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Hardware Implementation of an Enhanced Security-
and Authentication-Related Automotive CAN Bus

Prototype
Asmae Zniti, and Nabih EL Ouazzani

Abstract—In this paper a new security technique aiming to
ensure safe and reliable communications between different nodes
on an automotive Controller Area Network (CAN) is presented.
The proposed method relies on a robust authentication code using
Blake-3 as a hash algorithm within an adapted structure that
includes a monitor node. A prototype is implemented and run
effectively to perform hardware simulations of real case-based
security problems of automotive embedded CAN systems. As a
result, data transfer can take place on a newly enhanced CAN
bus according to the standard protocol without being intercepted
nor tampered with by unauthorized parties thereby highlighting
the effectiveness of the proposed technique.
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I. INTRODUCTION

NOWADAYS automotive CAN bus-based networks are
implemented with the objective of controlling all vehicle

functions. Incorporated devices such as, controllers, sensors
and actuators, which are supervised by such a network gener-
ally fall into two categories: safety and comfort [1], [2].

Although a CAN bus is actually regarded as a simple and
effective monitoring system, it basically lacks fundamental
security features and can therefore be subject to malevolent
software attacks [3], [4]. As a matter of fact, over the past
few years several attacks have been reported thereby pointing
out the extent of security and vulnerability problems which
designers have yet to handle.

In 2015, security researchers demonstrated how to take
remote control of a Tesla Model S simply by plugging a
device into the OBD-II port [5]. The attack allowed the
researchers to remotely unlock doors, open the trunk, and
even drive away with the vehicle. In 2016, another group
showed how a Tesla Model S could be wirelessly hacked
into and various systems such as brakes, steering, and door
locks could be commandeered [6]. The attack only required
about 90 seconds of physical access to the car in order to
upload a malicious code onto the car CAN bus. While the
previous attacks required physical access to the vehicle, there
have been other instances reported of entirely remote attacks
against vehicles by exploiting vulnerabilities in the CAN bus
[7], [8], [9]. In 2010, a group of researchers showed how they

Authors are with Faculty of Sciences and Technology (FST), Uni-
versity Sidi Mohamed Ben Abdellah, Signals Systems and Compo-
nents Laboratory (LSSC), Fez, Morocco (e-mail: znitiasmae@gmail.com,
nabih.elouazzani@usmba.ac.ma).

could remotely disable the brakes of a Jeep Cherokee simply
by sending malicious messages over the CAN bus [10].

With the development of new wireless interfaces such as
vehicle-to-vehicle and vehicle-to-infrastructure, the number of
opportunities for wireless attacks will undoubtedly increase,
thus highlighting how extremely dangerous future threats can
be [11], [12], [13].

This paper aims to investigate the security problems of
the CAN protocol and point out the vulnerabilities that mod-
ern cars can be susceptible to. After identifying the CAN
limitations, a solution based on authentication concepts [14]
will be described. Several hash algorithms are now known
and available thereby offering multiple options for securing
and protecting data especially in embedded systems. The
possibility of incorporating such algorithms into CAN bus
networks opens up new and robust avenues for automotive
industry designers. The rest of the paper is structured as
follows: In Section II, a general overview of the CAN protocol
is given. Section III demonstrates CAN bus security shortcom-
ings through a typical application. In Section IV, the entire
process is broken down into different stages whose conditions
are detailed along with a comprehensive application. The work
is summarized and conclusions are drawn in Section V.

II. A BRIEF CAN BUS INTRODUCTION

A. Bus Data Frame
The CAN protocol [15] has two versions that differ based on

the message identifier length: CAN 2.0A (the standard CAN)
with an 11-bit identifier and CAN 2.0B (extended CAN) with
a 29-bit identifier [16]. A CAN bus data frame whose structure
is shown in Fig. 1. is a data packet that contains information
about the sender, the receiver, and the message itself. The
frame consists of several fields, each of which has a specific
purpose. The structure of such a frame is as follows:

• SOF (Start of Frame): This is a single bit that indicates
the beginning of the frame. It is always set to 0.

