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Abstract—In this paper, we show that the signal sampling 

operation considered as a non-ideal one, which incorporates finite 

time switching and operation of signal blurring, does not lead, as 

the researchers would expect, to Dirac impulses for the case of 

their ideal behavior. 
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I. INTRODUCTION 

HERE exists in the literature a variety of models of the 

sampling operation of analog signals as well as of the 

associated models of the behavior of analog-digital (A/D) 

converters that carry out this operation in a real world. Further, 

notice that these two terms are used in papers and textbooks 

interchangeably (that is as synonyms of one another). 

Moreover, among the models mentioned above are those that 

describe the sampling operation (or equivalently the behavior 

of an A/D converter) in an idealized way and also those that 

take into account non-idealities of the signal sampling process, 

to a greater or lesser extent. Let us now take a closer look at 

some of them.  

Probably, the most prominent among them is the one that 

assumes that the sampling process is to generate a weighted 

Dirac comb (weighted with an analog signal samples). This 

idealized model is commonly used in the literature; see, for 

example, such excellent and prominent textbooks as [1]–[11]. It 

is used in the context of calculations of the spectrum of a 

sampled signal. That is of the spectrum of a signal appearing at 

the output of an A/D converter. 

An example sampling of an analog signal modeled with the 

use of the above model is presented in Fig. 1. Precisely, it is the 

visualization shown in Fig. 1c) and denoted as the signal 

( )Dx t , where t means a continuous time variable. The analog 

signal that was sampled here is presented by curve ( )x t  of 

Fig. 1a). Furthermore, tR  with R  standing for the set of 

reals and the lower index D at ( )Dx t  standing for the name of 

Dirac. Moreover, T R  in Fig. 1 means the period of a 

uniform signal sampling illustrated there. 

 Fig. 1 (precisely Fig. 1b)) illustrates also the second 

idealized model that occurs in the literature (see, for example, 

[4], [5]). It consists simply of ideal samples of an analog signal 

(that is of ones obtained in an ideal manner), and these samples 

are just visualized as shown in Fig. 1b). They form the so-

 
Author is with Gdynia Maritime University, Poland (e-mail: 

a.borys@we.umg.gdynia.pl). 

called discrete time signal ( )Kx k , where kZ  stands for the 

so-called discrete time variable, but the lower index K for the 

name of Kronecker. Further, Z  above means the set of 

integers. 

 

 

Fig. 1. Visualization of two types of modelling of the signal that appears at the 

output of an A/D converter – ideal case: a) example analog signal before 
performing sampling operation (that will be performed in an ideal manner); b) 

the set of samples of the ideally sampled signal of Fig.1a) viewed as the so-

called discrete time signal; c) the set of samples mentioned above viewed as a 
signal of a continuous time in form of a series of weighted Dirac deltas [12]. 

Remark: this figure is based on ones, which were used by this author in his 

other papers, for example, in [13]. 
 

As we know, the Fourier analysis is inextricably linked with 

the signals of a continuous time (that is with those functions in 

which the argument tR  has a physical interpretation of 

time). And, all the problems occurring in this analysis with the 

models visualized by ( )Kx k  and ( )Dx t  in Fig. 1 lie in that 

they are not functions of the continuous variable tR . The 

object ( )Kx k  is a nice visualization of the samples of the 

signal ( )x t  often used in the literature (see, for example, [4], 

[5]), however, it is not a function of t. But, this object is of 

course a function of the variable kZ . On the other hand, the 

object ( )Dx t  works admittedly with the independent variable 

,tR.  but it is not obviously a function; as it is a sequence of 

the weighted Dirac deltas (which are not functions [12]). 
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Some researchers, who are aware of the above problems, 

propose to use, instead, descriptions of the sampling process 

that take into account its non-ideal characteristics. Why? 

Because then, as well known, the generated waveforms have 

the form of functions of a continuous time variable t, so their 

Fourier analysis is unproblematic. And, these signals have 

well-defined spectra. 

