
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 3, PP. 609-617

Manuscript received October 12, 2021; revised August, 2022. DOI: 10.24425/ijet.2022.141280

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—This work present an efficient hardware

architecture of Support Vector Machine (SVM) for the

classification of Hyperspectral remotely sensed data using High

Level Synthesis (HLS) method. The high classification time and

power consumption in traditional classification of remotely sensed

data is the main motivation for this work. Therefore presented

work helps to classify the remotely sensed data in real-time and to

take immediate action during the natural disaster. An embedded

based SVM is designed and implemented on Zynq SoC for

classification of hyperspectral images. The data set of remotely

sensed data are tested on different platforms and the performance

is compared with existing works. Novelty in our proposed work is

extend the HLS based FPGA implantation to the onboard

classification system in remote sensing. The experimental results

for selected data set from different class shows that our

architecture on Zynq 7000 implementation generates a delay of

11.26 µs and power consumption of 1.7 Watts, which is extremely

better as compared to other Field Programmable Gate Array

(FPGA) implementation using Hardware description Language

(HDL) and Central Processing Unit (CPU) implementation.

Keywords—Support Vector Machine (SVM); Central

Processing Unit (CPU); Digital Signal Processor (DSP); Field

Programmable Gate Array (FPGA); High Level Synthesis (HLS);

Hardware description Language (HDL)

I. INTRODUCTION

yperspectral image classification aims to assign each pixel

of an image to a corresponding class label based on the

spatial and spectral features. The Field Programmable Gate

Array (FPGA) based classification enables us to classify

remotely sensed (RS) data in real-time, therefore it can be

extended to use in onboard classification at satellite platform to

overcome the issues of limited downlink bandwidth [1]. The

available bandwidth between satellite and ground station cannot

be sufficient to transfer remotely sensed data to the ground

station because of its large in size. Therefore onboard

This research was supported by JSS Academy of TechnicalEducation

Bangalore, affiliated to Visvesvaraya Technological University, Belagavi and
VGST sponsored renewable energy laboratory for grant of financial assistance

Mahendra H N is with Department of Electronics and Communication

Engineering, JSS Academy of Technical Education Bengaluru and Affiliated to

classification will resolve this issue and it meets the real-

timeclassification requirements i.e 3x1010 operation/second [2].

In recent days, we can find significant research on the above

challenges. The Graphical Processing Unit (GPU) was used for

processing the hyperspectral images and it gives better

performance, but its high power consumption is not a good

choice for onboard application [3]. In onboard applications,

FPGA offers superior performance by providing low power

consumption [4] and low hardware utilization [5]. Therefore,

this work aims to develop the FPGA based Support Vector

Machine (SVM) for classification of hyperspectral RS data.

In remote sensing, image classification is an important task

[6]. The supervised machine learning tool such as Support

Vector Machine (SVM) classifier is widely used for

classification to get maximum accuracy. SVM exhibits high

classification accuracy in many applications such as image

classification, object detection, speech recognition, and medical

diagnosis [7]. In hyperspectral classification, SVM performs

better accuracy than other classifiers [8]. The supervised

learning machines performing the function in two different

phases, learning or training phase and classification phase. In

the training phase, the SVM develops the model for

classification on given test of data based on the Support Vectors

(SVs). These trained SVs are further used to find the class of

data during the classification phase.

In many applications, the modeling of SVM is time

consuming and computationally expensive. The software based

implementations of SVM produce high accuracy rates, but it

cannot meet the real-time requirements. To meet the real-time

constraints in remote sensing, a dedicated hardware need to be

design and implemented with low power consumption and

resource utilization. FPGA is a parallel processing

reconfigurable device to meet the constraints of low power

consumption and resource utilization in real time applications

[9]. Therefore, FPGA is an appropriate choice to meet the real

time requirements. In this paper, we propose an efficient

hardware architecture for implementing the Support Vector

Machine (SVM) on FPGA for Hyperspectral image

classification.

Visvesvaraya Technological University, Belagavi, India.(email-

mahendrahn@jssateb.ac.in)
Mallikarjunaswamy S, is with Department of Electronics and

Communication Engineering, JSS Academy of Technical Education Bengaluru

and Affiliated to Visvesvaraya Technological University, Belagavi, India.
(email-mallikarjunaswamys@jssateb.ac.in)

An Efficient Classification of Hyperspectral

Remotely Sensed Data Using Support Vector

Machine

Mahendra H N, and Mallikarjunaswamy S

H

https://creativecommons.org/licenses/by/4.0/
mailto:email-mahendrahn@jssateb.ac.in
mailto:email-mahendrahn@jssateb.ac.in
mailto:email-mallikarjunaswamys@jssateb.ac.in

610 MAHENDRA H N, MALLIKARJUNASWAMY S,

II. RELATED WORK

In the literature many researchers have implemented the FPGA

based architectures for realizing the SVM classification for real-

time application [9] [10]. The main constraints such as high

performance, power consumption, scalability, flexibility, area,

and low cost are to be considered to achieve the effective

classification. These constraints are not effectively considered

in the current architectures and implementations, that too power

consumption becomes critical for onboard classification in

remote sensing. Therefore in this section, some of the existing

work on FPGA-based architectures for realizing the SVM

classification in different fields are reviewed.

The hardware architecture for radial basis function-based

SVM for implementation of the exponential function is

presented [11]. Sumeet Saurav et al. [12] have designed the

FPGA based architecture to implement the multi-class linear

SVM for the classification of individual facial expression. A

Novel SVM architecture is presented [13] to over the issues of

data linear dependencies on the number of the Support Vectors.

In industrial ultrasound applications to detect ultrasonic A-scan

signals, an FPGA based SVM classifier is designed [14]. An

implementation of SVMs on FPGA is also extended to

Logarithmic Number Systems [15]. Also in studies such as

mixed-precision [16], systolic architectures [17], and a

coprocessor [18] have focused on the FPGA based binary SVM

classifier design.