• The header contains:
Frame identifier: an 11-bit or 29-bit value that uniquely
identifies the message within the network. All devices on
the network use this ID to determine whether they should
receive or ignore the message.
RTR bit: Remote Transmission Request which defines a
data frame if it is set to 0 and a request frame of data if
it is set to 1.
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DLC field: Data Length Code which indicates the size in
bytes of the transmitted data.

• Data field: This is where the actual message data is stored.
The size of this field depends on the DLC.

• CRC checksum: This is used to detect errors in transmis-
sion. If the receiving device calculates a different CRC
from the one that is sent, then it knows that an error has
occurred and can take appropriate actions.

• The ACK (Acknowledgment) field, which acknowledges
receipt of the frame and allows the sender to know if its
message is received correctly by at least another ECU
(but does not guarantee that it is necessarily the intended
recipient initially)

• The EOF (End of Frame) field followed by an intermis-
sion frame, which designates the minimum number of
bits to pass before the transmission of another message
can start.

Fig. 1. Data frame structure

B. Communication Protocol

CAN bus nodes mainly consist of electronic control units
(ECU) which are equipped with software codes whose aim is
to deal with all aspects of data transmission under a specific
communication protocol. An ECU is primarily a micropro-
cessor which contains a CAN controller used to support data
link layer functions and a CAN transceiver used for physical
layer functions such as frame delivery, error detection and
correction, as well as other data link layer tasks.

Each individual node on a CAN bus has the ability to
read and write data freely throughout the network. There is
no ‘Master-Slave’ concept, that is, any node on the network
can initiate a communication at any time. Each node has an
arbitration ID that is used to identify messages and indicate
priority when multiple nodes try to send frames at the same
time [17].

Depending on the arbitration ID, a CAN node decides
whether to accept a frame or ignore it. When a CAN node
correctly receives a message, it tags an ACK bit onto the end
of the transmission. The node that sends this message receives
this ACK bit and then removes it from the bus. When a CAN
node detects an error in a received message, it sends out an
ERROR frame instead of an ACK bit. The ERROR frame
provides information in relation to the type of error. There are
several error detection mechanisms built into the CAN system
using an error frame made up of 6 consecutive dominant bits
(error flags). When an ECU detects an error, it emits an error
frame to warn the other members of the network. The sender
of the erroneous frame must then resend it in accordance with
the next arbitration step.

III. EXAMPLES OF THE CAN BUS VULNERABILITY

A. Hardware Platform

A hardware prototype is designed with respect to the CAN
bus protocol and built on a ChipKIT Max32 board tied
through point-to-point connections to various devices, sending
and receiving signals similar to those used in automotive
systems. For distributing the generated data, these cards will
be interconnected by means of a CAN Network Shield. The
Max32 board is a 32-bit Microchip® PIC microcontroller
that takes advantage of the PIC32MX795F512L and runs at
up to 80 MHz with 512KB of flash program memory and
128KB of SRAM data memory. In addition, the processor
provides dual CAN controllers. These CAN controllers in
combination with two Microchip MCP2551 CAN transceivers
on the Network Shield allow the Max32/Network Shield to
operate on one or two independent CAN networks. The Max32
can be programmed by using Mult-Platform IDE (MPIDE).

a) Node1

b) Node2

c) Node3

Fig. 2. Hardware set-up
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An automotive communication system is simulated by
means of transmitting various signals between three nodes
described as follows:

Node1: This controller has a 10k- potentiometer connected
to its analogue pin 0, which in turn causes the voltage on
this pin to vary between 0 and 5V. The generation of this
signal aims to control the speed of a DC motor connected
to node2, simulating the operation of an accelerator pedal.
This speed control will be achieved by creating and sending a
PWM (Pulse-Width Modulation) signal as a frame on the CAN
bus, with the id 0x10. This controller also has an LDR-type
light sensor connected to its analogue input 1. LDRs are light-
dependent resistors, meaning that their resistance decreases
when the amount of light they are exposed to increases.
By monitoring the output of an LDR sensor, a car’s ECU
can automatically adjust the brightness of its headlights, tail
lights, and interior lights based on the current conditions. This
helps improve visibility for drivers and makes it easier to see
potential hazards on the road. In the proposed platform the
LDR signal is sent on the CAN bus labelled 0x20 and is used
to control the light brightness of the LED on node2. Fig. 2-a
shows node1 elements.

