

types of multipliers to meet the requirements of reducing power,

area consumption, and speeding up the computation. Most of

the time, researchers were able to accomplish a reduction in

power with less area, but at the expense of processing speed, and

vice versa. The traditional method of multiplication follows

add- shift method, which requires less area with certain power

limitations. In [1], a novel energy-efficient approximate MAC

architecture is developed with an overhead of area for error-

resilient, image processing applications. The presented idea was

to replace the simple shift operation. Instead of the conventional

shift method, an input- aware conditional approximate

multipliers were used for power reduction. To speed up the

multiplication, a novel iterative self-timed clocking scheme is

Authors are with Department of Electronics and Communication

Engineering, Manipal Institute of Technology, Manipal Academy of Higher
Education, Manipal-576 104, India (e-mail: rashmi.samanth@gmail.com,

gs.nayak@manipal.edu).

introduced [2] on a modified booth recoding algorithm. The

developed architecture was performed based on self- timed

independent form; the time wasted on the clock was reduced to

a minimum with a small area. To improve the computational

speed, authors of [3] developed a technique for high-speed

parallel booth encoded multipliers. By using parallel

multipliers, this architecture achieved an 8% reduction in delay.

The parallel multiplication method enhances the computation

speed with compromission of hardware utilization and power

consumption. The authors of [4] have proposed pipelining

technique to reduce the power and hardware utilization along

with fast multiplication. Radix-based modified booth

multipliers with 3:2 compressor adders were introduced in the

architecture. The preceding multiplication strategies

particularly targeted to enhance the speed of the architecture

using combinational logic. The booth multiplier algorithm can

be modified while encoding bit patterns. Those input bit patterns

must be scanned and checked before encoding. The

combinational logic will work depending on the current values

of the multiplier inputs and it does not have to be activated by a

clock. Therefore, it is completely time independent. There is a

motive to construct a flexible architecture, which includes

digital logic that decides automatically with high-speed

processors. Sequential logic must be considered in the design to

achieve this. The benefit of this logic is time-dependent, and it

requires triggering.

The FSM-based booth design was developed [5] in the

multiplication stage. The state transition controlled by a clock if

the multiplier bits were shifted to a two-bit window, which leads

to a change in the bit pattern. In each iteration of the booth

algorithm, the arithmetic operation was evaluated whenever a

new bit shifted in. Precomputation-based sequential multipliers

[6] were developed using priority encoders to reduce the

switching activities. It showed 30% clock count with improved

switching activity as compared to existing multiplication

designs. Similarly, radix-4 based sequential circuit is

implemented for booth multiplication [7] to impose the state

transitions. Even though sequential multipliers were intended to

save computing time, the resulted outcome was a considerable

delay reduction in the circuit. To improve the speed and

accuracy of these sequential designs, two-phase clocking

scheme was developed from a single clock signal [8 -10]. The

general-purpose field impulse response (FIR) filter was

developed using the two-phase clocking technique [11]. In this

research, demonstrations were made in transistor-level

simulations to compare two-phase [12] clocks with single-phase

An Efficient Two-phase Clocked Sequential

Multiply -Accumulator Unit for Image Blurring
Rashmi Samanth, and Subramanya G. Nayak

M

https://creativecommons.org/licenses/by/4.0/

308 R. SAMANTH, S. G. NAYAK

clocks. As a result, the two-phase clock sequential design

generated faster outputs.

The main contribution of this work is to implement an efficient

sequential circuit with a modified booth multiplier by taking

speed limits from the literature into account. The novel design

uses a two-phase clocking approach to minimize the multiplier

architecture's computation time and power. The developed

multiplier and adder blocks are integrated on the MAC unit for

image blurring applications.

II. STRUCTURE OF THE PROPOSED MAC

Multiply-accumulate is a typical computation method for

calculating the product of two numbers in a sequence. The

product is then added to an accumulator. In this work, the

proposed MAC is constructed in three parts: a sequential

modified booth encoder with two-phase clocking, a carry-save

adder, and an accumulator register.