To the best of our knowledge, no SVM implementation on

FPGA exists in the literature that has not to use the combination

of hardware and software hybrid architecture for classification

of hyperspectral RS images. Hence, a recent platform of FPGA

"Zynq System on Chip (SoC)" is the best choice for the

implementation of hybrid architecture. Also, most of the

implementation makes use of the traditional Hardware

Description Language (HDL), which requires an expert

hardware developer and highly time-consuming. Therefore, the

Ultra-Fast High-Level Synthesis (HLS) methodology has been

explored to simplify the design in the development of FPGA

[23].

In our previous study [10] several challenges, limitations, and

research gaps in real-time processing and classification of

remotely sensed have been addressed. Consequently, this work

aims to implement the SVM on FPGA and find the best for the

onboard application. An SVM architecture implemented based

on hardware/software co-design is compared with existing

works.

III. PROPOSED DESIGN FOR SVM IMPLEMENTATION

A. System Development Tools and FPGA Platform

 In our work to implement the hybrid architecture on FPGA, the

software tool "Xilinx Vivado Design Suite" has been used. With

the help of this tool, the designer can develop an FPGA within

a single SoC [24]. The tool also support to UltraFast HLS design

methodology, therefore it becomes more power full in digital

design. This methodology is based on High-Level Language

(HLL) for simplifying FPGA programming by replacing the

traditional HDL [24] and reduces the FPGA development time

and effort.

The “Xilinx Zynq-7000 All Programmable System on Chip

(SoC)” FPGA platform has been used to implement our

proposed SVM classifier. The hybrid architecture is

characterized by Zynq SoC, which makes the process of

embedded system development significantly simple. An ARM

and FPGA are combined as a Processing System (PS) and

Programmable Logic (PL) respectively.

B. Proposed SVM HLS Implementation on Zynq PL

A binary SVM classifier architecture is designed by utilizing

the recent design methodology of HLS and incorporating a

linear kernel function. The SVM classification algorithm is

implemented by HLS design, which classifies sample x of test

data in the main decision function. The equation (1) describes

the decision function based on the parameters b, y and α that are

determined during training phase [26].

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑆𝑉
𝑖=1 𝑦𝑖 (𝑥𝑖⃗⃗ ⃗ . 𝑥 ⃗⃗⃗) − 𝑏) (1)

The decision function (1) is computed in C/C++ language

using the Vivado HLS tool. To reduce complexity in hardware

design the equation (1) is divided into 3 main equation as

follows.

𝐴𝐶⃗⃗⃗⃗ ⃗ = ∑ 𝛼𝑖 𝑦𝑖 𝑥𝑖⃗⃗ ⃗ 𝑠𝑣
𝑖=1 (2)

𝐷 = 𝐴𝐶⃗⃗⃗⃗ ⃗. 𝑥 (3)

𝐹(𝑋) = 𝑠𝑖𝑔𝑛(𝐷 − 𝑏) = {
−1, (𝐷 − 𝑏) < 𝑡ℎ
1, (𝐷 − 𝑏) ≥ 𝑡ℎ

} (4)

In the developed algorithm, three main tasks are considered

to perform the required calculation, and which are mapped to

the corresponding equation (2), (3), and (4). The first task

performing the function of equation (2), which stores the

summing of all multiplied SVs in an accumulated array (AC).

The dot product between the accumulated array and test

instance of equation (2) is performed in the second task to

calculate the classification distance value (D). In the last task

based on the sign value, the calculated distance number is

classified (F(x)), and threshold value th is calculated through the

validation phase. The outcome of this process has two

possibilities either 1 or -1, which are corresponding to class 1 or

class 2. The flow diagram of the proposed SVM HLS

Implementation is shown in Fig. 1.

The hardware/software co-design based architecture is

developed on Zynq SoC to implement the proposed SVM is

shown in Fig. 2. In implementing the SVM classifier, the

proposed architecture depends on the size of both the SVs and

features. The needed input data to the design is received through

the input stream interface and stored in three main memory. The

features of SVs are stored in one 2D array, corresponding ay of

each SV in a 1D array, and test instance features data are stored

in another 1D array.

The HLS tool effectively helps to develop the Intellectual

Property (IP) for the proposed SVM classifier on Zynq SoC

[25], by providing the various directives. The stream directive

AXI4 is used as an input stream to streaming the data between

the designed HLS IP in the PL slice and PS (ARM CPU) on

Zynq SoC. Also, the AXI-lite bus is used as a control bus to

control the data flow through the ARM CPU and controlling the

designed IP.

AN EFFICIENT CLASSIFICATION OF HYPERSPECTRAL REMOTELY SENSED DATA USING SUPPORT VECTOR MACHINE 611

In the proposed architecture, the HLS IP module is designed

with the help of Vivado HLS tool and implemented on PL part

of the Zynq platform. To perform multiplication process within

the loop, HLS tool is used with C language. The rest of the code

is about reading the data from the file of the trained model and

doing some processing for preparing data.

Fig. 1. Flow diagram of Proposed SVM HLS Implementation

Fig. 2. The Proposed Architecture for Implementation on

Zynq SoC

The top function of the parameters are optimized as being

ports of the hardware IP using Vivado HLS Directives with the

help of AXI4-Stream interface. This helps the two vectors to

stream the data for the multiplication into the HLS IP. The AXI-

lite bus is assigned to control the communication between the

designed function for controlling the IP core and ARM

processor in PS part of the Zynq platform as shown in Figure 2.

The vectors of the double data type are replaced by float to

generate an AXI4-Stream interface for streaming data between

the hardware coprocessor in PL and ARM CPU in PS. Also, to

support HLS stream protocol the source file is changed to a CPP

file instead of C. As a result to reach high parallelism minor

changes in the code is done using the Vivado HLS tool.