Node2: This controller receives signals generated by node1
to control the motor speed and LED lights. Fig. 2-b is a photo
of node2.

Node3: This ECU uses the signals identified by 0x10 and
0x20 to display on the LCD the potentiometer value and
the light signal transmitted by node1. A photo of node3 is
presented in Fig. 2-c.

B. Attack Scenarios
Two different attacks on the network of Fig. 2 are carried

out, and described as follows:
• In the first scenario, the DC motor is targeted by adding

malicious frames with 0x10 as ID by falsifying the
potentiometer value to 0, and as a result, the DC motor
speed decreases to 0. This issue shows that in the case
of a vehicle-under-attack scenario, when a motor node
reads the value 0, the car speed drops to 0 km/h leading
to its steering and braking being blocked, and the engine
perhaps stalling until the end of the attack. The fact that
the motor breaks down suddenly will cause the wheels
to lock up and the car to likely skid out of control.

• With regard to the second attack, an LDR sensor, which
is usually inserted to detect daylight and then make the
car’s headlights turn on or off accordingly, is subject to a
software alteration. As a result, the headlights switch off
while it is dark causing the driver to lose visibility and
putting passengers lives in jeopardy as well.

Table I gives a recap of the targeted elements and the resulting
risks detailed previously.

This vulnerability comes from the fact that the CAN bus
uses a broadcast medium, allowing every node to see all
messages. So, an attacker could read sensitive information,
send false messages or tamper with data to manipulate the
vehicle functions and disturb the driver. Therefore, it is highly
required to add an enhanced level of security onto the current
protocol in order to avoid such eventualities

TABLE I
DESCRIPTION OF THE ATTACK SCENARIOS

Scenario Attack Vulnerability Action Target Result

Motor DC
Uploading
malicious
code

CAN bus
protocol
without message
authentication

Read
/spoof

Electronic
control
units (ECU)

Motor disabled

Lights
system

Lights system
malfunctioning

IV. PROPOSED AUTHENTICATION TECHNIQUE

A. Software Coding Operations

In order to overcome the vulnerability issue of CAN bus
systems, a new two-phase method requiring an additional node
is presented and detailed within this section. This node is
mainly dedicated to performing cryptographic operations and
it is called the monitoring node [18]. The two phases are as
follows:

• First phase: Node authentication
The monitoring node generates and sends a random data called
nonce, which will be used as an address of the program section
meant to be authenticated. This nonce must be processed and
the results sent back to the monitor. If any node does not
respond or sends incorrect data, it must be concluded that a
malicious node is on the network. Fig. 3 shows all steps of this
operation. Individual participating node codes are pre-shared
with the monitor and introduced into the following formula
(1) to generate the hash result of several digests ‘KEY i’.

KEY i = hashfunction(MSG||NONCE) (1)

where:
KEY i: the authentication key of the sender node i.
MSG: a part of the program code of the sender node i.
NONCE: a random seed.
KEY i will be used as a cryptographic key in the second

phase. This process aims to set a new key for each communi-
cation session and to dismiss the previously used ones. As
a result, replayed attacks can be avoided in case a hacker
manages to record traffic from earlier attempts.

Fig. 3. Phase1 of the proposed security system protocol

If the authentication fails, the monitoring node sends a
warning signal to the driver indicating that a compromised
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node is on the network. A possible solution which can easily
be integrated into the process, consists in downloading the
legitimate code from the monitor onto the previously compro-
mised and newly cleared node.

• Second phase: Frame authentication
This phase has the purpose of identifying the legibility of data
frames circulating on the bus, thus allowing the sender node
to generate two frames one after another as indicated in Fig.
4. First, the application data frame is sent on the CAN bus
followed up by the authentication data frame. Fig. 5 illustrates
the procedure.

