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Abstract—This paper presents a simulation study of the 

simultaneous reconstruction of the non-smooth strain distribution 

of an optical fiber Bragg grating and its temperature, which is 

based on the reflection spectrum of the reflected beam of the 

grating. The transition matrix method was used to model the 

reflection spectrum of the grating, and the nonlinear Nelder-

Mead optimization method was used to simultaneously 

reconstruct the strain distribution along the grating and its 

temperature. The results of simulations of simultaneous 

reconstruction of the strain profile and temperature indicate good 

accord with the strain profiles and temperature set. The 

reconstruction errors of the strain profiles are less than 1.2 

percent and the temperature change errors are less than 0.2 

percent, with a noise level of 5 percent. 

 
Keywords—fiber Bragg grating; non-smooth strain 

distribution; reflection spectrum 

I. INTRODUCTION 

IBER optic sensors are currently used in many fields of 

technology, science, medicine and research due to their 

known advantages that conventional measurement sensors do 

not have. The development of sensor technology is still 

dynamic and is based on new optical fiber technologies, new 

optical fiber elements and new effects caused by physical and 

chemical quantities impacting the optical fiber or optical fiber 

element during light propagation. One direction of research in 

this area is to measure two or more quantities simultaneously 

using a single sensor. These sensors are called two-parameter 

or multi-parameter sensors, respectively. This usually uses 

different wavelengths and/or different modes of light for which 

the processing sensitivities of the measured quantities are 

different. The processing equation of a multi-parameter sensor 

written in matrix form, with the sensitivities of the measured 

quantities determined for different wavelengths or for different 

modes of light, allows the measured quantities to be 

reconstructed by calculating the inverse sensitivity matrix, 

subject to the condition that the determinant of the sensitivity 

matrix has a value different from zero. The most common two 

quantities measured simultaneously are strain and temperature 

[1,2], refractive index and temperature [3], fluid level and 
 

 
M. Detka is with Faculty of Electrical Engineering, Automatic Control and 

Computer Science, Kielce University of Technology, Poland (e-mail: 

m.detka@tu.kielce.pl). 
C. Kaczmarek is with Faculty of Electrical Engineering and Computer 

Science, Lublin University of Technology, Poland (e-mail: 

c.kaczmarek@pollub.pl). 
 

temperature [4], and force and temperature [5]. The most 

commonly simultaneously measured three quantities are 

torsion, strain and temperature [6]. The aforementioned multi-

parameter sensors allow the realization of multi- or single-

point measurements. Fiber-optic Bragg gratings make it 

possible to reconstruct estimates of their parameters and the 

measurand distribution functioning along their length based on 

their spectra. Many methods have been developed to 

implement the above inverse problem. Most commonly, the 

amplitude spectrum of the beam reflected by the grating and 

optimization methods are used for this purpose [7]-[10]. In 

[11], the authors used the Bragg grating amplitude spectrum 

and improved particle swarm optimization to simultaneously 

reconstruct the temperature and mean strain. 

This paper presents a two-parameter sensor for simultaneous 

measurement of strain and temperature distribution based on 

the reflection spectrum of the reflected beam of a fiber optic 

Bragg grating. Simulation studies of the proposed sensor were 

performed. The transition matrix method was used to model 

the reflection spectrum of the grating, and the nonlinear 

Nelder-Mead optimization method was used to simultaneously 

reconstruct the strain distribution along the grating and its 

temperature. The results of simulations of simultaneous 

reconstruction of the strain profile and temperature indicate 

good accord with the strain profiles and temperature set. The 

reconstruction errors of the strain profiles are less than 1.2 % 

and the temperature change errors are less than 0.2 %, with a 

noise level of 5 %.  

II. METHOD OF RECONSTRUCTING THE STRAIN 

DISTRIBUTION AND TEMPERATURE  

There are two stages in the process of reconstructing the 

strain distribution and temperature change of the grating. In the 

first one, the amplitude spectrum of a uniform grating is 

calculated with given parameters, and then the grating 

parameters are reconstructed from the calculated amplitude 

spectrum after adding noise. In the next step, the amplitude 

spectrum of the grating subjected to the assumed strain 

distribution and temperature change is calculated using the 

previously reconstructed grating parameters, and then the 

strain distribution and temperature change are reconstructed 

based on the calculated spectrum and the addition of white 

noise. 