A. Developed Modified Sequential Multiplier

An 8-bit multiplication architecture based on a modified

booth encoder is implemented and explained in this section.

Register A and B are used to store the multiplicand and the

multiplier bits respectively. The traditional modified booth

encoder is developed priorly as a fundamental block that

reduces the partial product generation. Initially, the LSB bit is

added with '0' (right to left) of the multiplier then grouped into

three input bits. After this, multiplicand will operate based on

the encoding scheme that is mentioned in Table I.

The multiplier input bits are scanned to group into 3 bits

with LSB introduced with 0. To generate the partial product, a

set of operations needs to be performed on the multiplicand that

is represented as 0, 1, 2, -2 and -1. If the bits of the multiplier

are grouped as 000 and 111, then 0 is multiplied by the

multiplicand. Similarly, the grouped input bits grouped as 001

and 010, the generated partial product will be added to the

preceding output of the multiplicand that is +1. The two’s

complemented version of the multiplicand is assigned for the

result for the 101 and 110 bits. For 011 and 100 inputs the result

will be shifted to the left by 1 bit (+2) of the multiplicand and

for the next case, the multiplicand is assigned as (-2) which is

complemented and shifted left by one bit. The result will be a

summation of all the partial products.

A Moore finite state machine (FSM) is designed to perform

booth multiplication as shown in Fig. 1. Hence the power

required is less and the speed is high when compared to all other

existing techniques. In each iteration, the add, sub and shift

operation is performed, and it is decided by the memory bits

shifted from left to the present state. The state decides the output

and the next state depends on the current state and input.

Fig. 1. State transition diagram of modified sequential multiplier

Table II represents the state of input (i/p), output (o/p),

current state (CST) and next state (NST) of the FSM. The

detailed algorithm steps show the working of the modified

sequential multiplication.

The control logic in the booth algorithm is as follows:

Step 1: Append a ‘0’ to the multiplier's LSB.

Step 2: Starting with the LSB, group three adjacent bits to

form the current state register.

Step 3: The memory is used to store the next two bits,

which are then provided as input to the FSM.

Step 4: Based on memory, determine the next state.
Step 5: The next state output is set as select lines of the

booth encoder.
Step 6: Multiplicand operands are changed (shift/add/sub)

depending on the encoding technique.
Step 7: The reduced partial products are combined to

obtain the final product.

TABLE I

MODIFIED BOOTH RECODER

𝑖 + 1 𝑖 𝑖 − 1
Operation

0 0 0 0

0 0 1 +1

0 1 0 +1

0 1 1 +2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0

TABLE I

[TABLE TITLE] TABLE NAME

Column 1 Column 2 Column 3 a

xx1 yyy1 zzz1
xxx2 yy2 zzz2

xxx3 yyy3 zz3

xxx4 yy4 zzzzz4
xxx5 yyyyy5 zz5

a[Footnote Text] Content.

TABLE II

MODIFIED SEQUENTIAL MULTIPLIER STATE TABLE

i/p CST NST

O/p

0 000 000 0

0 001 000 0

0 010 001 +1

0 011 001 +1

0 100 010 -2

0 101 010 -2

0 110 011 -1

0 111 011 -1

1 000 100 -2

1 001 100 -2

1 010 101 -1

1 011 101 -1

1 100 110 -1

1 101 110 -1

1 110 111 0

1 111 111 0

TABLE I

[TABLE TITLE] TABLE NAME

Column 1 Column 2 Column 3 a

xx1 yyy1 zzz1
xxx2 yy2 zzz2

xxx3 yyy3 zz3

xxx4 yy4 zzzzz4
xxx5 yyyyy5 zz5

a[Footnote Text] Content.

AN EFFICIENT TWO-PHASE CLOCKED SEQUENTIAL MULTIPLY -ACCUMULATOR UNIT FOR IMAGE BLURRING 309

B. Developed Two-phase clocking technique

With a single clock, MBE's FSM operates as described in

the preceding section. However, proposing a two-phase clock

scheme in the architecture was the key work that was done to

make the design fast. The toggling of a single clock's 50% duty

cycle yields two non-overlapping clocks named 𝜙1 and 𝜙2. To

obtain these clock pulses, the clocks were sent to a JK flip-flop,

as indicated in Fig. 2. To accomplish toggling mode, the JK

inputs are set to logic 1.

