
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68,  NO. 3, PP. 609-617 

Manuscript received October 12, 2021; revised August, 2022.                             DOI: 10.24425/ijet.2022.141280 

 

 

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited. 
 

 

  

Abstract—This work present an efficient hardware 

architecture of Support Vector Machine (SVM) for the 

classification of Hyperspectral remotely sensed data using High 

Level Synthesis (HLS) method. The high classification time and 

power consumption in traditional classification of remotely sensed 

data is the main motivation for this work. Therefore presented 

work helps to classify the remotely sensed data in real-time and to 

take immediate action during the natural disaster. An embedded 

based SVM is designed and implemented on Zynq SoC for 

classification of hyperspectral images. The data set of remotely 

sensed data are tested on different platforms and the performance 

is compared with existing works. Novelty in our proposed work is 

extend the HLS based FPGA implantation to the onboard 

classification system in remote sensing. The experimental results 

for selected data set from different class shows that our 

architecture on Zynq 7000 implementation generates a delay of 

11.26 µs and power consumption of 1.7 Watts, which is extremely 

better as compared to other Field Programmable Gate Array 

(FPGA) implementation using Hardware description Language 

(HDL)  and Central Processing Unit (CPU) implementation. 

 

Keywords—Support Vector Machine (SVM); Central 

Processing Unit (CPU); Digital Signal Processor (DSP); Field 

Programmable Gate Array (FPGA); High Level Synthesis (HLS); 

Hardware description Language (HDL) 

 

I. INTRODUCTION 

yperspectral image classification aims to assign each pixel 

of an image to a corresponding class label based on the 

spatial and spectral features. The Field Programmable Gate 

Array (FPGA) based classification enables us to classify 

remotely sensed (RS) data in real-time, therefore it can be 

extended to use in onboard classification at satellite platform to 

overcome the issues of limited downlink bandwidth [1]. The 

available bandwidth between satellite and ground station cannot 

be sufficient to transfer remotely sensed data to the ground 

station because of its large in size. Therefore onboard 
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classification will resolve this issue and it meets the real-

timeclassification requirements i.e 3x1010 operation/second [2]. 

In recent days, we can find significant research on the above 

challenges. The Graphical Processing Unit (GPU) was used for 

processing the hyperspectral images and it gives better 

performance, but its high power consumption is not a good 

choice for onboard application [3]. In onboard applications, 

FPGA offers superior performance by providing low power 

consumption [4] and low hardware utilization [5]. Therefore, 

this work aims to develop the FPGA based Support Vector 

Machine (SVM) for classification of hyperspectral RS data.  

In remote sensing, image classification is an important task 

[6]. The supervised machine learning tool such as Support 

Vector Machine (SVM) classifier is widely used for 

classification to get maximum accuracy. SVM exhibits high 

classification accuracy in many applications such as image 

classification, object detection, speech recognition, and medical 

diagnosis [7]. In hyperspectral classification, SVM performs 

better accuracy than other classifiers [8]. The supervised 

learning machines performing the function in two different 

phases, learning or training phase and classification phase. In 

the training phase, the SVM develops the model for 

classification on given test of data based on the Support Vectors 

(SVs). These trained SVs are further used to find the class of 

data during the classification phase. 

In many applications, the modeling of SVM is time 

consuming and computationally expensive. The software based 

implementations of SVM produce high accuracy rates, but it 

cannot meet the real-time requirements. To meet the real-time 

constraints in remote sensing, a dedicated hardware need to be 

design and implemented with low power consumption and 

resource utilization. FPGA is a parallel processing 

reconfigurable device to meet the constraints of low power 

consumption and resource utilization in real time applications 

[9]. Therefore, FPGA is an appropriate choice to meet the real 

time requirements. In this paper, we propose an efficient 

hardware architecture for implementing the Support Vector 

Machine (SVM) on FPGA for Hyperspectral image 

classification. 
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II. RELATED WORK 

In the literature many researchers have implemented the FPGA 

based architectures for realizing the SVM classification for real-

time application [9] [10]. The main constraints such as high 

performance, power consumption, scalability, flexibility, area, 

and low cost are to be considered to achieve the effective 

classification. These constraints are not effectively considered 

in the current architectures and implementations, that too power 

consumption becomes critical for onboard classification in 

remote sensing. Therefore in this section, some of the existing 

work on FPGA-based architectures for realizing the SVM 

classification in different fields are reviewed.   