A good level of optimization is critical for real time

application, hence to achieve high optimization the HLS tool

available directives were applied for the top module. For the

accumulation of multiplication process pipelining and unrolling

the loop directives were assigned and tested to increase the data

throughput rate. The loops in the proposed function takes

around 333 clock cycles without applying any optimization

directives. But with directives of pipeline and unroll it takes 169

and 204 clock cycles respectively.

C. Implementation of Zynq SoC for Proposed Embedded

System Design

Once synthesizing the code and applying interfaces

directives, the Vivado HLS tool is used to co-simulate and

export as an RTL implementation of the HLS IP for the

classifier. Then by using Vivado Design tool, integrate the

exported HLS IP into a proposed system as shown in Fig. 3.

In the PL part of the proposed system Zynq coprocessor is

implemented by connecting core of HLS IP with the ARM

processor in PS part through Accelerator Coherency Port (ACP)

using Direct Memory Access (DMA). The data transfer

communication between HLS IP and ARM processor through

the AXI4-Stream protocol is controlled by DMA controller IP.

In the control unit the ACP is a 64-bit AXI slave interface,

which provides a low latency asynchronous cache-coherent

access point from the Zynq PL to the PS. Also, measuring the

number of clock cycle required for the core comparison is

instantiated by the AXI-Timer. At last it was exported for the

Software Development Kit (SDK) after synthesizing, generating

and implementing the bit tream of the proposed design for

running the application on Zynq device.

D. Implementation of Zynq SoC for Proposed Software

Design

To verify and test the implemented SVM classifier on the Zynq
SoC, a stimulus/test bench or software program has been
developed. The execution of the test bench is the responsibility
of the PS ARM CPU. The required software program or test
bench for testing is developed and implemented in C using the
SDK tool. A proposed software program or test bench runs on
the ARM processor of PS is shown in Fig. 4. The required
trained parameters of the SVM model and test instance for
computation are imported from three main files saved in the SD
card of Zynq. The support vectors are stored in the first file, and
ay of each SV with the value of b is stored in the second file.
The test data are stored in the third file. Next, for further
processing, all imported data are stored in three main arrays to
stream to the Zynq.

612 MAHENDRA H N, MALLIKARJUNASWAMY S,

Fig. 3. Proposed system implemented on Zynq

Defined F as number of features+1 and SV+1 has support

vectors
1. On the File_SVs read SVs data in byte wise
2. Store in an array of SVs_array[SV][F]
3. Repeat the first two steps for ay and b,

ay_array[SV] and File_test
4. Repeat the first two steps for test_array[F] and

File_test
5. Setup XTimer IP and calibrate
6. The proposed algorithm shown in Figure 1 runs

on PS ARM
7. Calculate the XTimer total execution cycle
8. DMA IP initialized
9. SVM HLS IP hardware is initialized
10. SVM IP runs on the Zynq PL
11. Using DMA transfer SVs_array to the SVM IP
12. Waiting for transfer done by DMA within a loop
13. Step 11 and 12 are repeated for test_array[F]

and ay_array[SV]
14. Execute SVM IP done in a loop
15. Hardware results read from SVM IP
16. DMA transfer and hardware of SVM IP running

total execution time measured by XTimer
17. Compare the results of result_software and

result_hardware
18. Also, compare the run time of software and

hardware implementation.

Fig. 4. Zynq for running software program using proposed

algorithm.

To compare the results of software and hardware

implementation, the proposed SVM algorithm shown in Fig. 1

is implemented on the ARM processor and the obtained results

are compared with SVM HLS IP running on hardware. The

XTimer IP, counts the clock cycle running of the SVM

algorithm in software/PS and hardware/PL for performance

comparison. This proposed system can support adopting any

trained SVM model with the parameters of the same size and

feasible to achieve flexibility, generality, and adaptability.

IV. EXPERIMETAL RESULTS

A. Experimental Setup

To implement our proposed hardware design on the Evaluation

Board of Zynq-7 ZC702, the Xilinx Vivado 2016.1 Design Suite

is used. First using a Vivado HLS tool SVM HLS IP is

developed, then it is integrated with the design Zynq SoC using

the Vivado tool as shown in Figure 2. The bit stream of the

designed Zynq system is generated after synthesis, place, and

route for the Xilinx SDK tool. This tool helps to runs the

application on onboard for classification process on Zynq.

B. Data Set

The experiment is conducted using two HSI data sets of the

Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS).

The first data set contain pixels 145 x 145 image of

southwestern part of the Indian subcontinent of Mysuru district

and the second data set contains 512 x 217 of pixels image

collected from Mysuru city. These data images contain 224

bands for every pixel with a scan rate of 12Hz and produce 677

pixels for every scan with the sampling rate of approximately.

In this data set only 9 spectral bands out of 224 are considered

for training and classification, because of the information

redundancy and water absorption. In this work, we consider 6

classes, and 346 pixels are used as test vectors for training

binary SVM classifiers.

C. Synthesis Results of HLS

The proposed HLS IP design is optimized using available

directives of the Vivado HLS tool. By applying different

optimization directives, several experiments were conducted to

improve and optimize the synthesis results. This process will

help to design low complexity and friendly hardware. The

assigned directives of corresponding HLS synthesis results were

presented in Table I. The first column in Table 1 lists the used

directives, followed by synthesis results of HLS is presented in

column two, which includes design latency, throughput, and

resource utilization. The HLS tool default setting synthesis

results is presented in the first row of the table, which includes

I/O ports interface directives mapping (AXI4 and AXI). In

subsequent rows, alternative directives interface were tabulated.

Also, for the used array the resource allocation is tested such as

RAM and LUT. The concept of the pipeline is introduced for

inner or most loops, aiming to get the optimum solution and

helps the tool to make quick scheduling (Vivado Design Suite).

Also, different style of array partition is applied with the

directive of loop unrolling.

