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Abstract—In this paper, the problem of aliasing and folding 

effects in spectrum of sampled signals in view of Information 

Theory is discussed. To this end, the information content of 

deterministic continuous time signals, which are continuous 

functions, is formulated first. Then, this notion is extended to the 

sampled versions of these signals. In connection with it, new signal 

objects that are partly functions but partly not are introduced. It 

is shown that they allow to interpret correctly what the Whittaker–

Shannon reconstruction formula in fact does. With help of this tool, 

the spectrum of the sampled signal is correctly calculated. The 

result achieved demonstrates that no aliasing and folding effects 

occur in the latter. Finally, it is shown that a Banach–Tarski-like 

paradox can be observed on the occasion of signal sampling. 

 
Keywords—signal sampling; modeling of sampled signal in the 

time domain; signal information content; spectrum aliasing and 

folding; Banach–Tarski-like paradox in signal sampling 

 

I. INTRODUCTION 

HERE is a highly celebrated and commonly used (see, for 

example, [1]–[3]) expression for describing the spectrum of 

a sampled signal. It has the following form:  
 

 ( ) ( )
1

s

k

X f X f k T
T



=−

= − , (1) 

 

where ( )X f  means the spectrum of an energy signal ( )x t and 

( )X f k T−  is this spectrum shifted by k T  (to the left  or to 

the right, depending upon a sign of the integer k) on the 

frequency f  axis. Moreover, t  in ( )x t  stands for a continuous 

time variable and ..., 1,0,1,...k = − . Further, T  is a sampling 

period (in what follows, we use also its reciprocal 1sf T= , 

which means the sampling frequency (rate) used in sampling the 

signal ( )x t . 

Finally, if we denote by ( )sx t   the signal ( )x t   sampled by 

 “picking up” ideally its values periodically with the period T , 

then ( )sX f  occurring in (1) will mean its spectrum. 
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However, note that a similar formula as the one given by (1) 

is also valid when the sampling is not performed ideally. That is 

when the values of the signal “picked up” differ from those 

following from the function ( )x t . Then, the non-ideal signal 

samples refer obviously to a new signal, which differs (in 

practice, slightly) from the (original) signal ( )x t . 

How to model this is explained shortly in what follows. So, 

to this end, let us denote the aforementioned signal as ( ) ;nix t  

it will be associated with ( )x t  in the following way: 

 

 ( ) ( ) ( )ni avx t x t e t= + , (2) 
 

where ( )ave t  means an error signal that follows from an effect 

of performing a local signal averaging operation before 

releasing a sample of ( )x t . (The latter operation has been 

described in more detail in [4].) 

As said, this model (developed in [4]) describes very well the 

operation of a non-ideal analog/digital conversion. In 

accordance with it, the samples of ( )nix t , i.e. ( )nix kT  are the 

ideal samples ( )x kT  which are modified in such a way that the 

following: ( ) ( ) ( )+ni avx kT x kT e kT=  holds. That is ( )ave kT  

is an additive error to ( )x kT . Furthermore, it follows from the 

latter equality that its form corresponds with the form given by 

(2). In other words, we can view ( )x kT  and ( )ave kT  as 

representing “virtual” samples of (not available) signals ( )x t  

and ( )ave t , respectively. 

 It follows from (2) that the spectra ( )niX f , ( )X f , and

( )avE f  of the signals ( )nix t , ( )x t , and ( )ave t , 

respectively, are related with each other by 
 

 ( ) ( ) ( )ni avX f X f E f= +  . (3) 

So, substituting ( )niX f  given by (3) in (1) in place of ( )X f  
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there, gives 
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where ( )sniX f  means the modified spectrum ( )sX f  – as a 

result of a non-ideal sampling operation performed by a (non-

ideal) A/D (analog/digital) sampler. 

The formula given by (1) or (4) (precisely, the expression on 

the right-hand side of (1) or (4)) shows evidently the occurrence 

of aliasing and folding effects in the spectrum of the signal 

( )sx t  or ( )snix t , respectively, where the latter means a 

sampled version of the signal ( )nix t .  

In this paper, we present a critique of the model that yields 

this result; it is done from the point of view of the Information 

Theory. Whereby, we limit ourselves here to consideration of 

the case of the ideal sampling only. It seems to us that the case 

of the non-ideal sampling will yield similar results, however, its 

detailed analysis is left for a later time or to others (if wished). 

