
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 3, PP. 619-623

Manuscript received September 17, 2021; revised August, 2022. DOI: 10.24425/ijet.2022.141281

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—A testbench is built to verify a functionality of a shift

register IC (Integrated Circuit) from stuck-at-faults, stuck-at-1 as

well as stuck-at-0. The testbench is supported by components, i.e.,

generator, interface, driver, monitor, scoreboard, environment,

test, and testbench top. The IC consists of sequential logic circuits

of D-type flip-flops. The faults may occur at interconnects between

the circuits inside the IC. In order to examine the functionality

from the faults, both the testbench and the IC are designed using

SystemVerilog and simulated using Questasim simulator.

Simulation results show the faults may be detected by the

testbench. Moreover, the detected faults may be indicated by error

statements in transcript results of the simulator.

Keywords—testbench; verification; shift register IC; stuck-at-

faults; SystemVerilog

I. INTRODUCTION

HIFT register Integrated Circuits (ICs) may be applicated to

serial-to-parallel data conversion and remote control

holding register[1]. The ICs may be implemented to displays

and control units. They consist of sequential logic circuits, i.e.

D-type flip-flops. Stuck-at-faults may occur at either inputs or

output interconnects between the circuits inside the ICs[2].

The faults may be caused by shorted the interconnects to

supply voltage (stuck-at-1) and ground (stuck-at-0)[3]–[5]. The

inputs and outputs of the circuits may stick at high and low

values caused by the stuck-at-1 and stuck-at-0, respectively.

Since the faults may cause functions of the ICs become errors,

they should be detected.
The faults may be detected by an Automatic Test Pattern

Generation (ATPG)[6]–[9]. However, it needs to integrate the

external tools and programs where integrating them is not easy.

Furthermore, it requires a circuit partitioning and a bit parallel

processing.

A Built-in Self Test (BIST) was proposed to detect the

faults[10]–[12]. The BIST consisted by a signature

analyzer[13]. The analyzer is used to compare signals generated

by the faults and faults-free and further analyze them. However,

it takes time consuming, since the signal faults are detected by

checking the generated signals one-by-one. Furthermore, the

BIST is still designed by a Verilog Hardware Description

Languages (HDL) in which it isn’t supported by Object

Oriented Programming (OOP) features[14]–[16], thus the

detected faults aren’t indicated by pass/ error statements.

A SystemVerilog is an extension of the Verilog HDL[17]–

[21] used to design and verify hardware[22][23], e.g., Field

This work was supported by University Muhammadiyah Malang under Grant

PDK No.: E.2.a/132/BAA-UMM/IV/2020.

First Author and Second Author are with University of Muhammadiyah
Malang, Department of Electrical Engineering, Indonesia (e-mail:

widianto@umm.ac.id and chasrun@umm.ac.id)

Programmable Gate Arrays (FPGAs) and Application-Specific

Integrated Circuits (ASICs). The hardware design is created in

a Register Transfer Level (RTL) model. Moreover, to verify

functionality of the design working as expected, a testbench

should be built[24]. The testbench drives different input

stimulus to the design and is supported by the OOP features.

 In this paper, a proposed shift register IC is designed using

the SystemVerilog. It will be verified the functionality from

both stuck-at-faults, stuck-at-1 and stuck-at-0 by a testbench.

The designed IC and its testbench are simulated using

Questasim simulator[25]. Simulation results denote that the

faults inside the IC may be detected by the testbench.

Furthermore, indicating pass/ error statements is included in the

detected faults by it.

II. RESEARCH METHOD

A testbench is built to verify a functionality of a shift

register IC from both stuck-at-faults, stuck-at-1 and stuck-at-0.

The testbench architecture is shown in Figure 1. There are some

supported components, namely, transaction object, generator,

interface, driver, monitor, scoreboard, environment, test, and

testbench top. The IC is as a Design Under Test (DUT).

