A Review on Feasible and Reliable Underwater Wireless Optical Communication System for Achieving High Data Rate and Longer Transmission Distance

Authors

  • Lenin Joseph Vellore Institute of Technology University
  • Sangeetha Anandan Vellore Institute of Technology University

Abstract

Underwater Wireless Optical Communication (UWOC) offers significant research prospective with major challenges in the design and implementation. UWOC is capable of providing high rate of data transmission across large distances. This paper attempts to focus on the intricacies of practical implementations and open research issues of UWOC systems. Critical advances and progresses made in the field, modelling techniques and link design challenges are summarised. The purpose of this review is to give suggestions towards feasible and reliable UWOC design with improved performance. Finally the major points are summarized so that it will assist the future research in UWOC.

Author Biographies

Lenin Joseph, Vellore Institute of Technology University

Author 1-

Lenin, Joseph

Research Scholar, School of Electronics Engineering (SENSE),

Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India

institution E-mail: lenin.joseph2019@vitstudent.ac.in

Sangeetha Anandan, Vellore Institute of Technology University

Corresponding Author (Author 2)-

Sangeetha, Anandan

School of Electronics Engineering (SENSE),

Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India

E-mail: asangeetha@vit.ac.in

References

H. Kaushal and G. Kaddoum, “Underwater Optical Wireless Communication,” IEEE Access, vol. 4, pp. 1518–1547, 2016, doi: 10.1109/ACCESS.2016.2552538.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Commun. Surv. Tutorials, vol. 19, no. 1, pp. 204–238, 2017, doi: 10.1109/COMST.2016.2618841.

N. Saeed, A. Celik, T. Y. Al-Naffouri, and M. S. Alouini, “Underwater optical wireless communications, networking, and localization: A survey,” Ad Hoc Networks, vol. 94, 2019, doi: 10.1016/j.adhoc.2019.101935.

M. Jouhari, K. Ibrahimi, H. Tembine, and J. Ben-Othman, “Underwater Wireless Sensor Networks: A Survey on Enabling Technologies, Localization Protocols, and Internet of Underwater Things,” IEEE Access, vol. 7, pp. 96879–96899, 2019, doi: 10.1109/access.2019.2928876.

G. Cossu, “Recent achievements on underwater optical wireless communication [ Invited ],” vol. 17, no. October, 2019, doi: 10.3788/COL201917.100009.More.

J. Xu, “Underwater wireless optical communication : why , what , and how ? [ Invited ],” vol. 17, no. October, pp. 1–10, 2019, doi: 10.3788/COL201917.100007.1.

M. A. Khalighi, C. Gabriel, T. Hamza, S. Bourennane, P. Leon, and V. Rigaud, “Underwater wireless optical communication; Recent advances and remaining challenges,” Int. Conf. Transparent Opt. Networks, pp. 2–5, 2014, doi: 10.1109/ICTON.2014.6876673.

X. Sun et al., “A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication,” J. Light. Technol., vol. 38, no. 2, pp. 421–431, 2020, doi: 10.1109/JLT.2019.2960131.

J. W. Giles and I. N. Bankman, “Part 2 : Basic Design Considerations,” Appl. Phys., pp. 1–6.

S. Zhu, X. Chen, X. Liu, G. Zhang, and P. Tian, “Recent progress in and perspectives of underwater wireless optical communication,” Prog. Quantum Electron., vol. 73, no. July, p. 100274, 2020, doi: 10.1016/j.pquantelec.2020.100274.

M. Sui, X. Yu, and F. Zhang, “The evaluation of modulation techniques for underwater wireless optical communications,” Proc. 2009 Int. Conf. Commun. Softw. Networks, ICCSN 2009, no. April, pp. 138–142, 2009, doi: 10.1109/ICCSN.2009.97.

L. J. Johnson, “The Underwater Optical Channel,” no. November, pp. 1–18, 2012, doi: 10.13140/RG.2.1.1295.7283.

H. M. Oubei et al., “Light based underwater wireless communications,” Jpn. J. Appl. Phys., vol. 57, no. 8, 2018, doi: 10.7567/JJAP.57.08PA06.

Z. Vali, A. Gholami, Z. Ghassemlooy, and D. G. Michelson, “System parameters effect on the turbulent underwater optical wireless communications link,” Optik (Stuttg)., vol. 198, no. July, p. 163153, 2019, doi: 10.1016/j.ijleo.2019.163153.

J. Theodore and T. J. Petzold, “UC San Diego,” 1972.

M. G. Solonenko and C. D. Mobley, “Inherent optical properties of Jerlov water types,” Appl. Opt., vol. 54, no. 17, p. 5392, 2015, doi: 10.1364/ao.54.005392.