A route is already outlined and framework prepared in this paper 

to perform the above task. 

The remainder of the paper is organized as follows. In the 

next section, we define and discuss an information content of 

the deterministic continuous time signals which are continuous 

functions. Section III is a continuation of this subject. It is 

devoted to finding an appropriate definition of the information 

content of the deterministic continuous time signals which are 

sampled versions of continuous functions. The definition 

developed fully coincides with the one presented by Prof. 

Bracewell in [3]. However, their mappings in the time differ 

from each other substantially. As a result, their representations 

(spectra) in the frequency domain differ appropriately, which 

calls into question the validity of the formula (1). The next 

section is devoted to a certain paradox, called here a Banach–

Tarski-like paradox, that can be observed when performing the 

signal sampling. It is explained here in detail. The paper ends 

with a final conclusion. 

II. INFORMATION CONTENT OF DETERMINISTIC CONTINUOUS 

TIME SIGNALS WHICH ARE CONTINUOUS FUNCTIONS 

Obviously, a question about an information content of the 

deterministic continuous time signals seems to belong to those 

peculiar or quirky ones – for various reasons.  

First of all, it has nothing to do with the notion of entropy – 

despite that it asks about the information. This is so because we 

ask here about it in a quite different sense. Here, we speak about 

informational objects, which are not treated as probabilistic ones 

but are considered as deterministic functions. 

Further, our objective here is not to find any quantitative 

measure for the information content contained in a given 

deterministic signal – in an usual sense of the word “measure” 

which is used in mathematics. 

Instead of this, it is sufficient for us here to distinguish 

between different signals (functions), which carry some 

information as, for example, a voltage waveform registered in 

an electric (electronic) device. Such a signal carries information 

about values of the voltage at the device considered. It informs 

us about how they change with time. And, this is unique, distinct 

from other possible voltage waveforms. 

So, for the needs of considerations presented in this paper, we 

assume any of the distinct waveforms, taken from the whole set 

of possible ones, as representing the information contained in it. 

In other words, any such waveform is also – per the above 

descriptive definition – its information content. Or, in our 

understanding, a signal and its information content mean the 

same. 

Moreover, note also that when we speak in this section about 

signals of a continuous time (functions of a continuous time 

variable), we assume that they are, exclusively, continuous 

signals (functions). 

The above assumption allows us to transfer the signals 

(functions) mentioned from the time domain into the frequency 

domain with the use of the standard Fourier transform or Fourier 

series. Furthermore, these transformations are one-to-one 

mappings. Therefore, we can say that the information contents 

of the corresponding spectra, obtained via mapping (time) 

signals with the use of the Fourier transform or Fourier series, 

retain the same. 

In what sense? Referring to the field of topology, we could 

say that in a “topological” sense. That is they are converted into 

some other forms (similarly as geometric shapes), but without 

losing the ability to return to their original forms (that is 

functions of time). 

In summary of this section, note that the information content 

of a continuous time signal can be equivalently expressed via its 

spectrum. Further, the latter (being a complex function of 

frequency) can be back-transformed, thereby allowing a perfect 

recovery to its original form. 

III. INFORMATION CONTENT OF DETERMINISTIC CONTINUOUS 

TIME SIGNALS WHICH ARE SAMPLED VERSIONS OF 

CONTINUOUS FUNCTIONS 

Consider the case of an ideal sampling of a continuous time 

signal being a continuous function that was considered in the 

previous section. So, if we denote it as ( )x t , similarly as in the 

Introduction, with t  meaning a continuous time variable (as 

before), its samples in this case will be exactly equal to its values 

picked up periodically with a period T . 

Usually, in signal processing, one forms a sequence of 

indexed values from these samples. But, note that such a 

sequence cannot be treated as something like a “bag of indexed 

elements” only. Specifically, when one wants to calculate its 

spectrum in the sense which is inherently related with the notion 

of the standard Fourier transform or of the standard Fourier 

series. Then, we must take into account the fact that the indices 

of the sequence considered (understood here more generally as 

, ,kT k R Z  where R  and Z  are the sets of reals and 

integers, respectively) are in fact “deeply immersed” in the  
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continuous timeline. In other words, the elements of the 

sequence are placed at strictly defined points of the continuous 

time space. So, it can be assumed then that they create a function 

of a continuous time. And, just in such a way, this is done in the 

signal processing literature. 