Such an approach, as sketched above and with an extensive 

justification, was presented in [14]. It was also argued there 

that the waveforms generated in a non-ideal sampling process 

are good representatives of the (ideal) samples (being 

numbers), appearing at the output of an A/D converter. And, 

implicitly, the spectrum of the sequence of these signals can be 

related with the spectrum of the sequence of signal samples (in 

a sense of their spectral representatives, whatever that would 

mean). 

In [14], two kinds of non-idealities in a non-ideal model of 

the sampling process are considered. Namely, the following 

ones: 

a)    A non-perfect switching that is modeled by a switch which 

does not sample an analog signal immediately but needs a 

finite time to perform this operation; let us denote it by 

; 0 .T   R;  Obviously, because of this fact each 

sample is not a number but a relevant fragment of the 

sampled signal of a finite duration equal to  . 

b)  A signal blurring effect, i.e. distortion of the portion of the 

sampled signal having a finite duration equal to     

(mentioned in point a) above) due to the presence of signal 

transients and due to non-idealities of the realizing 

electronics, which, taken together, is in [14] referred to as a 

sample pulse blurring. 

The analysis presented in [14] is not however convincing, 

particularly at the points where it attempts to show that the 

model presented therein leads, in the limit, to receiving the 

results which are predicted by the ideal model. For instance, 

the formulas derived in [14] do not explain why the aliasing 

phenomenon in the spectrum of the sampled signal disappears 

in the limit when the parameter   goes to zero. Furthermore, 

the blurring of the sample pulse completely disappears in the 

limit (this pulse then becomes a Dirac impulse (Dirac delta)). 

That is in the case when the impulse response of an equivalent 

device used to interpret the impulse blurring effect becomes a 

Dirac delta.  

It is shown in this short paper that consideration of the two 

non-idealities mentioned above together (not separately) does 

not lead to the occurrence of the weighted Dirac impulses at 

the sampling instants. Then, we get the weighted Kronecker 

time functions (impulses) [13]. And, certainly, this result will 

be astonishing for the researchers [1] –[11], [14] defending the 

model illustrated in Fig. 1c) (where the so-called comb of such 

weighted Dirac deltas, being the sample pulses, is shown). 

They will look at this obviously unexpected outcome in 

disbelief. 

However, before deriving the aforementioned result, we will 

dwell a little longer on consideration of some aspects of the 

sampled signal blurring effect itself. We do this in the next 

section; the outcomes achieved will turn out to be also 

interesting. 

II. MODELLING OF THE SIGNAL BLURRING EFFECT 

The author of this paper has gained some experience in 

analyzing and modelling of the blurring effects of model-based 

characteristics of sensors as well as of signals acquired in 

measurements (with the use of these sensors) [15]. This 

expertise will be helpful here to see in the right light the model 

of the non-ideal sampling operation sketched briefly above and 

an ideal one which is reflected by it. 

Note that any blurred single impulse, whose origin lies in a 

Dirac impulse, can be well approximated (see, for example, 

[16-18]) by a shifted Gaussian function ( )Gh t −  having the 

following form: 
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whereby, in this paper, the independent variable in the function 

(1) stands for the time variable t . Furthermore,   and   are 

its shaping parameters: the first one means the time shift of 

( )Gh t  on the timeline, but the second determines its width. 

When 0 → , then this function behaves as a shifted Dirac 

delta ( )t − , as argued, for example, in [16-18]. Or, in 

other words, the latter can be expressed in the following way: 

the function ( )Gh t −  becomes for 0 =  a Dirac delta 

appearing at the point t = . Note also further that it ceases 

then to be a function because the Dirac delta is not [12].  