S. K. Sahu and P. Shanmugam, “A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system,” Opt. Commun., vol. 408, no. May 2017, pp. 3–14, 2018, doi: 10.1016/j.optcom.2017.06.030.

V. Guerra, “Contribution on the study of underwater wireless optical links: channel prediction and energy efficiency [PhD thesis],” 2016.

G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Appl. Opt., vol. 12, no. 3, p. 555, 1973, doi: 10.1364/ao.12.000555.

W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A, vol. 31, no. 5, p. 920, 2014, doi: 10.1364/josaa.31.000920.

A. Alipour and A. Mir, “On the performance of blue–green waves propagation through underwater optical wireless communication system,” Photonic Netw. Commun., vol. 36, no. 3, pp. 309–315, 2018, doi: 10.1007/s11107-018-0781-9.

L. Johnson, R. Green, and M. Leeson, “A survey of channel models for underwater optical wireless communication,” Proc. 2013 2nd Int. Work. Opt. Wirel. Commun. IWOW 2013, pp. 1–5, 2013, doi: 10.1109/IWOW.2013.6777765.

C. T. Geldard, J. Thompson, and W. O. Popoola, “An Overview of Underwater Optical Wireless Channel Modelling Techniques: (Invited Paper),” Proceeding - 2019 Int. Symp. Electron. Smart Devices, ISESD 2019, no. 2, pp. 1–4, 2019, doi: 10.1109/ISESD.2019.8909494.

L. Zhou, Y. Zhu, and W. Zheng, “Analysis and Simulation of Link Performance for Underwater Wireless Optical Communications,” EAI Endorsed Trans. Wirel. Spectr., vol. 3, no. 12, p. 153467, 2017, doi: 10.4108/eai.12-12-2017.153467.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton : Analysis and parameterization phytoplankton a • h ( A ) was analyzed using a data set including 815 spectra determined chlorophyll concentration range ph values wer,” J. Geophys. Res., vol. 100, no. C7, pp. 13321–13332, 1995.

V. I. Haltrin, “One-parameter model of seawater optical properties,” Ocean Opt. XIV CD-ROM, vol. 1998, no. November, pp. 10–13, 1998.

C. Li, K. H. Park, and M. S. Alouini, “On the Use of a Direct Radiative Transfer Equation Solver for Path Loss Calculation in Underwater Optical Wireless Channels,” IEEE Wirel. Commun. Lett., vol. 4, no. 5, pp. 561–564, 2015, doi: 10.1109/LWC.2015.2459697.

S. Jaruwatanadilok, “Channel Modeling and Performance Evaluation using Vector Radiative Transfer Theory,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1620–1627, 2008, [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4686801.

S. Tang, Y. Dong, and X. Zhang, “On path loss of NLOS underwater wireless optical communication links,” Ocean. 2013 MTS/IEEE Bergen Challenges North. Dimens., pp. 4–6, 2013, doi: 10.1109/OCEANS-Bergen.2013.6608002.

S. Tang, Y. Dong, and X. Zhang, “On link misalignment for underwater wireless optical communications,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1688–1690, 2012, doi: 10.1109/LCOMM.2012.081612.121225.

J. Liu and Y. Dong, “On capacity of underwater optical wireless links under weak oceanic turbulence,” Ocean. 2016 - Shanghai, 2016, doi: 10.1109/OCEANSAP.2016.7485523.

J. Li, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng., vol. 51, no. 6, p. 066001, 2012, doi: 10.1117/1.oe.51.6.066001.

Y. Li, M. S. Leeson, and X. Li, “Impulse response modeling for underwater optical wireless channels,” Appl. Opt., vol. 57, no. 17, p. 4815, 2018, doi: 10.1364/ao.57.004815.

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun., vol. 475, no. June, p. 126214, 2020, doi: 10.1016/j.optcom.2020.126214.

R. Sahoo, S. K. Sahu, and P. Shanmugam, “Estimation of the channel characteristics of a vertically downward optical wireless communication link in realistic oceanic waters,” Opt. Laser Technol., vol. 116, no. October 2018, pp. 144–154, 2019, doi: 10.1016/j.optlastec.2019.03.023.

C. Fei, X. Hong, J. Du, and G. Zhang, “High-speed underwater wireless optical communications : from a perspective of advanced modulation formats [ Invited ],” vol. 17, no. October, pp. 1–8, 2019, doi: 10.3788/COL201917.100012.As.