More precisely, there exist in the literature (see, for example, 

[1] Fig. 4.2 (b) page 142; [2] Fig. 3.2 (c) page 36; [3] Fig. 10.2 

(c) and (d) page 221) basically two ways of representing the 

indexed sequences ( )   ,kTx kT x= kZ  of samples of the 

signal ( )x t  as a function (or a generalized function) of a 

continuous time. They are illustrated in Fig. 1. 
 

 

Fig. 1. Illustration to two graphical representations of a sequence of samples on 

the continuous time axis t which are used in the literature. They are a generalized 

function (upper curve) or a not continuous function (middle curve), respectively. 

In more detail, both of them are representations – associated with the sequence 

of samples – of an analog (i.e. un-sampled) signal shown at the bottom of this 

figure. Furthermore, note that the upper curve is a representation in form of a 

series of weighted Dirac deltas (generalized functions of this type) occurring 

uniformly on the continuous time axis t in the distance of T from each other. 

Whereas the middle curve is a series consisting of time-dependent signal 

elements (occurring also uniformly on the continuous time axis t in the distance 

of T from each other). Finally, we remark here that this figure is based on a one, 

which was used in discussions presented in [5] and [6]. 

 

The first of them uses a series of weighted Dirac deltas (i.e. 

generalized functions of this type) to model the sampled signal 

( )sx t . That is this signal is expressed then as 

 

 ( ) ( ) ( ) ( ),s D T Tx t x t t x t= =   , (5) 

 

where the so-called Dirac comb ( )T t  is defined by 

 

 ( ) ( )T

k

t t kT 


=−

= −  (6) 

with ( ) ,  ., 1,0,1,.,t kT k − = −  meaning the time-shifted Dirac 

deltas. Furthermore, note the use of an equivalent notation 

( ),D Tx t  in (5) and in Fig. 1 for ( )sx t . In it, the first index, D, 

stands for the name of Dirac. The latter notation (instead of

( )sx t ) will be used in what follows to emphasize which model 

is currently in use (in modelling the sampled signal). 

Furthermore, we also emphasize here that the form of (1) 

follows exclusively from modelling of a sampled signal ( )sx t  

by just a series of Dirac deltas (impulses). For more details 

regarding this fact see, for example, [1]–[3]. 

In the second way of the sampled signal modeling, which is 

illustrated in Fig. 1 (middle curve), we exclusively use the 

following notation: ( ),K Tx t  – for denoting the sampled signal. 

In ( ),K Tx t , the first index K stands for the name of Kronecker 

and the second one, T, means (as before) a sampling period. 

Furthermore, this signal can be expressed analytically as 
 

 ( ) ( ) ( ), ,K T K Tx t t x t=   , (7) 

 

where ( ),K T t  means a function that can be called, in analogy 

to the Dirac comb, a Kronecker comb [5].  And, the latter is then 

defined as 
 

 ( ) ( ) ( ), 0, ,K T t T k k t T

k k

t t kT t  
 

−

=− =−

= − =  ,  (8) 

 

where ( ),i t T t , 𝑖 ∈ ℤ, denotes an extension of the usual 

Kronecker symbol to a function of time (as it has been done in 

[5]; more details on this can be found there). 

It is worth noting at this point that the form of both the 

expressions on the right-hand sides of (5) and (7) is the same. 

That is it is a multiplication of the corresponding comb by the 

signal ( )x t . Note however that these expressions are not 

identical because the combs involved in them are not identical. 

More precisely, we have ( ) ( ),i t Tt iT t −  , 𝑖 ∈ ℤ, what 

implies  ( ) ( ),T K Tt t  , and finally ( ) ( ), ,D T K Tx t x t . 

Note that contrary to the above Prof. Bracewell writes in a 

caption to Fig. 10.2 on page 221 of his excellent book [3] the 

following: “The samples (c) [that is those which are shown by a 

curve (c) of his Fig. 10.2, which in turn is visualized here by the 

middle curve of our Fig. 1] are equivalent in content to the train 

of impulses (d) [that is those which are shown by a curve (d) of 

his Fig. 10.2, which in turn is visualized here by the upper curve 

of our Fig. 1]. Obviously, mathematically speaking, such a 

claim is not correct because real numbers cannot be simply 

considered (treated) as Dirac impulses and vice versa. However, 

see that the Prof. Bracewell’s claim of “equivalence in content”, 

expressed above, can be made understandable correctly in the 

sense of identification of the coefficients of the impulses (i.e. 