The hardware architecture for radial basis function-based 

SVM for implementation of the exponential function is 

presented [11]. Sumeet Saurav et al. [12] have designed the 

FPGA based architecture to implement the multi-class linear 

SVM for the classification of individual facial expression. A 

Novel SVM architecture is presented [13] to over the issues of 

data linear dependencies on the number of the Support Vectors. 

In industrial ultrasound applications to detect ultrasonic A-scan 

signals, an FPGA based SVM classifier is designed [14].  An 

implementation of SVMs on FPGA is also extended to 

Logarithmic Number Systems [15]. Also in studies such as 

mixed-precision [16], systolic architectures [17], and a 

coprocessor [18] have focused on the FPGA based binary SVM 

classifier design.  

To the best of our knowledge, no SVM implementation on 

FPGA exists in the literature that has not to use the combination 

of hardware and software hybrid architecture for classification 

of hyperspectral RS images. Hence, a recent platform of FPGA 

"Zynq System on Chip (SoC)" is the best choice for the 

implementation of hybrid architecture. Also, most of the 

implementation makes use of the traditional Hardware 

Description Language (HDL), which requires an expert 

hardware developer and highly time-consuming. Therefore, the 

Ultra-Fast High-Level Synthesis (HLS) methodology has been 

explored to simplify the design in the development of FPGA 

[23].  

In our previous study [10] several challenges, limitations, and 

research gaps in real-time processing and classification of 

remotely sensed have been addressed. Consequently, this work 

aims to implement the SVM on FPGA and find the best for the 

onboard application. An SVM architecture implemented based 

on hardware/software co-design is compared with existing 

works. 

III. PROPOSED DESIGN FOR SVM IMPLEMENTATION 

A. System Development Tools and FPGA Platform 

 In our work to implement the hybrid architecture on FPGA, the 

software tool "Xilinx Vivado Design Suite" has been used. With 

the help of this tool, the designer can develop an FPGA within 

a single SoC [24]. The tool also support to UltraFast HLS design 

methodology, therefore it becomes more power full in digital 

design. This methodology is based on High-Level Language 

(HLL) for simplifying FPGA programming by replacing the 

traditional HDL [24] and reduces the FPGA development time 

and effort. 

The “Xilinx Zynq-7000 All Programmable System on Chip 

(SoC)” FPGA platform has been used to implement our 

proposed SVM classifier. The hybrid architecture is 

characterized by Zynq SoC, which makes the process of 

embedded system development significantly simple. An ARM 

and FPGA are combined as a Processing System (PS) and 

Programmable Logic (PL) respectively. 

B. Proposed SVM HLS Implementation on Zynq PL 

A binary SVM classifier architecture is designed by utilizing 

the recent design methodology of HLS and incorporating a 

linear kernel function. The SVM classification algorithm is 

implemented by HLS design, which classifies sample x of test 

data in the main decision function.  The equation (1) describes 

the decision function based on the parameters b, y and α that are 

determined during training phase [26].  

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑆𝑉
𝑖=1  𝑦𝑖 (𝑥𝑖⃗⃗  ⃗ . 𝑥 ⃗⃗⃗   ) − 𝑏)                                  (1) 

 

The decision function (1) is computed in C/C++ language 

using the Vivado HLS tool. To reduce complexity in hardware 

design the equation (1) is divided into 3 main equation as 

follows.  