The following equation (2) is used to generate the authen-
tication data:

MACi = hashfunction(IDi,Di, FCi,KEY i) (2)

where:
IDi: CAN-ID.
Di: message i data.
FCi: Complete monotones counter for message i.
KEY i: the encryption key for the sender node i.

Fig. 4. CAN frames involved in the proposed technique

Fig. 5. Sender node

First, the monitoring node Fig. 6 receives data from the
sender, and immediately generates a calculated cryptographic
MAC, called MacCalc. It then receives the authentication
frame and compares the received and the calculated MACs.
If at least one digest is not valid, the message is discarded
and regarded as an attack.

According to the new method, a receiver Fig. 7 is set to sort
processed data right after the monitor has sent the confirmation
of a message’s legitimacy. Obviously, if an attack occurs, the
monitoring node alerts the receivers to dismiss the malicious
message through a warning frame transmitted with the highest
priority. However, the message is consequently considered as
legitimate if no warning is sent within a certain period of time
(about 70 µs).

Fig. 6. Monitoring node

Fig. 7. Receiver ode

B. BLAKE-3 Hash Algorithm

Generally, a hash algorithm is applied to calculate two types
of digests with respect to the following entries:

• A code which is implemented on a node participating in
the CAN communication.

• A message to be sent.

Blake-3 [19] hashing algorithm was designed and optimized
for parallel computation and speed on modern CPU architec-
tures. It has a very compact design with only three rounds
of compression functions while maintaining the security level
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equivalent to BLAKE2b’s [20] which is one of the most widely
used cryptographic hash algorithms today.

The basic idea behind Blake-3 can be summarized as
follows: Blake-3 takes an input of arbitrary length, and outputs
a digest of 256 bits. The algorithm divides the input into
equally sized blocks. For each block, it applies three rounds
of compression functions to generate the final hash output.
This is different from other cryptographic hashing algorithms
where more rounds are needed such as SHA-256 [21] (64
rounds) or BLAKE2b (12 rounds). Blake-3 is also designed
to be parallelized. For instance, the three rounds can be
run on a multiple core CPU architecture. The final hash
output of each block is used as an input for the next one,
if any. Unlike traditional cryptographic hashing functions that
compute digest by simply concatenating all blocks’ outputs,
Blake-3 computes it with an extra permutation step which
makes its design more secure against side channel and birthday
attacks. As far as this technique is concerned, The Blake-3 has
been chosen as the cryptographic hashing algorithm for mainly
three reasons:

• Blake-3 is a very fast algorithm and can be used in
parallel, which makes it even faster.

• The hash function is collision-resistant in that two differ-
ent inputs never produce the same output.

• Blake-3 ensures a high level of security. There have been
no known attacks reported against it so far.

C. Hardware Implementation

Fig. 8 shows a set-up of a four-node hardware proto-
type. The implementation includes three Max32 board-based
participating nodes along with a Zynq-7000 Artix-7 FPGA-
based monitor which offers greater computational speed and
programming option advantages over a 32-bit microcontroller.
The entire system configuration and implementation have been
achieved by means of the Vivado tool platform.

Fig. 8. Experimental prototype

As an application, time-related performances during a data
frame processing phase are investigated and then compared in
this real case-type hardware simulation. Indeed, the processing
times required in both secured and corrupted communications

are measured as well as the time interval needed by an under-
attack node to appropriately handle a malevolent message.
Results are detailed in Table II and III. Various malicious
messages are sent over the bus periodically as a way of setting
up attacks on nodes 2 and 3. The first message is referenced
to as a falsified potentiometer value while the second one
provides the state of LDR sensor with a false content.

TABLE II
DESCRIPTION OF THE ATTACK SCENARIOS

Instant Sender
Monitor

node
Receiver

Required

time

(ms)

Node ID
Data

Field

t1 1 0x10 30
-Data = 30

-Generation of the MacCalc
-Data = 30

5.274

t2 1 0x01 MACi

-Receives MACi

-Compares MACi and MacCalc

-Successful authentication

-Receives MACi

-Comparison delay of 0.07 ms

-Enables receive interrupt

-Uses data(30)

t3 1 0x20 light
-Data = light

-Generation of MacCalc
-data= light

5.26

t4 1 0x02 MACi

-Receives MACi

-Compares MACi and MacCalc

-Successful authentication

-Receives MACi

-Comparison delay of 0.07 ms

-Enables receive interrupt

-interrupt(t5)

t5 1 0x10 40
-Data = 40

-Generation of MacCalc

-Uses data (light)

-Data = 40

... ... ... ... ... ... ...