Fig.1. Testbench architecture

The DUT is a sample 8-bit shift register IC produced by

Nexperia Co. Ltd. A logic diagram of the DUT is shown in

Figure 2. As shown in Figure 2, the DUT consists of four buffer

gates, two inverter gates, and eight stages, stage 0 to stage 7.

Each of the stages is made of a buffer gate and two D flip-flop

types in which the D flip-flop types are a shift register sh and

a storage register st. Symbol descriptions in the DUT are shown

in Table I.

Third Author is with Wroclaw University of Science and Technology,

Poland (e-mail: Robert.lis@pwr.edu)

Interface

DUT

Driver

Generator

Monitor

Scoreboard

Test

Env

Pass/ Error

Testbench Top

Trans. Obj.

Build Testbenches for Verification in Shift

Register ICs using SystemVerilog
Widianto, M. Chasrun H., and Robert Lis

S

https://creativecommons.org/licenses/by/4.0/
mailto:widianto@umm.ac.id
mailto:chasrun@umm.ac.id
mailto:Robert.lis@pwr.edu

620 WIDIANTO, M. CHASRUN H., ROBERT LIS

Fig.2. Logic diagram of the DUT

TABLE I

SYMBOL DESCRIPTION OF THE DUT

Symbol Description

in Serial data input

Csh Shift register clock input

Rsh Shift register reset input

Rst Storage register reset input

Q0-to-Q7 Parallel data output

Q7S Serial data output

Moreover, the DUT is designed using a SystemVerilog.

The SystemVerilog code of the DUT is shown in Figure 3. The

code is based on logic diagram as shown in Figure 2. There are

eight stages, four inverters, and two inverters in the code.

module sh594b (in, Csh, Rsh, Cst, Rst, Q, Q7S, qsh);

input in, Csh, Rsh, Cst, Rst;

output [7:0] Q;

output Q7S;

output [7:0] qsh;

inva u3 (.g(rsh), .f(Rsh));

 …

stage u5 (.dsh(dsh), .csh(csh), .rsh(rsh), .cst(cst), .rst(rst),

.qsh(qsh[0]), .qst(Q0));

…

buff u13 (.d(Q7S), .c(qsh[7]));

assign Q = {Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0};

endmodule

Fig.3. SytemVerilog code of the DUT

A timing diagram of the DUT is shown in Figure 4. The

DUT is reset by providing low level signals to the Rsh and the

Rst. If the DUT is reset, all outputs of the Q7S and the Q0-to-

Q7 are low level signals.

On the other hand, the DUT will run by providing high

signals to the Rsh and the Rst. When a high pulse and clock

signals are provided to the in and the Csh, respectively, the pulse

signal will be shifted to each the stage and outputted serially to

the Q7S since low-to-high transitions of the Csh. Moreover,

clock signals are provided to the Cst behind one clock pulse of

the Csh, the pulse signal will be shifted parallelly to the Q0-to-

Q7 when low-to-high transitions of the Cst.

Stuck-at-faults may occur at interconnects between the

stages inside the DUT. For example, Figure 5a shows a stuck-

at-1 occurring between the stage 0 and the stage 1. The stuck-

at-1 may cause an output of the sh0 in the stage 0 will stick at a

high level signal regardless provided level signals of the in. On

the other hand, occurring a stuck-at-0 is shown in Figure 5b. An

output of the sh0 in the stage 0 will stick at a low level signal

caused by the stuck-at-0.

\

Fig.4. Timing Diagram of the DUT

Furthermore, all components in the testbench are coded by

the SystemVerilog. There are classes and a module. The classes

are the transaction object, the generator, the interface, the driver,

the monitor, the scoreboard, the environment, and the test.

However, the testbench top is the module.