AN EFFICIENT CLASSIFICATION OF HYPERSPECTRAL REMOTELY SENSED DATA USING SUPPORT VECTOR MACHINE 613

TABLE I

 DIFFERENT DIRECTIVE S SYNTHESIS RESULTS IN PROPOSED HLS IP

Directives Throughput Latency LUT DSP BRAM
FF

Pipeline inner loops 19627 19626 2465 5 35 1258

Interfaces

114899 114898 2429 5 33 1271

Pipeline all

loops
19618 19617 9550 58 30 5467

Pipeline most loops 19618 19617 4048 10 35 2629

Unroll most

loops
11601 11600 63328 135 29 13793

Unroll inner loops 13699 13698 29975 135 28 13919

Array partition

Complete
32725 32724 11276 5 27 29334

Array partition

Cyclic factor 2
19249 19248 3503 10 38 2117

Array partition

Block factor 2
59126 59125 12921 7 38 13793

Array partition

Cyclic factor 16
12961 12960 12938 20 28 11123

Array partition

Cyclic factor 8
19216 19215 10027 10 40 6490

The throughput and latency of the proposed HLS IP design were
significantly improved by applying various optimization
directives with the basic interface directives. The latency of the
trained model with the interfaces of pipeline inner loop
directives 114,898 clock cycles (first row) was considerably
decreased by a factor of 8x by utilizing the extra resources.
However, unroll inner loops provide a lower latency of 13,698
cycles by utilizing or allocating extra resources such as DSP
slices, which is increased from 5 to 135. In the case of unroll,
most loops directive gives the lowest latency of 11,600, but it is
not recommended for the implementation because of its excess
of LUT utilization up to 119%, which was significantly reduced
in unroll inner loops to 92%. However, to moderate between the
percentage of LUT utilization and reaching lower latency array
partition is applied, which provides a latency of 12960 with the
resource utilization of 20 DSP.

By analyzing the different directives and their performance
concerning latency, throughput, and resource utilization, the
pipeline inner loops directives have considerably decreased the
latency with some increases in the utilization of resources.
Therefore, the pipelined design is considerably best solution for
low power consumption and area (a small number of DSP and
LUT) with high throughput and reduced latency.

D. Results of Hardware Implementation

The Vivado tool has been used to integrate the designed HLS
SVM IP into the Zynq SoC. Based on the synthesis results of
HLS presented in the previous section, the designs which are
exhibits better results were selected for the implementation of
Zynq SoC. The designs unrolled, pipelined, and array
partitioned shown in Table 1 were selected as the three best
solutions for the implementation (with an operating frequency
of 100 MHz for PL/FPGA and 666.67 for ARM CPU) to
balance the trade-off between low cost/area and high
performance.

1) Analysis of Resources Utilization

The resource utilization of FPGA for the three implemented

designs on Zynq is tabulated in Table II. The available hardware

resources are listed in the first column and in further columns

utilization of resources is listed. In the last column, the target

device available hardware resources are listed. In all three

design implementation, the percentage of resource utilization is

very low, hence it shows the area of saving in implementation.

TABLE II
 RESOURCE UTILIZATION OF IMPLEMENTED DESIGNS ON ZYNQ

SOC

On-Chip

Component
Available Unrolled Pipelined

Array

Partitioned

Slice LUTs 53200 12808 2579 8111

Slice FF

Registers
106400 13830 2898 9009

Memory

LUT
17400 161 204 582

BRAM 140 16.5 20 16.5

DSP48 220 135 5 20

2) Analysis of Power Consumption

The power consumption of all three design implementation has

been analysed using the Vivado tool and corresponding results

are reported in Table III. From the results, it is clear that the

power consumption of all three design is a considerably small

value, hence it will meet the real-time constraints of an

embedded system. The pipelined design consumed the least

power of 1.758 watts, compared to designs of unrolled and array

partitioned.

614 MAHENDRA H N, MALLIKARJUNASWAMY S,

TABLE III

 POWER CONSUMPTION OF THREE DESIGNS

Unrolled Pipelined Array Partitioned

On-Chip
Power (Watts)

2.125 1.758 1.842

3) Analysis of Processing Time

The computing time of designed SVM code on the hardware-

implemented in PL part and ARM processor in the PS part of

the Zynq SoC is exploited using AXI-Timer IP core shown in

Fig. 2. The operating frequency of 100 MHz is used to compute

the processing time of both the PS part of the ARM processor

and the PL part of hardware implementation. Accordingly, the

processing time of designs is tabulated in Table IV.

TABLE IV

PROCESSING TIME COMPARISON OF THREE DESIGNS

FPGA ARM Optimized

FPGA/ARM

Clock Cycles 2815 28968 10.29

Pipelined (µs) 11.26 43.45 3.86

Unrolled (µs) 14.77 309.47 20.95

Array

Partitioned(µs)

14.76 309.31 20.96

4) Analysis of Classification Accuracy

 An accuracy assessment is an important parameter to

analyses the effectiveness of designed HLS SVM IP. The

classification results of hardware implementation are compared

with software implementation to assess the performance of the

classifier. To analyze the performance of developed HLS SVM

IP, the confusion/error matrix needs to construct and it can be

used to calculating the overall classification accuracy.

Therefore, for each design, the confusion/error matrix is

developed for the performance analysis. The confusion matrix

for the pipelined design is constructed with the 6 classes and 346

test vectors. The test vector is compared pixel by pixel with the

remotely sensed data, then agreement and disagreement are

arranged in the cells of the error matrix. The total column in the

matrix gives how many reference test data are compared with

each class and the row total gives the how many pixels are

classified to each class. Correctly classified pixels can be found

by adding diagonal elements of the error matrix. Table V shows

a typical confusion matrix of 6 classes and 346 reference test

vectors of HLS SVM IP.

Table VI shows a confusion matrix of software

implementation for 6 classes and 346 reference test vectors. The

classification accuracy rate of our hardware implementation

has got 97.61% and the corresponding software implementation

has achieved 98.57% is tabulated in Table VII. The difference

of overall classification accuracy is within 1% for the same data

set, hence our implemented HLS SVM IP can be used for real-

time classification without compromising with accuracy rate.