Fig. 2. Block diagram of the developed multiplier

The flip-flop and clock outputs are fed as input to the

NAND gates to produce two-phase toggling clocks. The

sequence control is controlled by these clocks 𝜙1 and 𝜙2. A

state transition occurs whenever the clocks 𝜙1 or 𝜙2 reach a

positive edge. We introduced an architecture to compute fast

multiplication by utilizing a modified sequential multiplier with

two-phase clocking in the current work.

The three stages designed in the proposed method are

explained as follows:
 Stage 1: Generation of two-phase clocks
With the help of a JK flip-flop, a single clock of 50 𝑀𝐻𝑧 is used
to produce two-phase clocks of 25 𝑀𝐻𝑧 each at the first stage,
as illustrated in Fig. 3.

Fig. 3. Generation of two-phase clocks

The outputs 𝑄 and �̅� of JK are connected to the NAND

gate. As the JK enters the toggle mode, 𝑄 switches the logic at

every negative edge of the clock. The flip-flop and clock outputs

are sent as independent inputs to the NAND gates. The output

of the NAND gate gives 𝜙1 and makes a ‘0’ logic when 𝑄 and

clocks are at ‘1’. Similarly, whenever �̅� and clock becomes ‘1’,
the NAND reaches logic ‘0’, thereby producing 𝜙2.

Stage 2: FSM Modules

In this stage, a modified booth algorithm is implemented in

the form of the finite state machine. The multiplier grouped to

three bits along with appended ‘0’ is passed to the state machine.

This stage is synchronized with the generated two-phase clocks.

The FSM module includes a memory of two bits to retain the

grouped bits of the multiplier’s current state which helps in

deciding the next state. The state transitions occur at every

subsequent rising edge of the two-phase clocks.

Stage 3: Generation of partial products

The state determined at the previous module is the input to

this stage. In this stage, the partial products are generated based

on the booth conditions for the occurred input state. The

conditions of the encoders are applied to the multiplicand bits.

Finally, the partial products are added using carry save adders

to obtain the product.

C. Carry Save Adder

In the partial product stage, the modified booth multiplier

design employs carry-save adders. Three operand additions can

be done at the same time by using CSA [13]. To calculate the

partial product terms in an 8-bit architecture, four blocks are

required as illustrated in Fig. 3. These logic blocks are built as a

combination of an encoder and a multiplexer that provide the

multiplicand bits in accordance with the three-bit condition of

multiplier. Three adders are used to obtain the final product, one

of which is a ripple carry adder and remaining two are carry-

save adders. The use of CSA blocks allows for simultaneous

three-term addition. In the ripple carry adder stage, separately

generated sum and carry terms are combined.

Fig. 4. CSA blocks in Proposed MAC

III. PROPOSED MAC FOR IMAGE BLURRING

The main function of the MAC unit is to multiply, add,

shift, and store. Fig. 5 depicts the proposed MAC architecture.

The following typical equation represents the main function the

proposed MAC for 2D convolution scheme:

 𝑍(𝑥, 𝑦) = ∑ ∑(𝑥 + 𝑚, 𝑦 + 𝑛)

𝐾−1

𝑛=0

𝐾−1

𝑚=0

. ℎ(𝑚, 𝑛) + 𝑌(𝑥, 𝑦) (1)

Where 𝐼(𝑥, 𝑦) stands for input pixels, ℎ(𝑚, 𝑛) stands for

kernels and window lengths 𝑚, 𝑛 = 0: 𝐾 − 1, image width 𝑥 =
0: 𝑀 − 1, 𝑦 = 0: 𝑁 − 1, and 𝑌(𝑥, 𝑦) stands for accumulator

registers. 𝑍(𝑥, 𝑦) generates the filtered image in a first in, first

310 R. SAMANTH, S. G. NAYAK

out (FIFO) manner. Image pixels are stored in D-flipflop

registers. In FIFO, 𝑀 − 𝑘 shift registers are employed. This

module's main target is to shift the window plane ℎ(𝑚, 𝑛) over

the image 𝐼(𝑥, 𝑦). At each clock cycle, the convolver applies 𝐾2

MAC units to the image. For image pixels and kernels, 8-bit

signed integers are used as operands.