(a)

(b)

Fig.5. Stuck-at-faults (a) Stuck-at-1 (b) Stuck-at-0

Q

R
C

D

Q

R
C

D

Stage 0

sh0

st0

Q0

Stage 1 - 6

Q1 Q2 Q3 Q4 Q5 Q6

Q

R
C

D

Q

R
C

D

Stage 7

sh7

st7

Q7

Q7Sin

Csh
Rsh

Rst
Cst

XXX594

in

Csh

Rsh

Q0S

Q1S

Q7S

Cst

Rst

Q0

Q1

Q7

Q

R
C

D

Q

R
C

D

Stage 0

sh0

st0

Q0 Q1

in

Csh
Rsh

Rst
Cst

XXX594

Q

R
C

D

Q

R
C

D

Stage 1

sh1

st1

Q

R
C

D

Q

R
C

D

Stage 0

sh0

st0

Q0 Q1

in

Csh
Rsh

Rst
Cst

XXX594

Q

R
C

D

Q

R
C

D

Stage 1

sh1

st1

BUILD TESTBENCHES FOR VERIFICATION IN SHIFT REGISTER ICS USING SYSTEMVERILOG 621

The transaction object is a base transaction object will be

used to verify the DUT may work as the timing diagram shown

in Figure 4. Moreover, the base transaction is used in the

environment to initiate new transactions and capture

transactions at the interface. The code of the transaction object

is shown in Figure 6.

class Packet;

 bit in;

 bit Csh;

 bit Rsh;

 bit Cst;

 bit Rst;

 rand bit[7:0] Q;

 bit Q7S;

 rand bit[7:0] qsh;

…

endclass

Fig.6. Code of the transaction object

The generator is used to generate the random input stimulus

signals to be sent to the driver. Figure 7 shows the generator

code.

class generator;

 int loop = 10;

 event drv_done;

 mailbox drv_mbx;

….

endclass

Fig.7. Code of the generator

Furthermore, the driver is to drive the stimulus signals to

the interface and the scoreboard. The code of the driver is shown

in Figure 8.

class driver;

 virtual switch_if m_switch_vif;

 virtual sh594b_if m_sh594b_vif;

 virtual clk_if m_clk_vif;

 event drv_done;

 mailbox drv_mbx;

…

endclass

Fig.8. Code of the driver

Moreover, the interface contains the stimulus signals driven

to the DUT and response signals derived from the DUT. All the

signals are required by the DUT to be operated. Figure 9 shows

the code of the interface.

interface sh594b_if();

 logic in;

 logic Csh;

 logic Rsh;

 logic Cst;

 logic Rst;

 logic[7:0] Q;

 logic Q7S;

 logic[7:0] qsh;

endinterface

Fig.9. Code of the driver

Then, the response signals will be monitored by the monitor

and captured to the scoreboard. The code of the monitor is

shown in Figure 10.

class monitor;

 virtual sh594b_if m_sh594b_vif;

 virtual clk_if m_clk_vif;

 mailbox scb_mbx;

…

endclass

Fig.10. Code of the monitor

Further, the scoreboard will check the response signals

compared to expected signals. When the response signals are

not match to the expected signals, the DUT is a faulty indicated

by error statements. Otherwise, pass statements indicate the

DUT is a fault-free. Therefore, the scoreboard may have a

refence model behaving as the DUT. The reference model code

of the scoreboard is shown in Figure 11.

class scoreboard;

…

if (!ref_item.Rsh) begin

 {ref_item.qsh} = 0;

 end else begin

 {ref_item.qsh} = {ref_item.qsh[6:0], ref_item.in};

 end

 if (!ref_item.Rst) begin

 {ref_item.Q} = 0;

 end else begin

 {ref_item.Q} = {ref_item.Q[6:0], ref_item.qsh[0]};

 end

…

endclass

Fig.11. Reference model of the scoreboard

The environment contains all the verification components,

e.g., the generator, driver, interface, the monitor, and the

scoreboard. Figure 12 shows the code of the environment.

class env;

 generator g0;

 driver d0;

 monitor m0;

 scoreboard 0;

…

endclass

Fig.12. Code of the environment

The test contains the environment that can be tweaked with

different configuration settings. Also, the test may instantiate

any environment. Figure 13 is the code of the test.

class test;

 env e0;

 mailbox drv_mbx;