TABLE V

 CONFUSION MATRIX OF HLS SVM IP.

C
la

ss
if

ie
d

 D
a

ta
 C

la
ss

e
s

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

C
la

ss
 4

C
la

ss
 5

C
la

ss
 6

R
o

w
 T

o
ta

l

Class 1
52 1 0 0 0 0 53

Class 2 0 44 0 0 0 0 44

Class 3 0 0 32 0 1 0 33

Class 4 0 0 1 27 0 0 28

Class 5 0 0 0 1 29 0 30

Class 6 1 0 0 0 0 21 22

Column

Total
53 45 33 28 30 21 210

TABLE VI

CONFUSION MATRIX OF SOFTWARE IMPLEMENTATION.

C
la

ss
if

ie
d

 D
a

ta

C
la

ss
e
s

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

C
la

ss
 4

C
la

ss
 5

C
la

ss
 6

R
o

w
 T

o
ta

l

Class 1
52 0 0 0 0 0 52

Class 2 0 45 0 0 0 0 45

Class 3 0 0 33 0 1 0 34

Class 4 0 0 0 27 0 0 27

Class 5 0 0 0 1 29 0 30

Class 6 1 0 0 0 0 21 22

Column

Total
53 45 33 28 30 21 210

TABLE VII

 ACCURACY COMPARISON OF HLS SVM IP AND SOFTWARE

IMPLEMENTATION

Training Data

set

Support

Vectors
Accuracy

HLS SVM IP 210 346 97.61 %

Software

Implementation
210 346 98.57 %

AN EFFICIENT CLASSIFICATION OF HYPERSPECTRAL REMOTELY SENSED DATA USING SUPPORT VECTOR MACHINE 615

TABLE VIII

COMPARISON OF PIPELINED DESIGN WITH OTHER RESEARCHERS

TABLE IX

PROCESSING TIME, POWER CONSUMPTION, AND ARCHITECTURE DIFFERENCE OF DIFFERENT PLATFORM

Relate Work Ours Sen Ma

et al

(2018)

[36]

Kumar

et al

(2017)

[37]

Qasaimeh

et al

(2015)

[38]

Paolett

i et al.

(2020)

[35]

Jiang et

al (2017)

[33]

Kyrku et

al (2016)

[34]

Ningm

a et al

(2016)

[27]

Wang et

al (2016)

[30]

Nitish et

al (2017)

[32]

Abelard

o et al

(2019)

[31]

Slice LUTs 2,579

/53200

NA 2443/

69120

16,138/
69120

NA 14,028/5
3200

35,532/
92152

NA 234666/
262400

62,522/
218,600

11122/

53200

Slice FF

Registers

2,898/

106400

NA 2332/

69120

7,924
/69120

NA 21,305/1
06400

20,153/
184304

NA 443688 /
524800

81,135/
437,200

15225/

106400

BRAM 20/140 NA 19/148 60/148 NA 106/140 256/268 NA 1715/
2567

157/545 8/140

DSP48 5/220 NA 24/64 53/64 NA 152/220 59/180 NA 1680/

1963

111/900 34/220

Number of

SVs

346 NA 8 98 NA 94 122 50 100 NA NA

Kernal Linear NA Linear Linear

Linear Linear Linear Linear Linear NA Linear

Classifier SVM MLC SVM SVM SVM SVM SVM SVM SVM Haar
cascaded

SVM

Hardware

Architecture

HLS-

based

Pipelin

ed

HLS

based

pipelined

HDL

based

HDL

based

GPU

based

MATLA

B

Simulink

MAT

LAB

HDL

based

HDL

based
HLS-

based

HLS

based

Frequency

(MHz)(

100 100 100 100 200 100 70 100 100 100 200

Power (W) 1.758 NA N/A N/A NA NA NA 3.9 26.3 NA 2.04

Processing

Time

11.26

µs

3.0 s NA 25ms 89.62m

s

0.02ms 40 FPS 25.8 µs 0.99 s 38 ms 2.20ms

Application remote

sensing

Big

image

data

Pattern

recognit

ion

system

Object

detection

remote

sensing

Industria

l

applicati
ons

Face

detection

remote

sensing

remote

sensing

Face

detection

Medical

Images

Accuracy 97.61

%

NA NA 97.54 % 84.25% 97% 80 % 97.7% 97.8% NA NA

FPGA Zynq-

7000

Kintex -

AC-510

Virtex

5-

LX110

T

Virtex 5-

LX110T

GPU Zynq-

7000

Spartan-6 ZynqX

C7Z02
0

Altera

Stratix V

ARM

CPU and
Zynq-

7000

Zynq-

7000

Ours NingMa

et al

(2016)

[27]

Wang et al

(2016)

Kumar et

al (2017)

[37]

Nitish et

al (2017)

[32]

NingMa

et al

(2016)

[27]

NingMa

et al

(2016)

[27]

NingMa

et al

(2016)

[27]

NingMa

et al

(2016)

[27]

Paoletti et

al. (2020)

[35]

Hardware

Architecture

HLS

based

HDL

based

HDL based HDL

based

HLS based DSP ARM

PC

Xeons

GPU based

FPGA Zynq

7000

ZynqXC7

Z020

Altera

Stratix V

Virtex 5-

LX110T

Zynq-7000 NA NA NA NA NA

Application Remote

sensing

Remote

sensing

Remote

sensing

Pattern

recognitio

n system

Face

detection

Remote

sensing

Remote

sensing

Remote

sensing

Remote

sensing

Remote

sensing

Power (W) 1.758 3.9 26.3 NA NA 16.0 3.3 103.8 95 NA

Time 11.26 µs 25.8 µs 0.99S NA 38ms 65.7 µs 1321.2µs 216.3 µs 14.1 µs 89.62ms

Energy(mJ/p

ixel)

0.019 0.1 1 NA NA 1.1 4.3 22.4 1.33 NA

616 MAHENDRA H N, MALLIKARJUNASWAMY S,

V. COMPARISON AND DISCUSSION

This work focus on developing the optimized hardware for

SVM classifier to realize the real-time classification system for

remote sensing application. To compare the performance of our

work, the result of different platform implementations have

been considered in different applications.