𝐴𝐶⃗⃗⃗⃗  ⃗ = ∑ 𝛼𝑖 𝑦𝑖 𝑥𝑖⃗⃗  ⃗ 𝑠𝑣
𝑖=1                                         (2)  

   

𝐷 = 𝐴𝐶⃗⃗⃗⃗  ⃗. 𝑥                                                        (3) 

 

𝐹(𝑋) =  𝑠𝑖𝑔𝑛(𝐷 − 𝑏) = {
−1, (𝐷 − 𝑏) < 𝑡ℎ
1, (𝐷 − 𝑏) ≥ 𝑡ℎ

}                       (4)    

                    

 

In the developed algorithm, three main tasks are considered 

to perform the required calculation, and which are mapped to 

the corresponding equation (2), (3), and (4). The first task 

performing the function of equation (2), which stores the 

summing of all multiplied SVs in an accumulated array (AC).  

The dot product between the accumulated array and test 

instance of equation (2) is performed in the second task to 

calculate the classification distance value (D). In the last task 

based on the sign value, the calculated distance number is 

classified (F(x)), and threshold value th is calculated through the 

validation phase. The outcome of this process has two 

possibilities either 1 or -1, which are corresponding to class 1 or 

class 2. The flow diagram of the proposed SVM HLS 

Implementation is shown in Fig. 1. 

The hardware/software co-design based architecture is 

developed on Zynq SoC to implement the proposed SVM is 

shown in Fig. 2. In implementing the SVM classifier, the 

proposed architecture depends on the size of both the SVs and 

features. The needed input data to the design is received through 

the input stream interface and stored in three main memory. The 

features of SVs are stored in one 2D array, corresponding ay of 

each SV in a 1D array, and test instance features data are stored 

in another 1D array.  

The HLS tool effectively helps to develop the Intellectual 

Property (IP) for the proposed SVM classifier on Zynq SoC 

[25], by providing the various directives. The stream directive 

AXI4 is used as an input stream to streaming the data between 

the designed HLS IP in the PL slice and PS (ARM CPU) on 

Zynq SoC.  Also, the AXI-lite bus is used as a control bus to 

control the data flow through the ARM CPU and controlling the 

designed IP.  
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In the proposed architecture, the HLS IP module is designed 

with the help of Vivado HLS tool and implemented on PL part 

of the Zynq platform. To perform multiplication process within 

the loop, HLS tool is used with C language. The rest of the code 

is about reading the data from the file of the trained model and 

doing some processing for preparing data. 

 

 
 

Fig. 1. Flow diagram of Proposed SVM HLS Implementation  

 

Fig. 2. The Proposed Architecture for Implementation on 

Zynq SoC 

 

The top function of the parameters are optimized as being 

ports of the hardware IP using Vivado HLS Directives with the 

help of AXI4-Stream interface. This helps the two vectors to 

stream the data for the multiplication into the HLS IP. The AXI-

lite bus is assigned to control the communication between the 

designed function for controlling the IP core and ARM 

processor in PS part of the Zynq platform as shown in Figure 2. 

The vectors of the double data type are replaced by float to 

generate an AXI4-Stream interface for streaming data between 

the hardware coprocessor in PL and ARM CPU in PS. Also, to 

support HLS stream protocol the source file is changed to a CPP 

file instead of C. As a result to reach high parallelism minor 

changes in the code is done using the Vivado HLS tool. 

 

A good level of optimization is critical for real time 

application, hence to achieve high optimization the HLS tool 

available directives were applied for the top module. For the 

accumulation of multiplication process pipelining and unrolling 

the loop directives were assigned and tested to increase the data 

throughput rate. The loops in the proposed function takes 

around 333 clock cycles without applying any optimization 

directives. But with directives of pipeline and unroll it takes 169 

and 204 clock cycles respectively. 

C. Implementation of Zynq SoC for Proposed Embedded 

System Design  

Once synthesizing the code and applying interfaces 

directives, the Vivado HLS tool is used to co-simulate and 

export as an RTL implementation of the HLS IP for the 

classifier. Then by using Vivado Design tool, integrate the 

exported HLS IP into a proposed system as shown in Fig. 3. 

In the PL part of the proposed system Zynq coprocessor is 

implemented by connecting core of HLS IP with the ARM 

processor in PS part through Accelerator Coherency Port (ACP) 

using Direct Memory Access (DMA). The data transfer 

communication between HLS IP and ARM processor through 

the AXI4-Stream protocol is controlled by DMA controller IP. 