M. Sharifzadeh and M. Ahmadirad, “Performance analysis of underwater wireless optical communication systems over a wide range of optical turbulence,” Opt. Commun., vol. 427, no. July, pp. 609–616, 2018, doi: 10.1016/j.optcom.2018.07.029.

R. Cai, M. Zhang, D. Dai, Y. Shi, and S. Gao, “Analysis of the underwater wireless optical communication channel based on a comprehensive multiparameter model,” Appl. Sci., vol. 11, no. 13, 2021, doi: 10.3390/app11136051.

Y. Ata, J. Yao, and O. Korotkova, “BER variation of an optical wireless communication system in underwater turbulent medium with any temperature and salinity concentration,” Opt. Commun., vol. 485, no. October 2020, p. 126751, 2021, doi: 10.1016/j.optcom.2021.126751.

K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 145 Gbit/s optical IM/DD-OFDM signals through a 48 m underwater channel,” Opt. Express, vol. 23, no. 2, p. 1558, 2015, doi: 10.1364/oe.23.001558.

H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “23 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express, vol. 23, no. 16, p. 20743, 2015, doi: 10.1364/oe.23.020743.

H. M. Oubei et al., “48 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express, vol. 23, no. 18, p. 23302, 2015, doi: 10.1364/oe.23.023302.

H. H. Lu et al., “An 8 m/9.6 Gbps underwater wireless optical communication system,” IEEE Photonics J., vol. 8, no. 5, pp. 1–7, 2016, doi: 10.1109/JPHOT.2016.2601778.

C. Shen et al., “20-meter underwater wireless optical communication link with 15 Gbps data rate,” Opt. Express, vol. 24, no. 22, p. 25502, 2016, doi: 10.1364/oe.24.025502.

S. Karp et al., “data rate based on a green laser with NRZ-OOK modulation Voltage ( V ) Data rate ( Gbps ),” IEEE J. Sel. Areas Commun., vol. 6, no. c, pp. 2–3, 2017, doi: 10.1109/JSAC.2015.2458511.

P. Tian et al., “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express, vol. 25, no. 2, p. 1193, 2017, doi: 10.1364/oe.25.001193.

C. Li, H. Lu, and Y. Huang, “50 Gb/s PAM4 underwater wireless optical communication systems across the water–air–water interface [Invited],” Chinese Opt. Lett., vol. 17, no. 10, p. 100004, 2019, doi: 10.3788/COL201917.100004.

J. Wang, C. Lu, S. Li, and Z. Xu, “100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode,” Opt. Express, vol. 27, no. 9, p. 12171, 2019, doi: 10.1364/oe.27.012171.

H. M. Oubei, R. T. ElAfandy, K. H. Park, T. K. Ng, M. S. Alouini, and B. S. Ooi, “Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations,” 30th Annu. Conf. IEEE Photonics Soc. IPC 2017, vol. 2017-Janua, no. 2, pp. 441–448, 2017, doi: 10.1109/JPHOT.2017.2682198.

M. Kong et al., “Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal,” Opt. Express, vol. 26, no. 3, p. 3087, 2018, doi: 10.1364/oe.26.003087.

P. Tian, H. Chen, and P. Wang, “Absorption and scattering effects of Maalox , chlorophyll , and sea salt on a micro-LED-based underwater wireless optical communication [ Invited ],” vol. 17, no. October, pp. 1–8, 2019, doi: 10.3788/COL201917.100010.Underwater.

M. Singh, M. L. Singh, G. Singh, H. Kaur, Priyanka, and S. Kaur, “Modeling and performance evaluation of underwater wireless optical communication system in the presence of different sized air bubbles,” Opt. Quantum Electron., vol. 52, no. 12, pp. 1–15, 2020, doi: 10.1007/s11082-020-02638-5.

J. Li et al., “A Real-Time, Full-Duplex System for Underwater Wireless Optical Communication: Hardware Structure and Optical Link Model,” IEEE Access, vol. 8, pp. 109372–109387, 2020, doi: 10.1109/ACCESS.2020.3001213.

X. Hong, J. I. Du, Y. Wang, R. Chen, and J. Tian, “Experimental Demonstration of 55-m / 2-Gbps Underwater Wireless Optical Communication Using SiPM Diversity Reception and Nonlinear Decision-Feedback Equalizer,” vol. 10, 2022, doi: 10.1109/ACCESS.2022.3170889.

M. F. Ali, D. N. K. Jayakody, and Y. Li, “Recent Trends in Underwater Visible Light Communication (UVLC) Systems,” IEEE Access, vol. 10, pp. 22169–22225, 2022, doi: 10.1109/ACCESS.2022.3150093.

Downloads

Published

2024-04-19

Issue

Section

Wireless and Mobile Communications