The pipelined design of our implementation has been

considered for the comparison with the related work is shown in

Table VIII. Also, our HLS based pipelined design is compared

with the work related to Hyperspectral data classification on a

different platform is shown in Table IX.

To evaluate the performance of the proposed design model,

we compare the processing time and power consumption of

various platforms as shown in Table IX. In (Ning ma et al 2016)

the traditional HDL based implementation on Zynq-XCz020 has

generated the delay of 25.8 µs/pixel and consumes the power of

3.9 Watts, which is twice compared to our HLS based design.

Also, the other processors such as DSP and ARM have been

used in microsatellites experimental for low-cost space

missions. Therefore, we compare our HLS SVM IP with these

processors and commercially available processors in terms of

processing time and power consumption. The processors

consider for result analysis includes DSP TMS320C6678, ARM

Cortex A9, and Xeons E5-2650. An analysis of power

consumption and processing time from Table 9 shows that our

pipelined design implementation on Zynq-7000 has to offer

extremely better performance as compared to other platforms.

The pipelined design on Zynq-7000 gets the speed up of 2x, 5x,

100x, 20x compared to Zynq-XC7Z020, DSP, ARM, and PC

respectively. Also, the energy-saving of our pipelined design

extremely good as compared to other implementation listed in

Table 9. The power consumption of our pipelined design has

consumed the least power as compared to other designs,

therefore our proposed design is well suited for onboard

classification of remotely sensed data and fulfils the

requirement of real-time classification.

CONCLUSIONS

This paper proposes an implementation of an SVM classifier on

FPGA using hardware/software co-design and an embedded

SoC is realized for onboard classification of hyperspectral data

on the Zynq 7000 SoC using HLS design methodology. Our

Zynq implemented system satisfies the constraints of an

embedded system, with high performance in terms of power

consumption, area, and speed. In this work, the utilization of

HLS design and directives (optimization techniques) helps in

achieving a high classification accuracy rate of 97.61%. The

proposed system is cost-effective since it uses only 2.7% of

slices and power consumption of 1.7 watts. Also the processing

time our proposed system is 11.3 μs, which is extremely better

compared to existing work in the literature. These results show

the proposed system meets the requirements of real-time

classification and it is suited for onboard hyperspectral image

classification system.

ACKNOWLEDGMENT

The authors would like to thank, JSS Academy of Technical

Education, Bengaluru, Visvesvaraya Technological University

(VTU), Belagavi and vision group on science and technology

(VGST) Karnataka Fund for Infrastructure Strengthening in

Science & Technology Level –2 (JSSATEB) for all the support

and encouragement provided by them to take up this research

work and publish this paper.

REFERENCES
1. Hennes Henniger, Stefan Seyfarth, and Erhard Diedrich, “Analysis and

Comparison of New Downlink Technologies for Earth Observation
Satellites”, Radio Engineering, vol. 25, No.1, pp.1-6, 2016.
http://doi.org/10.13164/re.2016.0001

2. Montenegro S, Rodionov I, Rodionov A, and Fedounin E, “Hyperspectral

monitoring data processing”, International Symposium on Small Satellites
for Earth Observation, ISBN 3-89685 569-7 4, 2003.

3. S. Lucana, M. Enrico, V. Raffaele, “Highly-Parallel GPU Architecture for

Lossy Hyperspectral Image Compression”, IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing (J-STARS), vol.

6, No. 2, pp. 670-68, 2013.
https://doi.org/10.1109/JSTARS.2013.2247975

4. S Bernabe, S. Lopez, A. Plaza, “FPGA Design of an Automatic Target

Generation Process for Hyperspectral Image Analysis”, IEEE 17th
International Conference on Parallel and Distributed Systems, pp. 1010-
1015, 2011. http://doi.org/10.1109/ICPADS.2011.64

5. Dequan Liu, Guoqing Zhou, Jingjin Huang, Rongting Zhang, Lei Shu,

Xiang Zhou, and Chun Sheng Xin, “On-Board Geo referencing Using

FPGA-Based Optimized Second-Order Polynomial Equation”, Remote
Sens., vol. 11, pp.1-28, 2019. http://doi.org/10.3390/rs11020124

6. D. Lu, and Q. Weng, “A survey of image classification methods and
techniques for improving classification performance”, International

Journal of Remote Sensing, Vol. 28, No. 5, pp. 823–870, 2007.
https://doi.org/10.1080/01431160600746456

7. J. Nayak, B. Naik, and H. Behera, “A Comprehensive Survey on Support

Vector Machine in Data Mining Tasks: Applications & Challenges,”
International Journal of Database Theory and Application, vol. 8, pp.
169-186, 2015. http://doi.org/10.14257/ijdta.2015.8.1.18

8. G. Camps Valls, L. Bruzzone, “Kernel-based methods for hyperspectral

image classification”, IEEE Transaction on Geoscience and Remote
Sensing, vol. 43, No. 6, pp.1351-1362, 2005.
https://doi.org/10.1109/TGRS.2005.846154

9. S. M. Afifi, H. GholamHosseini, and R. Sinha, “Hardware

Implementations of SVM on FPGA: A State-of-the-Art Review of Current

Practice”, International Journal of Innovative Science, Engineering &
Technology, vol. 2, pp. 733-752, 2015.