In the control unit the ACP is a 64-bit AXI slave interface, 

which provides a low latency asynchronous cache-coherent 

access point from the Zynq PL to the PS. Also, measuring the 

number of clock cycle required for the core comparison is 

instantiated by the AXI-Timer. At last it was exported for the 

Software Development Kit (SDK) after synthesizing, generating 

and implementing the bit tream of the proposed design for 

running the application on Zynq device. 

D. Implementation of Zynq SoC for Proposed Software 

Design  

To verify and test the implemented SVM classifier on the Zynq 
SoC, a stimulus/test bench or software program has been 
developed. The execution of the test bench is the responsibility 
of the PS ARM CPU. The required software program or test 
bench for testing is developed and implemented in C using the 
SDK tool. A proposed software program or test bench runs on 
the ARM processor of PS is shown in Fig. 4. The required 
trained parameters of the SVM model and test instance for 
computation are imported from three main files saved in the SD 
card of Zynq. The support vectors are stored in the first file, and 
ay of each SV with the value of b is stored in the second file. 
The test data are stored in the third file. Next, for further 
processing, all imported data are stored in three main arrays to 
stream to the Zynq. 
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Fig. 3. Proposed system implemented on Zynq 

 
Defined F as number of features+1 and SV+1 has support 

vectors  
1. On the File_SVs read SVs data in byte wise 
2. Store in an array of SVs_array[SV][F] 
3. Repeat the first two steps for ay and b, 

ay_array[SV] and File_test 
4. Repeat the first two steps for test_array[F] and 

File_test 
5. Setup XTimer IP and calibrate  
6. The proposed algorithm shown in Figure 1 runs 

on PS ARM 
7. Calculate the XTimer total execution cycle 
8. DMA IP initialized  
9. SVM HLS IP hardware is initialized  
10. SVM IP runs on the Zynq PL 
11. Using DMA transfer SVs_array to the SVM IP 
12. Waiting for transfer done by DMA within a loop 
13. Step 11 and 12 are repeated for test_array[F] 

and ay_array[SV] 
14. Execute SVM IP done in a loop 
15. Hardware results read from SVM IP 
16. DMA transfer and hardware of SVM IP running 

total execution time measured by XTimer 
17. Compare the results of result_software and 

result_hardware 
18. Also, compare the run time of software and 

hardware implementation. 
 

 

Fig. 4. Zynq for running software program using proposed 

algorithm. 

To compare the results of software and hardware 

implementation, the proposed SVM algorithm shown in Fig. 1 

is implemented on the ARM processor and the obtained results  

are compared with SVM HLS IP running on hardware. The 

XTimer IP, counts the clock cycle running of the SVM 

algorithm in software/PS and hardware/PL for performance 

comparison. This proposed system can support adopting any 

trained SVM model with the parameters of the same size and 

feasible to achieve flexibility, generality, and adaptability. 

IV. EXPERIMETAL RESULTS 

A.  Experimental Setup 

To implement our proposed hardware design on the Evaluation 

Board of Zynq-7 ZC702, the Xilinx Vivado 2016.1 Design Suite 

is used. First using a Vivado HLS tool SVM HLS IP is 

developed, then it is integrated with the design Zynq SoC using 

the Vivado tool as shown in Figure 2.  The bit stream of the 

designed Zynq system is generated after synthesis, place, and 

route for the Xilinx SDK tool. This tool helps to runs the 

application on onboard for classification process on Zynq. 

B.  Data Set 

The experiment is conducted using two HSI data sets of the 

Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS).  

The first data set contain pixels 145 x 145 image of 

southwestern part of the Indian subcontinent of Mysuru district 

and the second data set contains 512 x 217 of pixels image 

collected from Mysuru city. These data images contain 224 

bands for every pixel with a scan rate of 12Hz and produce 677 

pixels for every scan with the sampling rate of approximately. 

In this data set only 9 spectral bands out of 224 are considered 

for training and classification, because of the information 

redundancy and water absorption. In this work, we consider 6 

classes, and 346 pixels are used as test vectors for training 

binary SVM classifiers. 