…

endclass

Fig.13. Code of the test

The testbench top contains the test. Moreover, the faults are

inserted to it by force and release instructions. The code of the

testbench top is shown in Figure 14.

module tb_sh594b3sa;

…

sh594b u0 (.in(in),

 .Csh(Csh),

 .Rsh(Rsh),

 .Cst(Cst),

 .Rst (Rst),

622 WIDIANTO, M. CHASRUN H., ROBERT LIS

 .Q(m_sh594b_if.Q),

 .Q7S(m_sh594b_if.Q7S),

 .qsh(qsh));

….

initial begin

test t0;

…

 #35 force qsh[0]=1;

 #4 release qsh[7];

….

endmodule

Fig.14. Code of the testbench top

III. RESULTS AND DISCUSSION

Building a testbench is proposed to verify a functionality of

a shift register IC from stuck-at-faults. The testbench based on

Figure 1 in which the register IC is as a DUT. The DUT is 8-bit

shift register produced by Nexperia Co. Ltd in which it has a

timing diagram as shown in Figures 4.

The testbench and the DUT are simulated using Questasim

simulator. Simulation and transcript results of a fault-free DUT

are shown in Figures 15 and 16, respectively. As shown in

Figure 15, the result is an identic timing diagram of the DUT in

Figure 4. Moreover, the scoreboard indicates pass statements

verifying the DUT is a fault-free as shown in Figure 7.

In order to verify the DUT from the faults, stucks-at-1 are

inserted each output sh of stage 0 to stage 7 when the output

should be in low level signals. Figures 17 and 18 show

simulation and transcript results of faulty DUT, respectively. As

shown in Figure 18, error statements in the scoreboard indicate

the DUT is a faulty.

…

[11] Scoreboard Pass! Q match ref_item=0x2 item=0x2

[11] Scoreboard Pass! Q7S match ref_item=0x0 item=0x0

…

[31] Scoreboard Pass! Q match ref_item=0x40 item=0x40

[31] Scoreboard Pass! Q7S match ref_item=0x0 item=0x0

…

[51] Scoreboard Pass! Q match ref_item=0x0 item=0x0

[51] Scoreboard Pass! Q7S match ref_item=0x0 item=0x0

…

[71] Scoreboard Pass! Q match ref_item=0x0 item=0x0

[71] Scoreboard Pass! Q7S match ref_item=0x0 item=0x0

….

[91] Scoreboard Pass! Q match ref_item=0x0 item=0x0

[91] Scoreboard Pass! Q7S match ref_item=0x0 item=0x0

Fig.16. Transcript result of fault-free

…

[51] Scoreboard Error! Q mismatch ref_item=0x0 item=0x7

[51] Scoreboard Pass! Q7S match ref_item=0x0 item=0x0

…

[71] Scoreboard Error! Q mismatch ref_item=0x0 item=0xff

[71] Scoreboard Pass! Q7S match ref_item=0x1 item=0x1

…

[91] Scoreboard Error! Q mismatch ref_item=0x0 item=0xff

[91] Scoreboard Pass! Q7S match ref_item=0x1 item=0x1

Fig.18. Transcript result of faulty DUT

Fig.15. Simulation result of fault-free

Fig.17. Simulation result of faulty DUT

BUILD TESTBENCHES FOR VERIFICATION IN SHIFT REGISTER ICS USING SYSTEMVERILOG 623

CONCLUSION

A testbench is built to verify a functionality of a shift register

IC by inserting stuck-at-faults inside it. The testbench and the

IC are designed by SystemVerilog. Moreover, they are

simulated by Questasim simulator. Simulation results show the

faults may be detected by the testbench. Moreover, error

statements will indicate the detected faults in transcript results

of the simulator.

ACKNOWLEDGEMENTS

We would like to express gratitude to University of

Muhammadiyah Malang for funding this work.

REFERENCES

[1] T. Ndjountche, Digital Electronics 2: Sequential and Arithmetic Logic
Circuits. 2016.