Dirac deltas multiplied by some numbers) in his Fig. 10.2 (d) 

with the corresponding numbers shown on the curve (c) of his 

Fig. 10.2. And, with assuming at the same time that all the rest 

have no meaning. 

x(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

xD,T(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

x
K,T

(t) 

t  0  -T  T 2T

T  
3T  -2T  -3T  4T  5T  
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Let us further stick to the monograph of Prof. Bracewell [3] 

while discussing a not understandable, in our opinion, 

identification of the sampling process with the Dirac comb (in a 

description of this process) and/or saying that both the 

representations of the sampled signal mentioned above, i.e.  

( ),D Tx t  and ( ),K Tx t , are identical (or that ( ),D Tx t  is the only 

valid one). On page 221 of [3], Prof. Bracewell writes: “In the 

derivation that follows, the introduction of the shah symbol 

[named here the Dirac comb and denoted as ( )T t ] proves 

convenient, because multiplication by Ш(t) [that is by ( )T t , 

using our notation] is equivalent to sampling, in the sense that 

information is retained at the sampling points and abandoned in 

between.” A little bit further, on the next page, he continues: 

“Consider the function ( ) ( )
k

x kT t kT


=−

−  [expressed with 

the use of our notation; further, note that it is another form of 

(5), in which (6) and the sifting property of the Dirac delta have 

be applied] shown in Fig. 10.2 (c–>d). Information about ( )x t  

is conserved only at the sampling points where t is an integral 

multiple of the sampling interval T. The intermediate values of 

( )x t  are lost.” 

See now that the above sentences quoted confirm that [3] 

models the signal sampling as an operation performed by a 

Dirac comb on a signal ( )x t  (more precisely, it is defined as an 

operation of their multiplication). But, it is surprising there that 

an another function, namely ( ) ( )0,t T k

k

x kT t kT


−

=−

−  (which 

is visualized here in Fig. 1 (middle curve)), is indicated by Prof. 

Bracewell as a result of this operation (i.e. of this 

multiplication). Not the function ( ) ( )
k

x kT t kT


=−

−  

mentioned by him; the latter is visualized (here) in Fig. 1 (upper 

curve)). This suggests of course that the functions 

( ) ( )
k

x kT t kT


=−

−  and ( ) ( )0,t T k

k

x kT t kT


−

=−

−  are used 

by Prof. Bracewell interchangeably, as equivalents of each 

other. However, this is mathematically forbidden because, as 

already mentioned, ( ) ( ),T K Tt t  , what follows from the fact 

that ( ) ( )0,t T kt kT t kT  −−  − , 𝑘 ∈ ℤ (for more details, see 

[5]). 

Furthermore, note that the reasoning of Prof. Bracewell 

presented above can be also interpreted as follows. He assumes 

that an internal behavior of an analog signal sampler (A/D 

converter) can be modelled, in a quite abstractive way, with the 

use of the Dirac comb. But, this Dirac comb does not “appear” 

in any form at the output of the A/D converter. Instead, the 

signal of the form presented in Fig. 1 (middle curve) appears at 

its output. 

Obviously, the above interpretation casts doubts on the 

meaningfulness of that abstraction which exploits the Dirac 

comb. 

However, we cannot end at this point our discussion of the 

possible representations of a sampled signal, as they are 

sketched in Fig. 1 (upper and middle curves). Why? Because a 

closer look at them, at their descriptions presented in [1]–[3], 

shows that they differ or can differ slightly from each other with 

regard to the sets of those instants of the t axis at which no signal 

sampling is performed. More precisely, Prof. Bracewell by 

saying “abandoned in between” (with regard to the object shown 

in Fig. 10.2 (d)) and that “the intermediate values of ( )x t  are 

lost” (with regard to the object shown in Fig. 10.2 (c)) tells us 

in fact that the values of the objects mentioned for all the instants 

different from the sampling points are not known (or are not 

defined). And, relating this to our curves from Fig. 1, see that it 

would mean that all the values of ( ),D Tx t  and ( ),K Tx t  for the 

instants different from the sampling points would not be equal 

to zeros (as suggested there), but they would be simply 

undefined (or unknown). 