C.  Synthesis Results of HLS 

The proposed HLS IP design is optimized using available 

directives of the Vivado HLS tool. By applying different 

optimization directives, several experiments were conducted to 

improve and optimize the synthesis results. This process will 

help to design low complexity and friendly hardware. The 

assigned directives of corresponding HLS synthesis results were 

presented in Table I. The first column in Table 1 lists the used 

directives, followed by synthesis results of HLS is presented in 

column two, which includes design latency, throughput, and 

resource utilization. The HLS tool default setting synthesis 

results is presented in the first row of the table, which includes 

I/O ports interface directives mapping (AXI4 and AXI). In 

subsequent rows, alternative directives interface were tabulated. 

Also, for the used array the resource allocation is tested such as 

RAM and LUT. The concept of the pipeline is introduced for 

inner or most loops, aiming to get the optimum solution and 

helps the tool to make quick scheduling (Vivado Design Suite). 

Also, different style of array partition is applied with the 

directive of loop unrolling.  
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TABLE I 

  DIFFERENT DIRECTIVE S SYNTHESIS RESULTS IN PROPOSED HLS IP 

 

Directives  Throughput  Latency LUT DSP BRAM 
FF 

 

Pipeline inner loops 19627 19626 2465 5 35 1258 

Interfaces 

 
114899 114898 2429 5 33 1271 

Pipeline all  

loops 
19618 19617 9550 58 30 5467 

Pipeline most loops 19618 19617 4048 10 35 2629 

Unroll most  

loops 
11601 11600 63328 135 29 13793 

Unroll inner loops 13699 13698 29975 135 28 13919 

Array partition  

Complete  
32725 32724 11276 5 27 29334 

Array partition  

Cyclic factor 2 
19249 19248 3503 10 38 2117 

Array partition  

Block factor 2 
59126 59125 12921 7 38 13793 

Array partition  

Cyclic factor 16 
12961 12960 12938 20 28 11123 

Array partition  

Cyclic factor 8 
19216 19215 10027 10 40 6490 

 

 
The throughput and latency of the proposed HLS IP design were 
significantly improved by applying various optimization 
directives with the basic interface directives. The latency of the 
trained model with the interfaces of pipeline inner loop 
directives 114,898 clock cycles (first row) was considerably 
decreased by a factor of 8x by utilizing the extra resources. 
However, unroll inner loops provide a lower latency of 13,698 
cycles by utilizing or allocating extra resources such as DSP 
slices, which is increased from 5 to 135. In the case of unroll, 
most loops directive gives the lowest latency of 11,600, but it is 
not recommended for the implementation because of its excess 
of LUT utilization up to 119%, which was significantly reduced 
in unroll inner loops to 92%. However, to moderate between the 
percentage of LUT utilization and reaching lower latency array 
partition is applied, which provides a latency of 12960 with the 
resource utilization of 20 DSP. 

By analyzing the different directives and their performance 
concerning latency, throughput, and resource utilization, the 
pipeline inner loops directives have considerably decreased the 
latency with some increases in the utilization of resources. 
Therefore, the pipelined design is considerably best solution for 
low power consumption and area (a small number of DSP and 
LUT) with high throughput and reduced latency.  

D. Results of Hardware Implementation  

The Vivado tool has been used to integrate the designed HLS 
SVM IP into the Zynq SoC. Based on the synthesis results of 
HLS presented in the previous section, the designs which are 
exhibits better results were selected for the implementation of 
Zynq SoC.  The designs unrolled, pipelined, and array 
partitioned shown in Table 1 were selected as the three best 
solutions for the implementation (with an operating frequency 
of 100 MHz for PL/FPGA and 666.67 for ARM CPU) to 
balance the trade-off between low cost/area and high 
performance. 

1) Analysis of Resources Utilization 

The resource utilization of FPGA for the three implemented 

designs on Zynq is tabulated in Table II. The available hardware 

resources are listed in the first column and in further columns 

utilization of resources is listed. In the last column, the target 

device available hardware resources are listed. In all three 

design implementation, the percentage of resource utilization is 

very low, hence it shows the area of saving in implementation. 
 

