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Abstract—The article presents a new discretization method 

of a continuous-time linear model of sensor dynamics. It can be 

useful to reduce measuring errors related to the inertia of the 

sensor. For example it is important in the measurement of rapid 

processes as temperature changes in combustion chambers, or for 

shortening the time needed to establish the sensor readings in a 

transition state. There is assumed that sensor dynamics can be 

approximated by linear differential equation or transfer function. 

The searched coefficients of equivalent difference equation or 

discrete transfer function are obtained from Taylor expansion of 

a sensor output signal and then on the solution of the linear set of 

equations. The method does not require decomposition of sensor 

transfer function for zeros and poles and can be applied to the 

case of transfer function with zeros equal to zero. The method 

was used to compensate the dynamics of sensor measuring fast 

signals. The Bode characteristics of a compensator were 

compared with others derived using classical methods of 

discretization of linear models. Additionally, signals in time were 

presented to show the dynamic error before and after 

compensation.    

 

Keywords—sensor dynamics; compensation; discrete models; 

temperature measurement 

I. INTRODUCTION 

NY analog sensors, including thermometers, can be 

characterized by static and dynamic parameters being the 

source of undesired measurement errors. In many situations, 

this means lowering the quality of process control and 

produced goods. A more drastic event is damaging the 

production line or produced components due to an wrong 

operation of the automation systems. Examples of industrial 

applications where a rapid temperature rise can lead to a 

potential catastrophe include: nuclear power plants, the 

chemical industry, aviation, and the engineering industry. 

Compensation of static non-linearity is generally not very 

problematic if the invariability of its shape over time and the 

measuring range of the sensor are assumed. The dynamics of a 

thermometer sensor, on the other hand, is related to its thermal 

inertia and thermal resistance occurring along the path between 

the medium under test, the sensor case and its most important 

sensitive part reacting for a signal change. Basic factors 

influencing the thermometer dynamics include [1-4]: 

• the type of material of the sensor, 

• shape and dimensions of the sensor, 
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• operating point and temperature range to be measured, 

• the type of medium whose temperature is being measured, 

its viscosity, pressure and flow rate, 

• the method of sensor placement, 

• the pressure of the sensor on the object under test, 

• the surface condition of the sensor or the object under test. 

The real dynamical properties must be approximated with a 

mathematical model for the sake of error correction. Typically 

it is done by using linear and nonlinear differential equations, 

transfer functions or model with a variable ‘time constant’. 

The model is suited to known and repetitive heat transfer 

conditions. If they changed, the model, or at least its time 

constant should be adapted. The typical models and their 

limitations are widely discussed in the monograph [5] and 

papers [6, 7].  

The signal disturbances due to the limited ‘speed’ of a 

sensor can be partially reduced by compensation of dynamical 

properties of sensor. In the measurement part of the system, 

the analog element is the sensor and conditioning components 

converting and amplifying measured quantity to the electrical 

voltage, matching it to the range of the A/D converter. Further 

signal processing takes place in the digital form. It can be 

realized in software or hardware, e.g. by using digital filtering. 

In digital technology, adaptive compensators sometimes 

referred to as ‘self-tuning compensators’ due to the software 

implementation of mechanisms for updating the compensator 

coefficients, are much easier to build than in analogue 

technology [8-15]. The scope of application of analogue 

compensators is mainly limited to the measurement of small 

temperature changes and constant heat transfer conditions. 

More possibilities are offered by digital compensation. 

Generally, there are used models in the time or frequency 

domains and we can estimate a digital model of the sensor or 

look directly for a digital model of compensator. The authors’ 

proposal of both options will be presented in this paper 

providing the theoretical consideration and example of 

application. 

II. THE DISCRETIZATION METHODS – SHORT OVERVIEW 

Since the A/D converter samples the analogue signal in time, 

it is convenient to operate with mathematical models in the 

discrete-time domain, such as differential equations or discrete 

transfer function. The most common methods for discretizing 

continuous models are the bilinear method (also called Tustin 

method), zero-pole matching method, zero/first-order methods, 

impulse invariant and others [16, 19]. We will use some of 

them as an example of how to find the model of a compensator 

of the sensor dynamics. To explain the compensation rule of 
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operation let the sensor’s dynamical properties be 

characterized by simple first-order model (inertia term) in 

continuous-time domain. The compensator is adding some 

correcting term ‘corr’ to the sensor output signal tT and for this 

case we have: 

 𝑡𝐾(𝜏) = 𝑡𝑇(𝜏) + 𝑐𝑜𝑟𝑟 = 𝑡𝑇(𝜏) + 𝑁𝐾
𝑑𝑡𝑇(𝜏)

𝑑𝜏
 (1) 

or in the complex s-operator domain: 

 𝐺𝐾(𝑠) = 1 + 𝑁𝐾𝑠 (2) 

where: NK is the time constant of the compensator,   is time. 