Fig. 5. Proposed MAC unit

A. Simulation steps

MATLAB:

1. An image comprising 8-bit signed integers is convolved

with a desired filter kernel with an 8-bit fixed point or 8-

bit integer. The Gaussian kernel is used in the current

study.

2. To retain the background pixels while performing the

convolution, the image matrices are padded with zeros.

3. The kernel and image matrices are transformed to text

format as vectors ℎ𝑖 and 𝐼𝑗, with 𝑖 = 0 equaling 𝐾 − 1 and

𝑗 = 0 equaling 𝑀𝑁 − 1 respectively. The image vectors

are in hexadecimal format.

Xilinx ISE:

1. The convolution test bench module imports the hex file

containing image pixels from MATLAB into memory

locations.

2. To convolve the image with the specified kernels, MAC

units are invoked from the test bench.

3. The convolved results are written to a text file in

hexadecimal format and kept in a separate memory block.

IV. RESULT ANALYSIS

The proposed MAC unit was implemented using 180nm

standard CMOS technology to compare the power, delay. The

simulation was carried out using XILINX ISE. For evaluating

the image blurring effect MATLAB is used. This section

explains the findings of the developed MAC performance

metrics.

A. Sequential modified multiplier results

The proposed sequential multiplier design simulation and test

bench waveforms with and without two-phase clock phasing

were examined using XILINX ISE. The Fig. 6 shows the

multiplication output of the inputs 27 and 53 with a regular

clock. The testbench status is changed depend on the single

clock. The multiplication cycle took roughly 800𝑛𝑠 to

complete.

Fig. 6. A clock-synchronized modified sequential multiplier

Fig. 7 shows another example of multiplication, this time

with the operand’s multiplier and multiplicand. The multiplier

is scanned for three bits with a ‘0' attached to the LSB. The first

three bits of the operand ‘126' are set to 100, which is the

current state.

Fig. 7. Example of modified sequential multiplication

Booth encoding is used to condition the partials. Because

the state was ‘100, ′ the first partial product is two's compliment

of the multiplicand bits in this case. Similarly, partial products

are generated for all states until the grouped multiplier bits are

completed. It must be noticed that the partial products have been

reduced to just four subparts. To obtain the final product, the

decreased partial products are added using CSA.

Fig. 8 illustrates the results of multiplication with two-

phase clocking of the same bits with inputs 27 and 53. We can

observe from the test bench waveform that the transition of

states is dependent on both clocks 𝜙1 and 𝜙2. As a result, it is

possible to compute faster multiplication with change of states.

Fig. 8. Example of modified sequential multiplication

TABLE III

MODIFIED BOOTH RECODER

Integer

𝑖
Current

state
Memory

Next

state

Operation

1 100 11 111 0

3 111 11 111 0

5 111 01 011 +2

TABLE V

DELAY COMPARISON OF THE PROPOSED MAC

MAC

structure
Delay (ns)

[4] 26.89

[19] 22.38

[20] 22.00

Proposed

MAC
21.07

AN EFFICIENT TWO-PHASE CLOCKED SEQUENTIAL MULTIPLY -ACCUMULATOR UNIT FOR IMAGE BLURRING 311

Fig. 9 shows the modified sequential multiplier with and

without two-phase clocking for the multiplier ‘126.' In this

example, a time scale of 0 to 160𝑛𝑠 is used. The first ‘Clock'

corresponds to the traditional approach [14] in which the

multiplier changes state with each rising edge of the clock. The

multiplier's three bits grouping states took the entire cycle to

complete.