10. Mahendra HN, Mallikarjunaswamy S, Siddesh GK, Komala M, Sharmila
N, “Evolution of real-time onboard processing and classification of

remotely sensed data”, Indian Journal of Science and Technology, vol.
13, pp. 2010-2020, 2020. https://doi.org/10.17485/IJST/v13i20.459

11. Shradha Gupta, Sumeet Saurav, Sanjay Singh, Anil K Saini, Ravi Saini,

“VLSI Architecture of Exponential Block for Non-Linear SVM
Classification”, IEEE International Conference on Advances in

Computing, Communications and Informatics, pp.128-132, 2015.
https://doi.org/10.1109/ICACCI.2015.7275662

12. Sumeet Saurav, Ravi Saini, and Sanjay Singh, “FPGA Based

Implementation of Linear SVM for Facial Expression
Classification”, IEEE International Conference on Advances in

Computing, Communications and Informatics, pp. 766-773, 2018.
https://doi.org/10.1109/ICACCI.2018.8554645

13. Markos Papadonikolakis, Christos-Savvas Bouganis, “A Novel FPGA-

based SVM Classifier”, IEEE International Conference on Field
Programmable Technology, pp.283-290, 2010.
https://doi.org/10.1109/FPT.2010.5681485

14. Yiyue Jiang, Kushal Virupakshappa and Erdal Oruklu, 2017, “FPGA

Implementation of a Support Vector Machine Classifier for Ultrasonic

Flaw Detection”, IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS), pp. 180-183, Aug. 2017.

https://doi.org/10.1109/MWSCAS.2017.8052890

15. Kevin M. Irick, Michael DeBole, Vijaykrishnan Narayanan, and Aman

Gayasen, “A hardware efficient support vector machine architecture for
FPGA”, IEEE Symposium on Field-Programmable Custom Computing

Machines, pp. 304-305, Apr. 2008.
https://doi.org/10.1109/FCCM.2008.40

http://doi.org/10.13164/re.2016.0001
https://doi.org/10.1109/JSTARS.2013.2247975
http://doi.org/10.1109/ICPADS.2011.64
http://doi.org/10.3390/rs11020124
https://doi.org/10.1080/01431160600746456
http://doi.org/10.14257/ijdta.2015.8.1.18
https://doi.org/10.1109/TGRS.2005.846154
https://doi.org/10.17485/IJST/v13i20.459
https://ieeexplore.ieee.org/author/38197785900
https://ieeexplore.ieee.org/xpl/conhome/7259950/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7259950/proceeding
https://doi.org/10.1109/ICACCI.2015.7275662
https://doi.org/10.1109/ICACCI.2018.8554645
https://doi.org/10.1109/FPT.2010.5681485
https://ieeexplore.ieee.org/xpl/conhome/8039346/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8039346/proceeding
https://doi.org/10.1109/MWSCAS.2017.8052890
https://pennstate.pure.elsevier.com/en/persons/vijaykrishnan-narayanan
https://doi.org/10.1109/FCCM.2008.40

AN EFFICIENT CLASSIFICATION OF HYPERSPECTRAL REMOTELY SENSED DATA USING SUPPORT VECTOR MACHINE 617

16. Papadonikolakis, M. and Bouganis C S, “Novel cascade FPGA accelerator

for sup- port vector machines classification”, IEEE Transactions on

Neural Networks and Learning Systems, pp.1040-1052, 2012.
https://doi.org/10.1109/TNNLS.2012.2196446

17. Kyrkou, C. and Theocharides, T, “SCoPE: Towards a systolic array for

SVM object detection”, IEEE Embedded Systems Letters, pp. 46-49, 2009.
http://doi.org/10.1109/LES.2009.2034709

18. Cadambi S., Igor D, Venkata J, Murugan S, Eric C, Srimat T, H.P. Graf,
“A massively parallel FPGA-based coprocessor for support vector

machines”, IEEE Symposium on Field Programmable Custom Computing
Machines, pp.115-122, Apr. 2009.

https://doi.org/10.1109/FCCM.2009.34

19. Berberich M, and Doll K, “Highly flexible FPGA-architecture of a support
vector machine”, In: MPC workshop, pp. 25–32, 2014.

20. C. Kyrkou and T. Theocharides, “SCoPE: Towards a Systolic Array for

SVM Object Detection,” IEEE Embedded Systems Letters, vol. 1, pp. 46-
49, 2009. http://doi.org/10.1109/LES.2009.2034709

21. Christos Kyrkou, and T Theocharides, “A Parallel Hardware Architecture
for Real-Time Object Detection with Support Vector Machines,” IEEE

Transactions on Computers, vol. 61, pp.831-842, 2012.
https://doi.org/10.1109/TC.2011.113

22. M. Pietron, M. Wielgosz, D. Zurek, E. Jamro, and K. Wiatr, “Comparison

of GPU and FPGA Implementation of SVM Algorithm for Fast Image
Segmentation,” Architecture of Computing Systems–ARCS, -Springer, pp.
292-302, 2013. https://doi.org/10.1007/978-3-642-36424-2_25

23. Vivado High-Level Synthesis, Available:

http://www.xilinx.com/products/designtools/vivado/integration/esl-
design.html

24. Vivado Design Suite Available: http://www.xilinx.com/products/design-
tools/vivado.html

25. Zynq-7000 All Programmable SoC. Available:
http://www.xilinx.com/products/silicondevices/soc/zynq-7000.html.

26. Boser, Guyon, Vapnik, “Support Vector Machines (SVMs)”, Intelligent
Systems and Signal Processing in Power Engineering, pp. 161-226, 1992.