TABLE II 
 RESOURCE UTILIZATION OF IMPLEMENTED DESIGNS ON ZYNQ 

SOC 

On-Chip 

Component 
Available Unrolled Pipelined 

Array 

Partitioned 

Slice LUTs 53200 12808 2579 8111 

Slice FF 

Registers 
106400 13830 2898 9009 

Memory 

LUT 
17400 161 204 582 

BRAM 140 16.5 20 16.5 

DSP48 220 135 5 20 

 

2) Analysis of Power Consumption  

The power consumption of all three design implementation has 

been analysed using the Vivado tool and corresponding results 

are reported in Table III. From the results, it is clear that the 

power consumption of all three design is a considerably small 

value, hence it will meet the real-time constraints of an 

embedded system. The pipelined design consumed the least 

power of 1.758 watts, compared to designs of unrolled and array 

partitioned.   
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TABLE III 

 POWER CONSUMPTION OF THREE DESIGNS 

# Unrolled Pipelined Array Partitioned 

 

On-Chip 
Power (Watts) 

2.125 1.758 1.842 

 

3) Analysis of Processing Time 

The computing time of designed SVM code on the hardware-

implemented in PL part and ARM processor in the PS part of 

the Zynq SoC is exploited using AXI-Timer IP core shown in 

Fig. 2. The operating frequency of 100 MHz is used to compute 

the processing time of both the PS part of the ARM processor 

and the PL part of hardware implementation. Accordingly, the 

processing time of designs is tabulated in Table IV. 

 
TABLE IV 

PROCESSING TIME COMPARISON OF THREE DESIGNS 

 
 

# 

FPGA ARM  Optimized 

FPGA/ARM 

Clock Cycles 2815 28968 10.29 

Pipelined (µs) 11.26 43.45 3.86 

Unrolled (µs) 14.77 309.47 20.95 

Array 

Partitioned(µs) 

14.76 309.31 20.96 

 

4) Analysis of Classification Accuracy 

  An accuracy assessment is an important parameter to 

analyses the effectiveness of designed HLS SVM IP.  The 

classification results of hardware implementation are compared 

with software implementation to assess the performance of the 

classifier. To analyze the performance of developed HLS SVM 

IP, the confusion/error matrix needs to construct and it can be 

used to calculating the overall classification accuracy. 

Therefore, for each design, the confusion/error matrix is 

developed for the performance analysis. The confusion matrix 

for the pipelined design is constructed with the 6 classes and 346 

test vectors. The test vector is compared pixel by pixel with the 

remotely sensed data, then agreement and disagreement are 

arranged in the cells of the error matrix. The total column in the 

matrix gives how many reference test data are compared with 

each class and the row total gives the how many pixels are 

classified to each class. Correctly classified pixels can be found 

by adding diagonal elements of the error matrix. Table V shows 

a typical confusion matrix of 6 classes and 346 reference test 

vectors of HLS SVM IP. 

Table VI shows a confusion matrix of software 

implementation for 6 classes and 346 reference test vectors. The 

classification accuracy rate of our hardware implementation 

 

 

 

 

 

 

 

 

 

 

 

 

has got 97.61% and the corresponding software implementation 

has achieved 98.57% is tabulated in Table VII. The difference 

of overall classification accuracy is within 1% for the same data 

set, hence our implemented HLS SVM IP can be used for real-

time classification without compromising with accuracy rate. 

 
TABLE V 

 CONFUSION MATRIX OF HLS SVM IP. 
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R
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Class 1 
52 1 0 0 0 0 53 

Class 2 0 44 0 0 0 0 44 

Class 3 0 0 32 0 1 0 33 

Class 4 0 0 1 27 0 0 28 

Class 5 0 0 0 1 29 0 30 

Class 6 1 0 0 0 0 21 22 

Column 

Total 
53 45 33 28 30 21 210 

 
TABLE VI 

CONFUSION MATRIX OF SOFTWARE IMPLEMENTATION.   
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Class 1 
52 0 0 0 0 0 52 