TABLE III
DATA PROCESSING DURING ATTACKS

Instant Sender
Monitor

node
Receiver

Required

time

(ms)

Node ID
Data

Field

t1 1 0x10 50
-Data = 50

-Generation of MacCalc
Data = 50

5.262

t2 1 0x01 MACi

-Receives MACi

-Compares MACi and MacCalc)

-Successful authentication

-Receives MACi

-Comparison delay of 0.07ms

-Enables receive interrupt

-Interrupt (t3)

t3 Attacker 0x10 00
-Data = 00

-Generation of the MacCalc

-Data = 00

-Uses data (50)

5.13

t4 Attacker 0x01 MACi

-Receives MACi

-Compares MACi and MacCalc)

-Successful authentication

-Receives MACi

-Comparison delay of 0.07ms

-Enables receive interrupt

-Interrupt (t5)

0.078

t5
Monitor

node
0x00 0 (Sender)

-Receives warning frame

-Rejects data (00)

t6 1 0x20 light
-Data = light

-Generation of MacCalc
-Data = light

5.257

t7 1 0x02 MACi

-Receives MACi

-Compares MAC and MacCalc

-Successful authentication

-Receives MACi

-Comparison delay of 0.07ms

-Enables receive interrupt

-Interrupt (t8)

t8 1 0x10 60
-Data = 60

-Generation of MacCalc

-Data = 60

-Uses Data (light)

t9 Attacker 0x20 Dark

-Rejects data and

waits for the

Authentication data

-Rejects data and

waits for the

Authentication data

0.024

between

reception of

frame and

detection of

error
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Tables II and III clearly illustrate that authentication op-
erations require a computing time that can be considered as
satisfactory with respect to automotive standards. According
to the results, handling a message on the CAN bus takes
approximately 5.27 ms and therefore meets the regulatory
time constraints in a real-time environment. The first phase
takes a delay of about 64.25 ms for each node. In the case of
70 ECUs, which is known as the maximum number of units
within a vehicle, it lasts almost 4.4 s and it is consequently
suitable for in-vehicle applications. The major advantage of
this approach lies in the fact that it needs neither hardware
modifications nor changes in the CAN bus protocol. A simple
node, consisting of a monitoring controller, can be easily
fit into this existing architecture for cryptographic purposes
without reducing payload sizes in data frames.

V. CONCLUSION

Several aspects of the automotive CAN bus vulnerability
have been demonstrated in this paper, through some real-case
hardware simulations. As a result, ECU functions and related
operations have been disturbed and canceled pointing out the
lack of security and data protection within such systems.

A two-phase security technique which aims to ensure au-
thentication and guarantee protection of automotive embedded
networks has been proposed. The core structure relies on a
central node that monitors data traffic on in-vehicle CAN bus
systems.

The first phase of the procedure is structured to verify the
authenticity of an ECU program code along with sharing a
generated key with all the other participating nodes. The sec-
ond phase deals with identifying the frame legibility through
assigning a MAC code to each message circulating on the bus.

A Blake3-based hash algorithm has been chosen, due to
its reduced calculation time, and integrated into the software
platform to achieve the necessary cryptographic operations
in terms of node authentication and key generation. Several
hardware attack simulations have been carried out and dealt
with adequately within a time frame of 5.27ms which is readily
acceptable in such systems. The prototype has shown excel-
lent resistance to software attacks and blocked all malicious
attempts while preserving the initial functions of all ECU-
based nodes.

Finally, it should be pointed out that the proposed hardware
platform and the software code can be easily implemented, and
run on the existing structure; therefore no new architecture is
needed.
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