[2] G. Nithya and M. Ramaswamy, “Very large scale integrated solution for

stuck at faults in synchronous sequential circuits,” J. Comput. Theor.
Nanosci., vol. 16, no. 4, 2019, http://doi.org/10.1166/jctn.2019.8047

[3] A. A. Abou-Auf, M. M. Abdel-Aziz, M. A. Abdel-Aziz, and A. A. Ammar,

“Fault Modeling and Worst Case Test Vector Generation for Flash-Based
FPGAs Exposed to Total Dose,” IEEE Trans. Nucl. Sci., vol. 64, no. 8,
2017, http://doi.org/10.1109/TNS.2017.2687982

[4] D. Addala, P. Teja, and S. Saxena, “Fault simulation algorithm for

transistor single stuck short faults,” in Intelligent Circuits and Systems,
2021.

[5] H. M. Gaur, A. K. Singh, and U. Ghanekar, “Design for Stuck-at Fault

Testability in Toffoli–Fredkin Reversible Circuits,” Natl. Acad. Sci. Lett.,

vol. 44, no. 3, 2021, http://doi.org/10.1007/s40009-020-00967-3

[6] P. Wang, A. M. Gharehbaghi, and M. Fujita, “An Automatic Test Pattern
Generation Method for Multiple Stuck-At Faults by Incrementally

Extending the Test Patterns,” IEEE Trans. Comput. Des. Integr. Circuits
Syst., vol. 39, no. 10, 2020, http://doi.org/10.1109/TCAD.2019.2957364

[7] P. Wang, A. M. Gharehbaghi, and M. Fujita, “An Incremental Automatic
Test Pattern Generation Method for Multiple Stuck-at Faults,” in

Proceedings of the IEEE VLSI Test Symposium, 2019, vol. 2019-April,
http://doi.org/10.1109/VTS.2019.8758668

[8] P. Wang, A. M. Gharehbaghi, and M. Fujita, “Automatic Test Pattern

Generation for Double Stuck-at Faults Based on Test Patterns of Single
Faults,” in Proceedings - International Symposium on Quality Electronic
Design, ISQED, 2019, vol. 2019-March,

http://doi.org/10.1109/ISQED.2019.8697831

[9] B. Alizadeh and S. R. Sharafinejad, “Incremental SAT-Based Accurate

Auto-Correction of Sequential Circuits Through Automatic Test Pattern

Generation,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 38, no.
2, 2019, http://doi.org/10.1109/TCAD.2018.2812123

[10] Y. Ogasahara et al., “Implementation of pseudo-linear feedback shift

register-based physical unclonable functions on silicon and sufficient

Challenge–Response pair acquisition using Built-In Self-Test before

shipping,” Integration, vol. 71, 2020,
http://doi.org/10.1016/j.vlsi.2019.12.002

[11] V. Shivakumar, C. Senthilpari, and Z. Yusoff, “A Low-Power and Area-

Efficient Design of a Weighted Pseudorandom Test-Pattern Generator for
a Test-Per-Scan Built-in Self-Test Architecture,” IEEE Access, vol. 9,
2021, http://doi.org/10.1109/ACCESS.2021.3059171

[12] M. Sharma and J. Dhanoa, “Smart Logic Built in Self-Test in SOC,” 2020,
http://doi.org/10.1109/ICRAIE51050.2020.9358296

[13] Widianto, “A SIGNATURE REGISTER OF A BIST TO DETECT

STUCK-AT-FAULTS IN COMBINATIONAL LOGIC ICS,” in

SENTRA, 2020, pp. 39–44,
http://doi.org/https://doi.org/10.22219/sentra.v0i6.3811

[14] T. D. Prasad and B. R. Babu, “Design and Simulation of SPI Master / Slave
Using Verilog HDL,” Int. J. Sci. Res., vol. 3, no. 8, 2014.