To calculate the spectrum of the reflection beam of the 

uneven grating, the method of transition matrix was applied 
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[12]. For transparency of the paper, an outline of this method is 

given below. 

The grating period, the changes of which are caused by the 

strain distribution (z), and the temperature change T can be 

expressed as: 

 

 
0 1( ) [1 (1 ) ( ) ( ) ]e nz p z T   =  + − + +   (1) 

 

where 0 is the initial period, and pe the elasto-optic 

coefficient, z the distance along the longitudinal axis of the 

fiber, 1 the temperature expansion coefficient of the optical 

fiber, and n the temperature-optic coefficient. 

The distribution of the refractive index of the grating core 

characterizing the Bragg grating is a function: 

 

  (2) 

 

where: no is the average value of the refractive index, neff  is 

the amplitude of variation of the refractive index, (z) 

describes the grating chirp. 

If the grating is apodized with a Gaussian profile, the change 

in the refractive index is expressed by the formula: 

 

  (3) 

 

where L is the grating length,  is the parameter of Gaussian 

function width. 

The mathematical model of a Bragg grating is a pair of 

coupled differential equations describing the interaction 

between two identical modes propagating in opposite 

directions [12]. 

In the transition matrix method, the grating is divided into M 

equal, uniform sections. Each section is described by a 2x2 

transition matrix whose elements are a function of the optical 

wavelength, segment length, segment period, and physical 

properties of the grating. The period of each segment is 

calculated from relation (1) where ε(z) and T are local values. 

The T matrix describing the entire grating structure can be 

described by the equation: 

 

  (4) 

 

where T1, T2 ... TM are matrices of uniform sections 1, 2 ... M 

of the grating. Relationships for the calculation of matrices of 

uniform sections are specified in [12, 13]. 

The power reflection coefficient for the whole grating takes 

on the form: 

 

  (5) 

 

For the assumed values of the grating parameters L, , 

neff,   and (z) and T, based on the above relationships, it is 

possible to calculate the amplitude spectrum of the beam 

reflected by the grating. 

The reconstruction of the strain profile and temperature 

changes, and the synthesis of the grating are performed using 

one of the optimization techniques: the Nelder-Mead simplex 

method [14]. The mean square deviation between the modeled 

and the reconstructed spectra of the grating is assumed to be 

the objective function: 

 

  (6) 

 

where Rmod() and Rodt(,...n) are the modeled and 

reconstructed spectra of the grating, respectively. By 

determining the minimum of the objective function f() we 

obtain optimal values of parameters 1 n. 

III.  SIMULATION RESULTS 

In the first step of reconstructing the strain distribution and 

temperature changes of the grating, the parameters of the 

unstrained grating were reconstructed: L, , neff, . For the 

assumed values of the grating parameters, the amplitude 

spectrum of the beam reflected by the grating, apodized with a 

Gaussian function (3) was calculated using the transition 

matrix method with the grating divided into 50 identical 

sections. White noise is added to the calculated spectrum. On 

the basis of the calculated amplitude spectrum, the grating 

parameters are reconstructed using the Nelder-Mead simplex 

algorithm with the objective function according to formula (6), 

where it is assumed that 1 = L, 2 = , 3 = neff, 4 = . 

In the second stage, the strain distribution and temperature 

change were reconstructed on the basis of its modelled 

spectrum caused by the set non-smooth strain distribution (z) 

and the set temperature change T. The grating strain was 

assumed to consist of a part of linearly increasing strain and a 

part of zero strain. 

Strain distribution is a function: 

 

  (7) 

 

where z0 is the point of the strain non-smoothness. 

Given the determined grating parameters L, , neff and  

the unknown parameters are now 1 = a, 2 = T, where a is 

the gradient of the nonzero part of the strain, and T the 

change in grating temperature. Like in the first stage, the 

proposed method allows to determine the value of these two 

parameters, and thus it allows to reconstruct the non-smooth 

distribution of strain (z) and grating temperature changes T. 

At this stage of the reconstruction, the assumed parameters 

of the grating are as follows: L = 10 mm,  = 530.834 nm, neff 

= 26*10-5 and  = 0.5 The grating is also divided to 50 

sections. 