The perfect compensation is obtained if the following 

matching condition will be satisfied NK = NT, where the last 

designation is the time constant of the sensor. The general way 

is used to express the compensator model, i.e. it is just a 

reciprocal of sensor transfer function given by numerator / 

denominator form or swaps the symbols of the sensor input 

and output signals in the differential equation. 

In a bilinear method, an approximation is done from the 

domain of variable s to the domain of variable z by formula: 

 𝑠 ≈
2

ℎ
⋅
𝑧−1

𝑧+1
 (3) 

and h is the discretization step. By insertion the (3) into (2) and 

making a shift on the time axis, the following rules for 

coefficients values of the compensator are obtained: 

 𝑎0 =
2

ℎ
𝑁𝐾 + 1,     𝑎1 = −

2

ℎ
𝑁𝐾 + 1,     b1 = 1 (4) 

We see now that m = 1 and n = 1 are in the discrete transfer 

function of the compensator: 

 𝐺𝐾(𝑧) =
𝑎0+𝑎1𝑧

−1+𝑎2𝑧
−2+⋯+𝑎𝑚𝑧−𝑚

1+𝑏1𝑧
−1+𝑏2𝑧

−2+⋯+𝑏𝑛𝑧
−𝑛  (5) 

Another widely used way of discretization is the method with 

the mapping of zeros and poles. It uses the relationship as 

follows: 

 𝑧 = 𝑒𝑠ℎ (6) 

Discretization is carried out here in two stages. Knowing the 

zeros and poles of the continuous-time model, the discrete 

equivalent is determined according to relation (6). The 

transmittance coefficients obtained in this way are multiplied 

by an appropriate constant numerical value, so that the static 

amplification for continuous and discrete model are equal. The 

following condition is then satisfied: 
 

 𝑙𝑖𝑚
𝑠→0

𝐺(𝑠) = 𝑙𝑖𝑚
𝑧→1

𝐺(𝑧) (7) 

If m = 1, n = 0 in equation (5), then compensator coefficients 

can be directly determined from the formulas: 

 𝑎0 =
1

1−𝑒𝑥𝑝(
−ℎ

𝑁𝐾
)
, 𝑎1 = −𝑎0 ⋅ 𝑒𝑥𝑝 (

−ℎ

𝑁𝐾
) (8) 

This discretization method returns the minimum number of 

coefficients of the equation, i.e. the order of the differential 

equation (continuous-time) is the same as the order of the 

difference equation (discrete-time). For low sampling 

frequencies and thus high discretization steps, a significant 

error in approximating the continuous model with the discrete 

model can occur. Reducing this error can be done by 

increasing the order of the differential equation if the sampling 

frequency cannot be chosen higher. Such a possibility is 

provided by another of the discretization methods presented, 

called the interpolation method, in which the differential is 

approximated by the backward difference for a given number 

of interpolation points, using, for example, the Lagrange 

polynomial. Table I gives the values of the coefficients of the 

discrete compensator described, in the continuous-time 

domain, by formula (1) for m = 1, 2, 3 a priori assumed 

interpolation nodes, respectively. In the book (5) there was 

shown that approximation error can be neglected if h/NK<30 

and selected more than one interpolation parameter, i.e. m>1. 

As an alternative to the above-mentioned methods, a 

method based on Taylor series expansion at successive time 

instants can be used. This method in matrix notation and using 

matrix algebra has been proposed by the authors of this paper. 

Similarly to the interpolation method, the number of 

coefficients of the differential equation approximating the 

properties of the differential equation can be a priori assumed. 

This method will be derived both for sensor and compensator 

models. 