Fig. 9. Comparison of developed sequential multiplier with and without

two-phase clocking

Depending on both the rising edges of the two-phase clocks

𝜙1 and 𝜙2, the suggested technique transits the state. The

waveforms show that the proposed method follows both clocks,

the timing of the process completion was minimized by 50%

compared to the existing method.

A. Performance comparison of the proposed MAC

In Table IV and V shows the comparison of proposed MAC

results with the conventional MAC. It demonstrates that the

developed structure is both power efficient and fast. The design

of a sequential multiplier is primarily responsible for this

improvement.

B. Results of Proposed MAC for image blurring

The PSNR for developed MAC unit is evaluated using

gaussian blurring. A normal distribution is used to construct

the Gaussian kernel ℎ(𝑥, 𝑦), where 𝑥 and 𝑦 denote the kernel's

pixel coordinates.

 ℎ(𝑥, 𝑦) =
1

𝜎22𝜋
 𝑒

−
(𝑥2+𝑦2)

2𝜎2 (2)

Table VI shows the kernels used were Gaussian filter with

varying 𝜎 measure from 0.5 to 2.

 𝑃𝑆𝑁𝑅 = 10 log10

𝑁2

𝑀𝑆𝐸
 (3)

where 𝑁 is the maximum pixel value of the image. Since an

example of 8-bit integer image was used in this study, the

measure is calculated using the following equation:

 𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑[𝐼𝑜(𝑥, 𝑦) − 𝐼𝑅(𝑥, 𝑦)]2

𝑁−1

𝑦=0

 (4)

𝑀−1

𝑥=0

where 𝐼𝑜 represents the original image and 𝐼𝑅 represents the

filtered image.

The PSNR in dB of processed images retrieved from the

Verilog 𝑃𝑆𝑁𝑅𝑉 and MATLAB 𝑃𝑆𝑁𝑅𝑀 platforms is compared

to the error values using the following expression:

 𝑃𝑆𝑁𝑅𝑒𝑟𝑟𝑜𝑟 = 𝑃𝑆𝑁𝑅𝑀 − 𝑃𝑆𝑁𝑅𝑉 (5)

The PSNR (dB) values were found to have a minimum error

𝐸𝑀 − 𝐸𝑉 of 0.005 to 0.1 for varying 𝜎 of the kernels that is

evaluated using MATLAB and Verilog platforms.

Table VII shows the minimum error measurement of the

processed image.

Fig. 10 shows the comparison between the smoothened

images computed in Xilinx and validated in MATLAB. Four

subplots in Fig. 10 [a] represent the original and [b] is the

filtered images with different kernels (k=5,7 and 9) respectively.

TABLE VI

KERNEL MATRICES REPRESENTATION FOR DIFFERENT 𝜎 VALUES

𝜎 ℎ(𝑥, 𝑦)

0.5 [
0.011 0.083 0.011
0.083 0.619 0.083
0.011 0.083 0.011

]

1 [
0.075 0.123 0.075
0.123 0.204 0.123
0.075 0.123 0.075

]

1.5 [
0.094 0.118 0.094
0.118 0.147 0.118
0.094 0.118 0.094

]

2 [
0.101 0.115 0.101
0.115 0.130 0.115
0.101 0.115 0.101

]

TABLE VII

POWER COMPARISON OF THE PROPOSED MAC WITH DIFFERENT MULTIPLIER

MAC structure
with

conventional

multiplier

Power(mW)

[15] 9.11

[17] 3.74

[18] 2.74

Proposed MAC
with sequential

multiplier

1.29

TABLE VII

RESULTS OF 2D GAUSSIAN FILTER

𝜎
𝑃𝑆𝑁𝑅𝑀

(𝑑𝐵)

𝑃𝑆𝑁𝑅𝑉

(𝑑𝐵)

𝐸𝑀 − 𝐸𝑉

(𝑑𝐵)

0.5 23.94 24.04 0.1

1 25.09 25.14 0.05

1.5 25.27 25.30 0.03

2 25.32 25.35 0.03

312 R. SAMANTH, S. G. NAYAK

 The intensity values at location [38, 40] are extracted from

both the outputs to illustrate the performance of the MAC unit.