Class 2 0 45 0 0 0 0 45 

Class 3 0 0 33 0 1 0 34 

Class 4 0 0 0 27 0 0 27 

Class 5 0 0 0 1 29 0 30 

Class 6 1 0 0 0 0 21 22 

Column 

Total 
53 45 33 28 30 21 210 

 
TABLE VII 

  ACCURACY COMPARISON OF HLS SVM IP AND SOFTWARE 

IMPLEMENTATION 

# 
Training Data 

set 

Support 

Vectors 
Accuracy  

HLS SVM IP 210 346 97.61 % 

Software 

Implementation   
210 346 98.57 % 
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TABLE VIII 

COMPARISON OF PIPELINED DESIGN WITH OTHER RESEARCHERS 

 

 
TABLE IX 

PROCESSING TIME, POWER CONSUMPTION, AND ARCHITECTURE DIFFERENCE OF DIFFERENT PLATFORM

 
 

 

 

 
 

 

 

Relate Work Ours Sen Ma 

et al 

(2018) 

[36] 

Kumar 

et al 

(2017) 

[37] 

Qasaimeh  
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(2015) 
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i et al. 

(2020) 

[35] 

Jiang et 

al (2017) 

[33] 

Kyrku et 

al (2016) 

[34] 

Ningm

a  et al 

(2016) 

[27] 

Wang et 

al (2016) 

[30] 

Nitish  et 

al (2017) 

[32] 

Abelard

o et al 

(2019) 

[31] 

Slice LUTs 2,579 

/53200 

NA 2443/ 

69120 

16,138/ 
69120  
 

NA 14,028/5
3200 

35,532/ 
92152 

NA 234666/ 
262400 

62,522/ 
218,600 

11122/ 

53200 

Slice FF 

Registers 

2,898/ 

106400 

NA 2332/ 

69120 

7,924 
/69120 
 

NA 21,305/1
06400 

20,153/ 
184304 

NA 443688 / 
524800 

81,135/ 
437,200 

15225/ 

106400 

BRAM 20/140 NA 19/148 60/148 NA 106/140 256/268 NA 1715/ 
2567 

157/545 8/140 

DSP48 5/220 NA 24/64 53/64 NA 152/220 59/180 NA 1680/ 

1963 

111/900 34/220 

Number of 

SVs 

346 NA 8 98 NA 94 122 50 100 NA NA 

Kernal Linear NA Linear  Linear  

 

Linear  Linear Linear Linear Linear NA Linear 

Classifier  SVM  MLC SVM SVM SVM SVM SVM SVM SVM Haar 
cascaded  

SVM 

Hardware 

Architecture 

HLS-

based 

Pipelin

ed 

HLS 

based 

pipelined 

HDL 

based 

HDL 

based 

GPU 

based 

MATLA

B 

Simulink 

MAT 

LAB 

HDL 

based 

HDL 

based 
HLS-

based 

 

HLS 

based 

 

Frequency 

(MHz)( 

100 100 100 100 200 100 70 100 100 100 200 

Power (W) 1.758 NA N/A N/A NA NA NA 3.9 26.3 NA 2.04 

Processing 

Time  

11.26 

µs 

3.0 s NA 25ms 89.62m

s 

0.02ms 40 FPS 25.8 µs 0.99 s 38 ms 2.20ms 

Application remote 

sensing  

Big 

image 

data 

Pattern 

recognit

ion 

system 

Object 

detection 

remote 

sensing 

Industria

l 

applicati
ons 

Face 

detection 

remote 

sensing 

remote 

sensing 

Face 

detection 

Medical 

Images 

Accuracy 97.61 

% 

NA NA 97.54 % 84.25% 97% 80 % 97.7% 97.8% NA NA 

FPGA Zynq-

7000 

Kintex -

AC-510 

Virtex 

5-

LX110

T 

Virtex 5-

LX110T 

GPU Zynq-

7000 

Spartan-6 ZynqX

C7Z02
0 

Altera 

Stratix V 

ARM 

CPU and 
Zynq-

7000 

Zynq-

7000 

# Ours NingMa 

et al 

(2016) 