Contrary to the above, we have in [1] and [2] a quite different 

interpretation. To see this, look at page 141 of [1], where 

Oppenheim, Schafer, and Buck write “ ( )sx t  [which 

corresponds to our ( ),D Tx t  in Fig. 1 (upper curve)] is, in a 

sense, a continuous-time signal (specifically, an impulse train) 

that is zero except at integer multiples of T”. Whereby, note that 

this assumption (or fact) follows directly from a simplified 

(naive) definition of the Dirac delta which is used in [1] and [2]; 

for more details and discussion about the latter definition, see, 

for example, [7]. 

The possibility of modelling the sampled signal in form of a 

one that is presented in Fig. 1 (middle curve) has not been 

considered in [1] and [2]. However, we can presume that if this 

were done there, it would have been made similarly. That is all 

the values of this signal (i.e. of ( ),K Tx t  in our notation) lying 

between the sampling instants would be identically equal to 

zeros. 

Let us now summarize our above findings regarding 

modelling of the sampled signal. First of all, the main 

conclusion that follows from them is the following: there are in 

fact four proposals in the literature to model this signal. 

However, they are not identical – although people think it is so. 

In what follows, we will strive to disabuse the researchers of 

that delusion. To this end, we start with defining (formally) and 

denoting appropriately all the signal forms discussed above. So, 

from now on, we use the notation ( ),D Tx t  exclusively for the 

signal described by the right-hand side of (5) and with all its 

values equal identically to zero for instants different from the 

sampling points. (Note that this understanding of ( ),D Tx t  is 

based on the simplified (naive) definition of the Dirac delta – 

mentioned above.) Further, the notation ( ),K Tx t  exclusively 

for the signal described by the right-hand side of (7) and with 

all its values equal identically to zero for instants different from 

the sampling points. (Note that no comment need to be added in 

this case because the right-hand side of (7) determines precisely 

the values of this signal.) Moreover, we introduce a new 
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notation, ( ),D Tx t , for the signal described by the right-hand 

side of (5) but now with all its values unknown (not defined) for 

instants different from the sampling points. (Note that this 

understanding of ( ),D Tx t  can be attributed to a more 

sophisticated definition of the Dirac delta – considered as a 

distribution (generalized function)). And, finally, we introduce 

another new notation ( ),K Tx t  for the signal described by the 

right-hand side of (7) but only for the instants of signal sampling 

and with all its values unknown (not defined) for the other 

instants (that is for those which are different from the sampling 

points). (Note that this signal can be viewed as a result of 

applying an additional operator, say U, to the signal ( ),K Tx t , 

with assuming that this operator makes all the zero values of  

( ),K Tx t  outside the sampling points undefined ones. That is we 

have ( ) ( )( ), ,K T K Tx t U x t= . Furthermore, observe that then 

the signal ( ),K Tx t  does not represent a function (because it 

does not meet the function definition) – in contrast to ( ),K Tx t , 

which is an ordinary function.) 

It follows clearly from the above discussion that the signals 

( ),D Tx t , ( ),K Tx t , ( ),D Tx t , and ( ),K Tx t , are not equivalent 

to each other. Nevertheless, all the four are used in modelling of 

the same thing: the output signal of A/D converters. So, this is 

rather a paradoxical situation. However, see that it would be 

reasonable and appropriate to ask which of them (in our 

opinion) most closely reflects the reality. 

The signals ( ),D Tx t  and ( ),D Tx t  seem to be not good 

candidates for modelling correctly the reality,  for a very simple 

reason. At the output of A/D converters, the Dirac deltas do not 

appear, as already mentioned. Instead of this, there appear finite 

values (numbers) at the output of A/D converters, in a “rhythm” 

determined by the sampling rate. And, see that this behavior is 

perfectly reflected in the signal ( ),K Tx t . So, we must accept it 

(there is no other choice) as the one which reflects the reality 

most closely.  

But what about the signal ( ),K Tx t ? It is very useful in signal 

processing because it points us, indirectly, to an appropriate 

signal of a continuous time, which was sampled, and which we 

will shortly want to recover – by performing the signal 

reconstruction along the lines of the Whittaker–Shannon 

formula [1]–[3] 
 

 ( ) ( ) ( ),  sincK T

k

x t x kT t T k


=−

= −  ,         (9) 

 

where the function  is defined as 

 

  . (10) 

 

Further, note also that the signal ( ),K Tx t , which is not equal to 

the real signal ( ),K Tx t  occurring at the output of the A/D 

converter, must be treated as a virtual signal. However, it is 

needed in signal processing. 