It was found that there was a minimum error of fixed-point

intensities between MATLAB and Verilog ranging from 0.05 to

0.1.

The histograms are displayed and compared with the MATLAB

findings to obtain the difference between the pixel values to

validate the MAC findings, as demonstrated in Fig. 11 [a], [b]

and [c].

Fig. 10. a. Input image, b. Blurred image with σ = 5 in MATLAB, c. Blurred image with σ = 5 in Verilog

Fig. 11. Comparison in terms of histograms of filtered image a. kernel 5 x 5, b. kernel 7 x 7, c. kernel 9 x 9

V. CONCLUSION

The current work proposes an efficient two-phase clocked

sequential multiply -accumulator unit with the benefit of

parallelism to considerably reduce computing power as well as

time. Over manual clock tuning, a two-phase clocking system is

used to reduce delay time. The findings of the suggested design

reduced delay as well as power consumption compared to the

standard architecture. The experimental results showed that the

new design decrease the power consumption 𝑏𝑦 52% with

increase in computation time by 4% than the conventional

architectures. The attained speed is attributable to state

transitions that happened on both the positive and negative

edges of the two-clock phases.

REFERENCES

[1] M. Masadeh, O. Hasan and S. Tahar, “Input-conscious approximate
multiply-accumulate (mac) unit for energy-efficiency,” IEEE Access, 7,

pp.147129-147142.

https://doi.org/10.1109/ACCESS.2019.2946513
[2] M.C. Shin, S.H. Kang, and I.C Park, “An area-efficient iterative modified-

booth multiplier based on self-timed clocking,” In Proc. IEEE

International Conference on Computer Design: VLSI in Computers and
Processors. ICCD 2001 Sep 23: IEEE. pp. 511-512.

https://doi.org/10.1109/ICCD.2001.955079

[3] W.C. Yeh and C.W Jen, “High-speed Booth encoded parallel multiplier
design,” IEEE transactions on computers, 49(7):692-701, 2000.

https://doi.org/10.1109/12.863039

N. Kaur and R.K Patial, “Implementation of Modified Booth Multiplier
using Pipeline Technique on FPGA,” International Journal of Computer

Applications. 975:8887, 2013.

http://dx.doi.org/10.5120/11666-7261

https://doi.org/10.1109/ACCESS.2019.2946513
https://doi.org/10.1109/ICCD.2001.955079
https://doi.org/10.1109/12.863039
http://dx.doi.org/10.5120/11666-7261

AN EFFICIENT TWO-PHASE CLOCKED SEQUENTIAL MULTIPLY -ACCUMULATOR UNIT FOR IMAGE BLURRING 313

[4] S. Shrivastva and Pankaj Gulhane, “Comparative Analysis on Power and

Delay Optimization of Various Multipliers using VHDL,” International

Journal of Electrical and Electronics Research, 2014 2(3):182-91.

[5] N. Honarmand, M.R. Javaheri, N. Sedaghati-Mokhtari and A. Afzali-
Kusha, “Power efficient sequential multiplication using pre-computation,”

In 2006 IEEE International Symposium on Circuits and Systems. pp. 4.

https://doi.org/10.1109/ISCAS.2006.1693183
[6] K. Babulu and G. Parasuram, “FPGA Realization of Radix-4 Booth

Multiplication Algorithm for High-Speed Arithmetic Logics,”

International Journal of Computer Science and Information Technologies.
2(5), 2102-7, 2011.

[7] R. Das, G. K Singh and R.M. Mehra. “Two-phase clocking scheme for
low-power and high-speed VLSI,” Int. J. Adv. Eng. Sci. Technol,

2(2):225-30, 2013.