27. Ning Ma, Shaojun Wang, Syed Mohsin Ali, Xiuhai Cui and Yu Peng,

“High Efficiency On-Board Hyperspectral Image Classification with Zynq
SoC”, MATEC Web of Conferences, 2016.
https://doi.org/10.1051/matecconf/20164505001

28. Mahendra H N, Shivakumar B R, Praveen J, “Pixel-based Classification

of Multispectral Remotely Sensed Data Using Support Vector Machine

Classifier”, International Journal Of Innovative Research In Electrical,
Electronics, Instrumentation And Control Engineering, vol. 3, pp. 94-98,
Apr. 2015. http://doi.org/10.1109/IACC.2016.20

29. Mahendra H N, Mallikarjunaswamy S, Rekha V, Puspalatha V, Sharmila

N, “Performance Analysis of Different Classifier for Remote Sensing

Application”, International Journal of Engineering and Advanced
Technology, vol. 9, pp. 7153-7158, Oct. 2019.

https://doi.org/10.35940/ijeat.a1879.109119

30. Shaojun Wang, Xinyu Niu, Ning Ma, Wayne Luk, Philip Leong, and Yu

Peng, “A Scalable Dataflow Accelerator for Real Time Onboard
Hyperspectral Image Classification” Applied Reconfigurable Computing:

12th International Symposium, ARC 2016 http://doi.org/10.1007/978-3-
319-30481-6_9

31. Abelardo Baez, Himar Fabelo, Samuel Ortega, Giordana Florimbi,

Emanuele Torti , Abian Hernandez, Francesco Leporati, Giovanni Danese,
Gustavo M. Callico and Roberto Sarmiento, “High-Level Synthesis of

Multiclass SVM Using Code Refactoring to Classify Brain Cancer from
Hyperspectral Images”, MDPI Electronics, 2019.
https://doi.org/10.3390/electronics8121494

32. Nitish Srivastava, Steve Dai, Rajit Manohar, and Zhiru Zhang,

“Accelerating Face Detection on Programmable SoC Using C-Based

Synthesis”, Proceedings of the ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 195-200, February 2017.
https://doi.org/10.1145/3020078.3021753

33. Yiyue Jiang, Kushal Virupakshappa and Erdal Oruklu, “FPGA

Implementation of a Support Vector Machine Classifier for Ultrasonic

Flaw Detection”, IEEE 60th International Midwest Symposium on Circuits
and Systems (MWSCAS), 2017
https://doi.org/10.1109/MWSCAS.2017.8052890

34. Christos Kyrkou, Christos-Savvas Bouganis, Theocharis Theocharides,

and Marios M. Polycarpou, “Embedded Hardware-Efficient Real-Time

Classification With Cascade Support Vector Machines”, IEEE
Transactions On Neural Networks And Learning Systems, Vol. 27, No. 1,
January 2016. https://doi.org/10.1109/TNNLS.2015.2428738

35. Mercedes E. Paoletti , Juan M. Haut, Xuanwen Tao, Javier Plaza Miguel

and Antonio Plaza, “A New GPU Implementation of Support Vector

Machines for Fast Hyperspectral Image Classification”, MDPI Remote
sensing Journal, Feb. 2020. https://doi.org/10.3390/rs12081257

36. Sen Ma, Xuan Shi, and David Andrews, “Parallelizing maximum
likelihood classification (MLC) for supervised image classification by

pipelined thread approach through high-level synthesis (HLS) on FPGA

cluster”, BIG EARTH DATA, Taylor & Francis Group VOL. 2, NO. 2, pp.
144–158, 2018. https://doi.org/10.1080/20964471.2018.1470249

37. Santosh Kumar, Manikandan J and VK Agrawal, “Hardware
Implementation of Support Vector Machine Classifier using

Reconfigurable Architecture”, IEEE International Conference on

Advances in Computing, Communications and Informatics (ICACCI),
2017. https://doi.org/10.1109/ICACCI.2017.8125814

38. Murad Qasaimeh, Assim Sagahyroon, and Tamer Shanableh, “FPGA-
based Parallel Hardware Architecture for Real-Time Image

Classification”, IEEE Transactions on Computational Imaging, Volume
1, Issue 1, March 2015. https://doi.org/10.1109/TCI.2015.2424077

https://doi.org/10.1109/TNNLS.2012.2196446
http://doi.org/10.1109/LES.2009.2034709
https://www.researchgate.net/scientific-contributions/Venkata-Jakkula-9574404
https://www.researchgate.net/scientific-contributions/Murugan-Sankaradass-71017172
https://www.researchgate.net/profile/Eric_Cosatto
https://www.researchgate.net/scientific-contributions/Srimat-T-Chakradhar-5436130
https://www.researchgate.net/profile/HP_Graf
https://doi.org/10.1109/FCCM.2009.34
http://doi.org/10.1109/LES.2009.2034709
https://doi.org/10.1109/TC.2011.113
https://doi.org/10.1007/978-3-642-36424-2_25
http://www.xilinx.com/products/designtools/vivado/integration/esl-design.html
http://www.xilinx.com/products/designtools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/silicon%20%20%20%20%20%20%20%20%20%20%20%20devices/soc/zynq-
https://link.springer.com/book/10.1007/978-3-540-73170-2
https://link.springer.com/book/10.1007/978-3-540-73170-2
https://doi.org/10.1051/matecconf/20164505001
http://doi.org/10.1109/IACC.2016.20
https://doi.org/10.35940/ijeat.a1879.109119
http://doi.org/10.1007/978-3-319-30481-6_9
http://doi.org/10.1007/978-3-319-30481-6_9
https://doi.org/10.3390/electronics8121494
https://dl.acm.org/doi/proceedings/10.1145/3020078
https://dl.acm.org/doi/proceedings/10.1145/3020078
https://doi.org/10.1145/3020078.3021753
https://ieeexplore.ieee.org/xpl/conhome/8039346/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8039346/proceeding
https://doi.org/10.1109/MWSCAS.2017.8052890
https://doi.org/10.1109/TNNLS.2015.2428738
https://doi.org/10.3390/rs12081257
https://doi.org/10.1080/20964471.2018.1470249
https://ieeexplore.ieee.org/xpl/conhome/8119306/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8119306/proceeding
https://doi.org/10.1109/ICACCI.2017.8125814
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6745852
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6964853
https://doi.org/10.1109/TCI.2015.2424077