To demonstrate its necessity, let us now carry out the 

following thought experiment (Gedankenexperiment) – as 

presented below. Thus, assume for a while that a signal ( )x t  to 

be sampled has a form of the one illustrated in Fig. 1 (middle 

curve). That is all its values referring to the points outside the 

points ,  ,t kT k= Z on the time axis are identically equal to 

zero. Next, perform the sampling operation on this signal, 

choosing sampling instants exactly at the points t kT= ,  .kZ

In this way, we obtain a sampled signal ( ),K Tx t  that will be 

identical with ( )x t . As a consequence, the recovery of the 

latter signal with the use of the formula (9) would lead, in this 

case, to an obvious error. However, see that we would avoid this 

error, if we noted that the function ( ),K Tx t  is also equal to 

( ),K Tx t  in this case. Why? Because simply in this case we do 

not need any signal recovery process. Or, in other words, all the 

“theoretically” undefined values after performing sampling are 

here known. 

In turn, assume now ( )x t  to be a bandlimited signal ( )x t  

we want to sample. Perform then the sampling operation on this 

signal, choosing the sampling instants exactly at the same points 

,  t kT k= Z  as before. And, assume further that all the 

samples of this signal are exactly the same as before. That is the 

function ( ),K Tx t  is the same in both cases. However now, 

unlike in the previous case, the function ( ),K Tx t  differs from 

( ),K Tx t . And, this fact indicates that new values will appear in 

the recovery process (here according to the rule given by (9), or, 

in general, to any other appropriate one) at the instants at which 

zeros (per definition) occur in ( ),K Tx t . 

So, in summary of the above, we can say that if the following: 

( ) ( ), ,K T K Tx t x t  holds, this means that a non-pathological 

signal has been sampled. And, a signal reconstruction reveals 

new signal values in this case. 

Additionally, note that before performing the signal 

reconstruction a kind of digital filtering on the signal samples is 

often performed. Obviously, it is carried out with the use of a 

signal processor (which works on numbers); further, these 

manipulations on numbers cause that the function ( ),K Tx t  and 

the associated one, ( ),K Tx t  are modified. So, the modified 

function ( ),K Tx t  shows in this case all the “hidden” values of 

the signal which need to be “uncovered” and which were also 

(in between, before signal reconstruction) filtered. This ends our 

proof of the necessity of the function ( ),K Tx t . 

We take also this opportunity to bring to the reader’s attention 

the fact that any signal ( )x t  being a continuous function of a 

( )sinc t

( ) ( )sinc sin   for 0   and  1 for 0t t t t t =  =
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time variable t, together with all its sampled versions ( ),K Tx t  

containing sets of “hidden” values that can be perfectly 

“uncovered”, can be considered on a unified basis as a signal 

object [8], or as a function with an attribute [9]. For more details, 

see [8] and [9]. 

Further, we remark also that (9) can be rewritten as 
 

 ( ) ( ) ( ),  sincK T

k

x t x kT t T k


=−

= −          (11) 

 

because the values of the signals ( ),K Tx t  and ( ),K Tx t  are the 

same at the sampling points ,  kT kZ . (Moreover, see that 

( ) ( ) ( ), , ,  D T K Tx kT x kT x kT k= = Z , what follows from (5) 

and (7).)  

Let us emphasize once again the importance of our finding 

that just the signal ( ),K Tx t  is really the one which most closely 

reflects the reality at the A/D converter output at the sampling 

points and, at the same time, informs us which of the other 

values of this function (per definition) are not known, but will 

not be identically equal to zeros after performing the signal 

reconstruction. Furthermore, observe that the graph of ( ),K Tx t  

corresponds with the Prof. Bracewell’s graph presented at Fig. 

10.2 (c) on page 221 of  [3]. And that he said (there) the 

following: “Information about ( )x t  is conserved only at the 

sampling points where t is an integral multiple of the sampling 

interval T.” – as we have already cited. 

Further, note that this is the whole information contained in 

( ).x t  What is this due to? This follows from the fact that ( )x t  

can be perfectly reconstructed just from the information 

mentioned via the formula (9). Whereby, when T does not 

satisfy the conditions of the Nyquist–Shannon sampling 

theorem [1]–[3], ( )x t  is to be understood as a bandlimited 

modified signal (where, here, the signal modification means a 

kind of filtering connected with the signal shaping at the same 

time; they have been described as well as explained in detail in 

[10]). 