Now, let us recall the following convolution integral 

convention [12], [19]: 
 

 

 ( ) ( ) ( ) ( )ox t h t h t d   


−

= = −  (2) 

 

 

that is used in circuits and systems theory to identify the so-

called impulse response ( )h t  of a (non-pathological) linear 

system (device) by applying the Dirac delta to its input. (Note 

that this is really only a notational convention because the 

integral in (2) does not exist at all, even in the Lebesgue’s 

sense [12], [20], [21]. Moreover, the Dirac delta is not an usual 

physical (deterministic) signal, demonstrating only one value 

at each time instant [9].) Obviously, when the input signal, say 

( )ix t , in (2) is such that ( ) ( )ix t t , then in general (2) 

exists in meaning of a standard convolution integral. And 

finally, for the sake of description completeness, ( )ox t  in (2) 

stands for the system’s output signal. (When ( ) ( )ix t t= , 

then ( ) ( )ox t h t= .) Furthermore, note also that the 

convention expressed by (2), when applied to our function 

( ) ( )Gh t h t = − , gives ( ) ( )ox t h t = − . 

The latter result suggests that the blurring effect can be  

interpreted as processing of the Dirac delta ( )t  through a 

virtual device having the impulse response ( )Gh t − . And, 

for an illustrative purpose, it is of course useful. However, see  

 



AN UNEXPECTED RESULT ON MODELLING THE BEHAVIOR OF A/D CONVERTERS AND THE SIGNALS THEY PRODUCE 195 

 

 

that concluding from this that a “true” convolution integral of 

the form (2) with any input physical signal ( )ix t −  instead 

of ( )t −  holds, would lead to a pure illusion. Why? Simply 

because the electronics implementing the signal sampling 

operation (or any of its components) does not exhibit such an 

impulse response. Or, in other words, it is forbidden to replace 

the Dirac delta in (2) through a signal of another form in the 

description of the blurring effect that is presented in this 

section.  

Let us now turn our attention to some peculiarities of 

idealizing the above description (that is ubiquitous in the 

literature; example of this is the presentation in [14]). To this 

end, we recall that the convention used in (2) applies also [12], 

[19] in the case, when ( ) ( )h t t= . That is we can then write 
 

 ( ) ( ) ( ) ( )ox t t t d     


−

= = −  . (3) 

 
 

Furthermore, the convention (3) applied to the shifted Dirac 

delta ( ) ( )h t t = −  gives the shifted ( ) ( )ox t t = − , 

accordingly. Next, see that with the impulse responses 

( ) ( ) ( ) ,kTh t x kT t kT= −  ,kZ  associated with the 

subsequent points of sampling on the timeline, kT , we get the 

sampled signal description illustrated in Fig. 1c); that is in a 

form of a sequence of the weighted Dirac deltas. 

In what follows, we consider the sampling operation at each 

sampling instant as related with its own impulse response. 

Whereby each of them is characterized by an own multiplying 

constant equal to ( )x kT  and an own time shift kT = , 

kZ . 

Let us now critically evaluate the results, we have just 

obtained by idealization of the function (1) used to describe the 

signal blurring effect. That is by assuming 0 →  in (1), what 

leads to ( )t −  [16-18]. As a result, we got impulses in the 

form of the weighted Dirac deltas at the sampling instants that, 

obviously, do not represent any usual physical (deterministic) 

signals [9].) Even worse, the blurring effect has completely 

disappeared in this representation. So, one may simply ask 

what it was all for. After all, one could assume a priori that the 

signal sampling means simply generation of the weighted 

Dirac deltas – as was done, for example, in [4]. 

Further, observe occurrence of a certain interesting effect of 

idealization of the blurring impulse responses given by (1) and 

multiplied by the values of the signal samples ( )x kT , kZ . 

Namely, they could be then interpreted as the impulse 

responses of resistances [22], [23]. Why? Because they have 

then the following form: ( ) ( ) ( )kTh t x kT t kT= − , which is 

identical, in form, with the formula: a value of the resistance 

multiplied by the Dirac delta [22]. But beware, they cannot be 

regarded as “true” ones because, as already said, they describe 

only virtual devices (similarly as ( ) ( )Gx kT h t kT−  

considered just before by interpreting (2)) used exclusively for 

illustrative purposes. 

Finally, let us summarize our considerations in this section 

with the following illustration. Take into account our “virtual 

resistors” mentioned above and apply (2) with ( )t , that is 

correctly chosen in it. This gives 
 

 

 ( ) ( ) ( ) ( ) ( )x kT kT t d x kT t kT     


−

− − = − , (4) 

 

what represents the impulse at the instant kT  on the timeline 

according to the sampling model visualized in Fig. 1c). 