[8] N. A. Nayan, Y. Takahashi and T. Sekine, “LSI implementation of a low-
power 4× 4-bit array two-phase clocked adiabatic static CMOS logic

multiplier,” Microelectronics Journal, 43(4):244-9,2012.

 https://doi.org/10.1016/j.mejo.2011.12.013

[9] K. Kajstura and D. Kania, “Low power synthesis of finite state machines-

state assignment decomposition algorithm,” Journal of Circuits, Systems

and Computers,27(03):1850041, Mar 7, 2018.
https://doi.org/10.1142/S021812661850041X

[10] F. Carbognani, F. Bürgin, N. Felber, H. Kaeslin and W. Fichtner, “Two-

phase clocking and a new latch design for low-power portable
applications,” In International Workshop on Power and Timing Modeling,

Optimization and Simulation. Springer, Berlin, Heidelberg. 2005 Sep 20,

pp. 446-455. https://doi.org/10.1007/11556930_46
[11] K. Kato, Y. Takahashi, and T. Sekine, “Two phase clocking subthreshold

adiabatic logic,” In 2014 IEEE International Symposium on Circuits and

Systems (ISCAS). IEEE 2014 Jun 1 pp. 598-601.
http://dx.doi.org/10.1109/ISCAS.2014.6865206

[12] S. Erniyazov and J.C Jeon, “Carry save adder and carry look ahead adder

using inverter chain based coplanar QCA full adder for low energy

dissipation,” Microelectronic Engineering. 211:37-43, Apr 15, 2019.

https://doi.org/10.1016/j.mee.2019.03.015
[13] Y. Zhang Y, L. Okamura, and T. Yoshihara, “An energy efficiency 4-bit

multiplier with two-phase non-overlap clock driven charge recovery

logic,” IEICE transactions on electronics, 94(4):605-12, Apr 1, 2011.
https://doi.org/10.1587/transele.E94.C.605

[14] K.C. Kuo and Chou CW, “Low power and high-speed multiplier design

with row bypassing and parallel architecture,”. Microelectronics
Journal,41(10):639-50, Oct 1, 2010.

https://doi.org/10.1142/S021812661750030X
[15] M.S. Kumar, D.A Kumar and P. Samundiswary, “Design and performance

analysis of Multiply-Accumulate (MAC) unit” In International

Conference on Circuits, Power and Computing Technologies [ICCPCT-
2014], 2014 Mar 20 (pp. 1084-1089). IEEE.

https://doi.org/10.1109/ICCPCT.2014.7054782

[16] M. Madheswaran and S. Saravanan, “Design and Analysis of Low Power

Multiply and Accumulate Unit Using Pixel Properties Reusability

Technique for Image Processing Systems,” ICTACT Journal on Image and

Video Processing, 459-66, Aug. 2012.
https://doi.org/10.21917/ijivp.2012.0065

[17] P.I. Khan and R.S. Mishra, “Comparative analysis of different algorithm

for design of high-speed multiplier accumulator unit (MAC),” Indian
Journal of science and technology, 9(8), Feb. 2016.

https://doi.org/10.17485/ijst/2016/v9i8/83614

[18] K. Singh and D. Kumar, “Modified booth multiplier with carry select
adder using 3-stage pipelining technique,” International Journal of

Computer Applications, 44(14):35-8, Apr. 2012.

 https://doi.org/10.5120/6334-8710
[19] Y.N Rao, G.S. Raju, P. Raja, “Design and performance evaluation of high-

speed MAC unit with parallel pipeline technology,” International Journal

of Computer Applications,1;106(4), Jan. 2014
https://doi.org/10.5120/18506-9575

https://doi.org/10.1109/ISCAS.2006.1693183
https://doi.org/10.1016/j.mejo.2011.12.013
https://doi.org/10.1142/S021812661850041X
https://doi.org/10.1007/11556930_46
http://dx.doi.org/10.1109/ISCAS.2014.6865206
https://doi.org/10.1016/j.mee.2019.03.015
https://doi.org/10.1587/transele.E94.C.605
https://doi.org/10.1142/S021812661750030X
https://doi.org/10.1109/ICCPCT.2014.7054782
https://doi.org/10.21917/ijivp.2012.0065
https://doi.org/10.17485/ijst/2016/v9i8/83614
https://doi.org/10.5120/6334-8710
https://doi.org/10.5120/18506-9575