Can we equivalently express this information in the 

frequency domain? In a similar way as it was done in the case 

of the deterministic continuous time signals being continuous 

functions, discussed in Section II? This is not possible. Why? 

Because ( ),K Tx t  is not a function (as pointed out before). 

Therefore, its Fourier transform does not exist. 

Note also that the other possible candidates mentioned 

before: ( ),K Tx t  and ( ),D Tx t  do have Fourier transforms, but 

they contain false information about the sampled signal 

information content. The former because its Fourier transform 

is equal to zero (for more details about, see [5]). And the latter 

because its spectrum, expressed by (1), is burdened by the effect 

of multiple duplication. 

However, see that, if we so strongly insist on characterizing 

the information content of the sampled signal also by a 

spectrum, it follows from all the considerations presented above 

that the only reasonable solution is then to assign to it the 

spectrum of ( )x t , i.e. its Fourier transform ( ) ( )( )X f x t= F , 

where ( )F  stands for carrying out the standard Fourier 

transformation. Moreover, note that the proposal and arguments 

for doing so have been already presented in the literature, see 

[5] and [6]. We continue here this topic. 

Whereas, the above must be slightly modified when the 

sampling period T does not satisfy the conditions of the 

Nyquist–Shannon sampling theorem [1]–[3]. More precisely,  

when the following: 
 

  (12) 

 

does not hold, where 
mf  stands for the maximal frequency in 

the spectrum of the bandlimited signal ( )x t . Then, we must 

take a modified signal ( )ax t , calculated from 

 

 ( ) ( ) ( )( ) ( ),  sinca a K T

k

x t x kT x kT t T k


=−

= = − , (13) 

 

instead of ( )x t , in calculation of the corresponding spectrum 

via the relation ( ) ( )( )a aX f x t= F . (Whereas, it is still worth 

to remember that ( ) ( ) ( ), ,K T K Tx kT x kT x kT= =  is all the time 

in force.) 

The signal ( )ax t  given by (13) – that is when (12) does not 

hold – differs obviously from ( )x t . (As a result, we have

( ) ( )aX f X f , too.) We can say that the former signal is 

distorted when comparing it with the latter one. However, it still 

remains a bandlimited one. More precisely, as shown in [10], it 

can be viewed as a result of low-pass filtering of the signal ( )x t  

and its shaping at the same time. And, the resulting signal 

possesses the maximal frequency that is present in its spectrum 

– denote it here as 
maf – equal to ( )1 2T  (that is ( )1 2maf T= ). 

So, concluding the above outcomes, we see that the 

information content of the sampled signal, considered 

equivalently in the frequency domain, is given by 
 

 ( )( )
( ) ( )

( ) ( )
,

  when  1 2  
SPECT

  when  1 2  ,

m

K T

a m

X f T f
x t

X f T f


= 



 (14) 

 

where a new symbol ( )SPECT   is used (because the Fourier 

transform of ( ),K Tx t  does not exist).  

Observe further that the right-hand side of (14) differs 

substantially from the one in (1). Here, no aliasing and folding 

effects occur. And, in our opinion, it represents a correct model. 

Let us now describe the process of signal sampling via the 

language and notions of Information Theory. And, to this end, 

observe that the signal sampling can be viewed as a process of  

data (information) compression, in which the signal ( )x t  can 

be seen as possessing much redundant information. This 

( )1 2 mT f
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redundant information is removed from it through the sampling 

operation, and as a result we obtain the signal ( ),K Tx t . If now 

the sampling period T satisfies the inequality (12), all the 

redundant information (indicated in ( ),K Tx t  as undefined 

values)  can be fully recovered from ( ),K Tx t  via application of 

(9). Therefore, we can call this sampling a lossless one; it 

corresponds with the lossless compression of information. 

Unlike this, when the sampling period T does not satisfy (12), 

not only a redundant information is removed, but also some 

amount of the non-redundant one, too. In other words, some 

information is then lost and as a consequence, the signal 

( ),K Tx t  does not enable to recover the signal ( )x t  (only the 

signal ( )ax t  that is a distorted signal – with regard to ( )x t ). So, 

we can name this sampling a lossy one; it corresponds with the 

lossy compression of information. 

Note that taking the above into account we can say 

equivalently that  the information content of the sampled signal 

(its spectrum) equal to ( )X f  means the lossless sampling, but 

equal to ( )aX f  the lossy one. 