Further, the sequence of such impulses describes the weighted 

periodization [24] of the Dirac delta. And, this is a correct 

result within the model of signal sampling in force [1-11], [24]. 

Now, let us consider for a moment the notation (2) again to 

check what would happen there for signals other than the Dirac 

impulse ( )t . That is with the following assumption: 

( ) ( ) ( )ix t x t t=   in place of ( )t . Substituting this in (2) 

together with the impulse response of any of our “virtual 

resistors” would give 
 
 

 ( ) ( ) ( ) ( ) ( )x kT kT x t d x kT x t kT   


−

− − = − , (5) 

 

 

what would lead to the weighted periodization of the signal to 

be sampled. (By the way, note that by normalizing the signal 

( )x t  in (5) for the individual time instants , ,kT kZ  with 

respect to the successive weights ( ) , ,x kT kZ  we would get 

a perfect periodization of the signal to be sampled (which 

follows from the summation of impulses given by (5)).) 

Evidently, the result (5) is not fully correct (in the strict 

sense) within the model of signal sampling being in force in 

the literature. From the comparison of (4) with (5), it follows 

however that the closer the form of the normalized signals 

( ) ( )x t kT x kT−  to that of the Dirac impulse, the better the 

approximation of (4) with (5). On the other hand, this 

approximation is getting worse, as this difference is getting 

bigger. Consequently, this does not allow us to identify the 

signal ( )x t  with an input signal applied to a A/D converter 

and to treat (5) as a convolution-integral-like representation of 

the sampling operation performed by the A/D converter at the 

time instant kT . 

It is worth noting however that such a representation as the 

aforementioned one can be derived from (4) – by cleverly 

transforming this relation. To this end, let us rewrite the right-

hand side of it as 
 

 

 ( ) ( ) ( )x kT t d     


−

− −  . (6) 

 
 

Note that to obtain (6) from (4) a standard sifting property 

of the Dirac delta [2], [9], [10], [12] has been applied. That is 

here ( ) ( ) ( ) ( )x kT kT x kT    − = − . 
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In the next step, let us introduce a new auxiliary variable 

t = −  in (6). This gives 

 
 

 

( ) ( ) ( )

( ) ( )  ( )

( ) ( ) ( )     .

x t t kT d

t kT x t d

t kT x t d

     

     

     

−





−



−

− − − − =

= − − − =

= − − −







  (7) 

 
 

Observing now the second and the third line in (7), we see 

that really the convolution-integral-like representation of the 

sampling operation performed by a A/D converter (on its input 

signal ( )x t ) at each of the sampling instants ,  ,kT kZ  

really exists. And, it can be interpreted in two ways. First, see 

that the middle expression in (7) shows that the impulse 

response of the sampling operation associated with the time 

instant , ,kT kZ  is equal to ( ) ( )t kT   − − ; this impulse 

response belongs to the category of time-dependent ones [25]. 

[26]. Then, respectively, the impulse response of the sampling 

operation associated with all the sampling instants kT  will be 

the sum of them over all the k’s; denoting it by ( )1h t
, we will 

have ( ) ( ) ( )1 ,
k

h t t kT    




=−

= − − . 

By the way, we draw here the reader’s attention to the 

occurrence of products of the Dirac deltas in the above 

expression, which some researchers [27], referring to L. 

Schwartz [28], consider unacceptable (incorrect). That this is 

not the case is shown, among others, in [29]–[33]. 

The interpretation of that convolution shown in the last 

expression on the right-hand side of (8) is left to the reader. 