The assumed discontinuous strain distribution described 

by equation (7) in the practical implementation will be realized 

in a single-sided restrained beam with a constant cross-section 

with a fixed point of force application along its longitudinal 

axis. Both the coefficient of linear expansion of the carbon 

fiber beam itself and the grating were considered for 

temperature changes. The simulation was performed for 

compressive strain distributions in the range of 0-120 με/mm 

and temperature changes of 0 - 50 ºC at two noise levels of 

2.5% and 5%. Figures 1, 2, 3 show the simulated and 
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reconstructed strain waveforms of the grating and the modeled 

and reconstructed spectrum of this grating for different 

temperature changes (T = 0ºC, 10ºC, 20ºC, 30ºC) at a noise 

level of 2.5%, while in Figures 4, 5, 6 at a noise level of 5%. 

They show that the shape of these two spectra, as well as their 

central wavelengths are almost identical. These figures show 

that a partial strain of the grating induces a widening of the 

part of the grating’s amplitude spectrum corresponding to its 

strained part. The strain induces a broadening of the shortwave 

portion of this spectrum. On the slopes of the widened parts of 

the spectrum, oscillations are observed. When a certain value 

of the strain gradient is exceeded, a splitting of the part of the 

spectrum corresponding to the strained part of the grating from 

the part of the spectrum corresponding to the non-strained 

grating occurs. These figures also show that a positive change 

in temperature shifts the spectrum into the longer wavelength 

range. The reconstruction errors of the strain and temperature 

distributions at the 2.5% noise level are shown in Tables I, II, 

III, and at the 5% noise level in Tables IV, V, VI. From the 

computational results presented, the reconstructions of both 

strain and temperature distributions were performed with high 

accuracy. The relative error of the strain gradient at a noise 

level of 2.5% does not exceed 0.6%. Grating temperature 

variations were reproduced much more accurately, with an 

error of less than 0.05%. However, at a noise level of 5%, the 

relative error of the strain gradient is less than 1.2% and the 

error in reproducing a change in temperature is less than 0.2%. 

 

 

Fig.1. Simulated and reconstructed grating strain distribution with a gradient value of  34.72 /mm and corresponding grating reflected beam spectra for 

different temperature increments T, with a noise level of 2.5% 

 

Fig.2. Simulated and reconstructed grating strain distribution with a gradient value of  69.44 /mm and corresponding grating reflected beam spectra for 

different temperature increments T, with a noise level of 2.5% 

 

Fig.3. Simulated and reconstructed grating strain distribution with a gradient value of  104.16 /mm and corresponding grating reflected beam spectra for 

different temperature increments T, with a noise level of 2.5% 
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TABLE I 

RECONSTRUCTION ERRORS OF STRAIN GRADIENT 34.72 /MM AND RECONSTRUCTION ERRORS OF T TEMPERATURE INCREMENTS AT A NOISE LEVEL OF 2.5% 

Reconstructed gradient 

a values [/mm] 

Gradient error [%] Set temperature 

increments T [oC] 

Reconstructed temperature 

increments T 

[oC] 

Temperature 

increments error 

[%] 

34.77 0.14 0 0,7*10-9 <0.01 
34.55 0.49 10 10.003 0.03 

34.64 0.24 20 20.001 <0.01 

34.52 0.59 30 29.994 0.02 

 
TABLE II 

RECONSTRUCTION ERRORS OF STRAIN GRADIENT 69.44 /MM AND RECONSTRUCTION ERRORS OF T TEMPERATURE INCREMENTS AT A NOISE LEVEL OF 2.5%  

Reconstructed gradient 

a values [/mm] 

Gradient error [%] Set temperature 

increments T [oC] 

Reconstructed temperature 

increments T 

[oC] 

Temperature 

increments error 

[%] 

69.57 0.19 0 0,5*10-4 <0.01 
69.439 <0.01 10 10.0006 <0.01 

69.41 0.04 20 19.989 0.05 
69.42 0.03 30 29.99 0.03 

 
TABLE III 

RECONSTRUCTION ERRORS OF STRAIN GRADIENT 104.16 /MM AND RECONSTRUCTION ERRORS OF T TEMPERATURE INCREMENTS AT A NOISE LEVEL OF 2.5% 

Reconstructed gradient 

a values [/mm] 

Gradient error [%] Set temperature 

increments T [oC] 

Reconstructed temperature 

increments T 

[oC] 

Temperature 

increments error 

[%] 

104.03 0.12 0 0,1*10-4 <0.01 

104.33 0.16 10 10.001 0.02 

103.997 0.16 20 20.008 0.04 
104.29 0.12 30 30.006 0.02 

 

 

Fig.4. Simulated and reconstructed grating strain distribution with a gradient value of 34.72 /mm and corresponding grating reflected beam spectra for 

different temperature increments T, with a noise level of 5%. 