IV. BANACH–TARSKI-LIKE PARADOX IN SIGNAL SAMPLING 

PROCESS 

This section is devoted to a certain effect, which can be 

observed in the signal sampling process, namely a 

multiplication of the signal that is sampled. In other words, we 

can observe here an effect which is similar to the one occurring 

in the so-called Banach–Tarski paradox [11]. The latter deals 

with such a decomposition of the three-dimensional ball that 

allows to build up two copies of it from the pieces obtained in 

this decomposition. As we show here, the signal sampling can 

be also viewed as a partitioning process. Moreover, it has 

specific properties. 

Let us start our considerations here with defining a new signal 

( ),

c

K Tx t  that is complementary to ( ),K Tx t . That is with 

 

 ( ) ( ) ( ), ,

c

K T K Tx t x t x t= − . (15) 

 

From this definition, it follows that the signal ( ),

c

K Tx t  

represents the values of the signal ( )x t  for all the instants 

except of those which are the sampling points. At the latter 

points, the values of the signal ( ),

c

K Tx t  – considered as a 

function – are equal to zero. Complementary to that, the signal 

( ),K Tx t  contains the values of samples of the signal ( )x t  

(placed obviously at the corresponding instants). But all the 

other values of the former signal – considered as a function – 

are identically equal to zero. 

In the next step, let us replace “all these holes”, that is the 

places in the functions ( ),K Tx t  and ( ),

c

K Tx t  in which we have 

the aforementioned zeros, with unknowns. In other words, let us 

treat, in what follows, these zeros as some values which are not 

known. And, see that this in fact leads to building up new 

objects, ( ),

c

K Tx t  and ( ),K Tx t  on the basis of the functions 

( ),

c

K Tx t  and ( ),K Tx t . (The former ones are not functions. 

Moreover, note that ( ),K Tx t  has been already defined in 

Section III, and ( ),

c

K Tx t  is defined in a similar way.) 

Let us assume now that the sampling period T is so chosen 

here that (12) holds. Then, as the Nyquist–Shannon sampling 

theorem [1]–[3] states and in connection with its application to 

the signal ( ),K Tx t  as discussed in Section III, we can get a 

perfect image of the signal ( )x t  from it. And, we do that at this 

moment, getting the first copy of ( )x t . In other words, we get 

( ),K Tx t  with all its unknowns replaced by the “true” values of 

( )x t  at the corresponding points (which, as the whole, provides 

us with ( )x t ).    

Obviously, we will get the second copy of ( )x t  by 

manipulating on the signal ( ),

c

K Tx t . Here, the manipulation 

will rely upon finding the limits of ( ),

c

K Tx t  for the instants at 

which its unknowns occur and replacing the latter ones just by 

these limits found. In more detail, we calculate the left-hand side 

limit, ( )( ),lim ,  ,c

K T
kT kT

x kT k
−

−
→

Z  or the right-hand side one, 

( )( ),lim ,  c

K T
kT kT

x kT k
+

+
→

Z . Further, see that the continuity 

property of the function ( )x t  ensures that the above limits exist 

and are equal to each other. We pick up one of them and put it 

into the place where the corresponding unknown in the signal 

( ),

c

K Tx t  occurs. After performing this at all the instants 

,  kT kZ  (countably many), we get from ( ),

c

K Tx t  the signal 

( )x t . And, this is the second copy of it received in our 

partitioning process. Hence, really, we have duplicated the 

signal ( )x t . 

Consider here also the case of choosing the sampling period 

T so that it does not satisfy the condition (12). Then, we obtain 

obviously the “compressed” signal ( )ax t  after applying the 

Whittaker–Shannon formula (9) to the samples of ( ),K Tx t  in 

the first part of the procedure described above. But, in its second 

part, we obtain the signal ( )x t  from ( ),

c

K Tx t  – as before 

(worth emphasizing). So, in this case, the signal duplication 

procedure will have two branches: the one that is “non-perfect” 

and the second being fully perfect one. 

Finally, let us note that the procedure described above can be 

repeated an infinite number of times generating an infinite 

number (but countable) of signals ( )x t  (when (12) is satisfied) 

or pairs ( )ax t  and ( )x t  (when (12) is not satisfied). 
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V. FINAL CONCLUSION 

The results obtained in this paper show that by using simple 

mathematical tools and basic notions of Information Theory it 

is possible to resolve the problem of occurrence of the aliasing 

and folding effects in spectrum of sampled signals. The 

outcomes of this paper indicate that such effects do not occur. 
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