III. NON-PERFECT SWITCHING AND SIGNAL BLURRING EFFECT 

CONSIDERED TOGETHER 

In [14], two kinds of non-idealities of the sampling process, 

which are listed in Introduction, are considered separately (it is 

not known why). Here, let us consider both of them together, 

as forming jointly a signal sampling operation. So, with that in 

mind, we can write 
 

 

 ( ) ( )( )( ),okT B S kTx t h H x t d  


−

= −  (8) 

 

where ( )okTx t  means the part of the A/D converter output 

signal associated with the sampling instant kT , i.e. the 

impulse appearing as a result of sampling at this instant. The 

symbol ( )Bh t  in (8) means the impulse response of a linear 

filter responsible for the signal blurring effect, but ( ),S kTH   is 

the operator describing behavior of the non-perfect switching 

(it works on the signal ( )x t ). Here, we assume their 

descriptions as follows: 
 
 

 ( )
1   if  0  

 0   otherwise
B

t
h t

  
= 



 (9) 

 

and 
 

 ( )( )
( )

,

  if   

0  otherwise
S kT

x t kT t kT
H x t

  +
= 



 , (10) 

 

 

where the second lower subscript kT  at ( ),S kTH    is used to 

note the association of this windowing operator with the 

sampling instant kT ; moreover, its duration is  . 

 Note also that we use in this section another form of the 

impulse response of the “blurring filter”. Now, ( )Bh t  given 

by (9) instead of  ( )Gh t  exploited in the previous section. We 

do this to simplify our calculations. (Note that both of these 

functions describe the Dirac delta equally well in the limiting 

case, i.e. when 0 →  for ( )Gh t  and when 0 →  for 

( )Bh t [10], [12].) Also, note that we assume here the same 

value of the duration of the function ( )Bh t  and of the 

windowing operation ( ),S kTH  ; this enables us to simplify 

calculations. 

Observe now that from taking into account in (8) the given 

form of the functions (9) and (10), it follows that the former, 

i.e. the convolution given by (8), results in non-zero values 

only if the following inequalities: 
 

 

   and  0  kT t kT    −  +    , (11) 
 

 

are satisfied. Further, it follows from (11) that this holds for 

the following times: 
   

 2kT t kT+    (12) 

 

and otherwise the signal ( )okTx t  is equal to zero. 

See now that using (9), (10), and (12) in (8) allows us to 

rewrite the latter as 

 
 

( )

( )

( )

0

  when  0

  when  2

0   otherwise                                   .

t kT

t kT

okT

x t
d t kT

x t
d t kT

x t





 




  



−

− −

−
 − 

−
 − 

=















 (13) 
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In the next step, let us apply the so-called mean value 

theorem [9], [12] to (13). As a result, we get 

 
 

( )

( )
( )

( )
( )

 with  0,

  when  0   

  with  ,   

when  2  

 

0  otherwise                                     .

t

t

okT

t

t

x
t kT t kT

t kT

x t
x

t kT t kT

t kT









  



 



 −  −

  − 



= 
 − −  −



 − 




  (14) 

 

A somewhat tedious but essentially simple analysis of (14) 

leads to the conclusion that in the case of 0 →  a very good 

approximation of this signal is the following triangular one: 

 
 

 
( )

( )( )

( )( )

 

     when  

2  

    when  2

0  otherwise                                   .

okT

x kT t kT

kT t kT

x t x kT t kT

kT t kT

 



  

 

+ −


  +



 + − + +


+   +





 . (15) 

 
 

From (15), it follows that when 0 → , then 

( ) ( ) ,okT k t Tx t x kT → , where 
,k t T  means the so-called 

shifted Kronecker time function [13], [34], [35]. And, 

obviously, ( ) ,k t Tx kT   (unexpected result) differs from 

( ) ( )x kT t kT −  (expected result). Thus, a realistic modelling 

of signal sampling operation does not lead to the appearance of 

Dirac pulses in the limit case (ideal case), as it would be 

expected by researchers who believe in the current model. 

IV. CONCLUSION 

The analysis presented in this paper shows that the currently 

used models for modelling the signals produced at outputs of 

A/D converters lead to their contradictory descriptions (and 

this, of course, is an unexpected result, not recognized until 

now by the researchers working in the area of signal 

processing). The problem here is a correct description of the 

time waveforms at the outputs of A/D converters for the 

purposes of spectral analysis of these signals. A consistent and 

unified model for the above tasks is still waiting to be 

invented. 
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