[27] 

Wang et al 

(2016) 

Kumar et 

al (2017) 

[37] 

Nitish  et 

al (2017) 

[32] 

NingMa 

et al 

(2016) 

[27] 

NingMa 

et al 

(2016) 

[27] 

NingMa 

et al 

(2016) 

[27] 

NingMa 

et al 

(2016) 

[27] 

Paoletti et 

al. (2020) 

[35] 

Hardware 

Architecture 

HLS 

based 

HDL 

based  

HDL based HDL 

based  

HLS based DSP   ARM 
 

PC 
 

 

Xeons 
 

GPU based 

FPGA Zynq 

7000 

ZynqXC7

Z020 

Altera 

Stratix V 

Virtex 5-

LX110T 

Zynq-7000 NA NA NA NA NA 

Application  Remote 

sensing  

Remote 

sensing 

Remote 

sensing 

Pattern 

recognitio

n system 

Face 

detection 

Remote 

sensing 

Remote 

sensing 

Remote 

sensing 

Remote 

sensing 

Remote 

sensing 

Power (W) 1.758 3.9 26.3 NA NA 16.0 3.3 103.8 95 NA 

Time 11.26 µs 25.8 µs 0.99S NA 38ms 65.7 µs 1321.2µs 216.3 µs 14.1 µs 89.62ms 

Energy(mJ/p

ixel) 

0.019 0.1 1 NA NA 1.1 4.3 22.4 1.33 NA 
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V. COMPARISON AND DISCUSSION 

This work focus on developing the optimized hardware for 

SVM classifier to realize the real-time classification system for 

remote sensing application. To compare the performance of our 

work, the result of different platform implementations have 

been considered in different applications.  

The pipelined design of our implementation has been 

considered for the comparison with the related work is shown in 

Table VIII. Also, our HLS based pipelined design is compared 

with the work related to Hyperspectral data classification on a 

different platform is shown in Table IX. 

To evaluate the performance of the proposed design model, 

we compare the processing time and power consumption of 

various platforms as shown in Table IX. In (Ning ma et al 2016) 

the traditional HDL based implementation on Zynq-XCz020 has 

generated the delay of 25.8 µs/pixel and consumes the power of 

3.9 Watts, which is twice compared to our HLS based design. 

Also, the other processors such as DSP and ARM have been 

used in microsatellites experimental for low-cost space 

missions. Therefore, we compare our HLS SVM IP with these 

processors and commercially available processors in terms of 

processing time and power consumption. The processors 

consider for result analysis includes DSP TMS320C6678, ARM 

Cortex A9, and Xeons E5-2650. An analysis of power 

consumption and processing time from Table 9 shows that our 

pipelined design implementation on Zynq-7000 has to offer 

extremely better performance as compared to other platforms. 

The pipelined design on Zynq-7000 gets the speed up of 2x, 5x, 

100x, 20x compared to Zynq-XC7Z020, DSP, ARM, and PC 

respectively. Also, the energy-saving of our pipelined design 

extremely good as compared to other implementation listed in 

Table 9.  The power consumption of our pipelined design has 

consumed the least power as compared to other designs, 

therefore our proposed design is well suited for onboard 

classification of remotely sensed data and fulfils the 

requirement of real-time classification.  

CONCLUSIONS 

This paper proposes an implementation of an SVM classifier on 

FPGA using hardware/software co-design and an embedded 

SoC is realized for onboard classification of hyperspectral data 

on the Zynq 7000 SoC using HLS design methodology. Our 

Zynq implemented system satisfies the constraints of an 

embedded system, with high performance in terms of power 

consumption, area, and speed. In this work, the utilization of 

HLS design and directives (optimization techniques) helps in 

achieving a high classification accuracy rate of 97.61%. The 

proposed system is cost-effective since it uses only 2.7% of 

slices and power consumption of 1.7 watts. Also the processing 

time our proposed system is 11.3 μs, which is extremely better 

compared to existing work in the literature. These results show 

the proposed system meets the requirements of real-time 

classification and it is suited for onboard hyperspectral image 

classification system. 
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