[15] P. Flake, P. Moorby, S. Golson, A. Salz, and S. Davidmann, “Verilog HDL

and its ancestors and descendants,” Proc. ACM Program. Lang., vol. 4, no.
HOPL, 2020, http://doi.org/10.1145/3386337

[16] M. Qiu, S. Yu, Y. Wen, J. Lü, J. He, and Z. Lin, “Design and FPGA

Implementation of a Universal Chaotic Signal Generator Based on the

Verilog HDL Fixed-Point Algorithm and State Machine Control,” Int. J.
Bifurc. Chaos, vol. 27, no. 3, 2017,
http://doi.org/10.1142/S0218127417500407

[17] M. W. Anwar, M. Rashid, F. Azam, and M. Kashif, “Model-based design

verification for embedded systems through SVOCL: an OCL extension for

SystemVerilog,” Des. Autom. Embed. Syst., vol. 21, no. 1, 2017,
http://doi.org/10.1007/s10617-017-9182-z

[18] K. K. Yadu and R. Bhakthavatchalu, “Block Level SoC Verification Using
Systemverilog,” 2019, http://doi.org/10.1109/ICECA.2019.8821909

[19] M. W. Anwar, M. Rashid, F. Azam, M. Kashif, and W. H. Butt, “A model-
driven framework for design and verification of embedded systems

through SystemVerilog,” Des. Autom. Embed. Syst., vol. 23, no. 3–4,
2019, http://doi.org/10.1007/s10617-019-09229-y

[20] A. A. Vivekananda and E. Enoiu, “Automated test case generation for

digital system designs: A mapping study on vhdl, verilog, and
systemverilog description languages,” Designs, vol. 4, no. 3, 2020,
http://doi.org/10.3390/designs4030031

[21] “Design and Verification of UART using System Verilog,” Int. J. Eng.

Adv. Technol., vol. 9, no. 5, 2020,
http://doi.org/10.35940/ijeat.e1135.069520

[22] K. Benefits, “Industry’s Highest Performance Simulation Solution,”
Synopsys, 2020.

[23] L. A. Kadlubowski and P. Kmon, “Test and Verification Environment and
Methodology for Vernier Time-to-Digital Converter Pixel Array,” 2021,
http://doi.org/10.1109/DDECS52668.2021.9417054

[24] D. Ahlawat and N. Kr. Shukla, “Performance Analysis of Verilog Directed

Testbench vs Constrained Random SystemVerilog Testbench,” Int. J.

Comput. Appl., vol. 118, no. 22, 2015, http://doi.org/10.5120/20874-3612

[25] B. Chinna Munaiah and S. M. Shamsheer Daula, “Design and verification

of advanced high-performance bus lite protocol using questa sim,” J. Adv.
Res. Dyn. Control Syst., vol. 11, no. 9 Special Issue, 2019,
http://doi.org/10.5373/JARDCS/V11/20192572

http://doi.org/10.1166/jctn.2019.8047
http://doi.org/10.1109/TNS.2017.2687982
http://doi.org/10.1007/s40009-020-00967-3
http://doi.org/10.1109/TCAD.2019.2957364
http://doi.org/10.1109/VTS.2019.8758668
http://doi.org/10.1109/ISQED.2019.8697831
http://doi.org/10.1109/TCAD.2018.2812123
http://doi.org/10.1016/j.vlsi.2019.12.002
http://doi.org/10.1109/ACCESS.2021.3059171
http://doi.org/10.1109/ICRAIE51050.2020.9358296
http://doi.org/https:/doi.org/10.22219/sentra.v0i6.3811
http://doi.org/10.1145/3386337
http://doi.org/10.1142/S0218127417500407
http://doi.org/10.1007/s10617-017-9182-z
http://doi.org/10.1109/ICECA.2019.8821909
http://doi.org/10.1007/s10617-019-09229-y
http://doi.org/10.3390/designs4030031
http://doi.org/10.35940/ijeat.e1135.069520
http://doi.org/10.1109/DDECS52668.2021.9417054
http://doi.org/10.5120/20874-3612
http://doi.org/10.5373/JARDCS/V11/20192572