 

Fig.5. Simulated and reconstructed grating strain distribution with a gradient value of 69.44 /mm and corresponding grating reflected beam spectra for 

different temperature increments T, with a noise level of 5%. 
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Fig.6. Simulated and reconstructed grating strain distribution with a gradient value of 104.16 /mm and corresponding grating reflected beam spectra for 

different temperature increments T, with a noise level of 5%. 

TABLE IV 

RECONSTRUCTION ERRORS OF STRAIN GRADIENT 34.72 /MM AND RECONSTRUCTION ERRORS OF T TEMPERATURE INCREMENTS AT A NOISE LEVEL OF 5% 

Reconstructed 

gradient a values 

[/mm] 

Gradient error 

[%] 

Set temperature 

increments T 

[oC] 

Reconstructed 

temperature 

increments T 

[oC] 

Temperature 

increments error 

[%] 

34.81 0.27 0 1,389*10-3 <0.01 

34.39 0.96 10 10.006 0.06 

34.55 0.49 20 20.003 0.02 

34.31 1.19 30 29.988 0.04 
 

TABLE V 

RECONSTRUCTION ERRORS OF STRAIN GRADIENT 69.44 /MM AND RECONSTRUCTION ERRORS OF T TEMPERATURE INCREMENTS AT A NOISE LEVEL OF 5% 

Reconstructed 

gradient a values 

[/mm] 

Gradient error 

[%] 

Set temperature 

increments T 

[oC] 

Reconstructed 

temperature 

increments T 

[oC] 

Temperature 

increments error 

[%] 

69.71 0.38 0 -5,281*10-3 <0.01 

69.43 0.015 10 10.001 0.01 

69.37 0.10 20 19.979 0.10 

69.39 0.07 30 29.979 0.06 
 

TABLE VI 

RECONSTRUCTION ERRORS OF STRAIN GRADIENT 104.16 /MM AND RECONSTRUCTION ERRORS OF T TEMPERATURE INCREMENTS AT A NOISE LEVEL OF 5% 

Reconstructed 

gradient a values 

[/mm] 

Gradient error 

[%] 

Set temperature 

increments T 

[oC] 

Reconstructed 

temperature 

increments T 

[oC] 

Temperature 

increments error 

[%] 

103.90 0.255 0 -2,525*10-3 <0.01 

104.50 0.32 10 10.003 0.03 

103.83 0.33 20 20.018 0.09 

104.40 0.23 30 30.011 0.04 

 

 

IV. CONCLUSION 

This paper presents the application of the nonlinear Nelder-

Mead optimization method and the transition matrix method to 

simultaneously reconstruct  the non-smooth strain distribution 

of a fiber Bragg grating and its temperature, which are based 

on the intensity spectrum of the grating's reflected beam.  

Numerical analysis of the spectral response of a fixed-period 

Bragg grating to an applied non-smooth strain shows that the 

strain gradient induces a broadening of the portion of the 

grating amplitude spectrum corresponding to the strained 

portion of the grating. On the slope of the widened parts of the 

spectrum, oscillations are observed. In addition, when a certain 

value of the strain gradient is exceeded, a splitting of the part 

of the spectrum corresponding to the strained part of the 

grating from the part of the spectrum corresponding to the non-

strained grating occurs. It is also evident from the form of the 
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amplitude spectra that a positive change in the grating 

temperature causes the spectrum to shift into the longer 

wavelength range. 

The simulations indicate that the reconstructions of both 

strain and temperature distributions were performed with high 

accuracy. The reconstruction errors of the strain profiles are 

less than 1.2 % and the temperature change errors are less than 

0.2 %, with a noise level of 5 %. 

The simulation results provide support for the conclusion 

that the Nelder-Mead optimization method can be successfully 

applied to simultaneously reconstruct the strain and 

temperature distributions of a grating using the amplitude 

spectrum of a fiber Bragg grating. 

Further work will be focused on applying the proposed 

method to reconstruct the strain and temperature gradient from 

measured grating spectra subjected to non-smooth strain and 

temperature changes. 
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