III. PROPOSAL OF DISCRETIZATION METHOD IN MATRIX 

NOTATION 

Let the dynamics of the sensor be described by a differential 

equation (9) of the order M with constant coefficients, where 

the inequality M  N is assumed to satisfy the rule of causality 

expected in real measuring situations: 

 𝐴𝑀
𝑑𝑀𝑦(𝜏)

𝑑𝜏𝑀
+⋯+ 𝐴1

𝑑𝑦(𝜏)

𝑑𝜏
+ 𝐴0𝑦(𝜏) =  

 = 𝐵0𝑥(𝜏) + 𝐵1
𝑑𝑥(𝜏)

𝑑𝜏
+⋯+ 𝐵𝑁

𝑑𝑁𝑥(𝜏)

𝑑𝜏𝑁
 (9) 

where: 

      - time, 

x() - sensor input signal (measured signal), 

y() - sensor output signal. 

Formula (9) can be represented as (10): 

 𝐴𝑀
′ 𝑑𝑀𝑦(𝜏)

𝑑𝜏𝑀
+⋯+ 𝐴1

′ 𝑑𝑦(𝜏)

𝑑𝜏
+ 𝐴0

′ 𝑦(𝜏) −  

 −𝐵𝑁
′ 𝑑𝑁𝑥(𝜏)

𝑑𝜏𝑁
−⋯− 𝐵1

′ 𝑑𝑥(𝜏)

𝑑𝜏
= 𝑥(𝜏)  (10) 

where: 

B0 ≠ 0,  A’i=Ai/B0 and i=0,1,...,M,   B’j=Bj/B0,  j=1,2,...,N.  (11) 

A. Discretization of model of dynamics compensator 

The perfect compensation demand dictates that the signal 

x() must be reproduced by the output signal yK() of the 

sensor-compensator system. Thus, it can be written: 

 𝑦𝐾(𝜏) = 𝐴𝑀
′ 𝑑𝑀𝑦(𝜏)

𝑑𝜏𝑀
+⋯+ 𝐴1

′ 𝑑𝑦(𝜏)

𝑑𝜏
+ 𝐴0

′ 𝑦(𝜏) −  

 −𝐵𝑁
′ 𝑑𝑁𝑦𝐾(𝜏)

𝑑𝜏𝑁
−⋯− 𝐵1

′ 𝑑𝑦𝐾(𝜏)

𝑑𝜏
                (12) 

TABLE I  

COEFFICIENTS OF THE DISCRETE COMPENSATOR REALIZING THE TRANSFER 

FUNCTION (2) AND DETERMINED BY THE INTERPOLATION METHOD 

 a0 a1 a2 a3 

m=1 NK/h+1 -NK/h 0 0 

m=2 3/2NK/h -2NK/h 1/2NK/h 0 

m=3 11/6NK/h+1 -3NK/h 3/2NK/h -1/3NK/h 
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The above formula describes the dynamics of a compensator in 

the continuous-time domain. Correspondingly, for discrete-

time, a m-order differential equation (13) is defined, in which h 

in seconds denotes the discretization step as previously: 

𝑦𝐾(𝜏) = 𝑎0𝑦(𝜏) + 𝑎1𝑦(𝜏 − ℎ) + ⋯+ 𝑎𝑚𝑦(𝜏 − 𝑚 ⋅ ℎ) − 

 −𝑏1𝑦𝐾(𝜏 − ℎ) − ⋯− 𝑏𝑛𝑦𝐾(𝜏 − 𝑛 ⋅ ℎ) (13) 

Hardware based realization of the equation (13) can be carried 

out by an infinite response integrated digital filter with 

programmable coefficients. However, often the signal 

correction is preceded by the identification of the model 

parameters. An example of a sensor with a model with variable 

parameters is a thermocouple, whose parameters depend on 

many factors, including the measured temperature as 

mentioned in the first chapter. Therefore the model must be 

tuned to the current measuring conditions. Furthermore, in 

advanced measurement systems, dynamic correction is only 

one of many tasks that must be performed in real-time mode. 

To fulfill the above requirements and stay flexible the signal 

processor or microprocessor can be used, instead of a digital 

filter. The signal correction task is then taken by a software 

routine. 

The method described in this chapter, as authors proposal, 

allows the compensator parameters to be determined for any 

number of coefficients.  It consists of Taylor’s series 

expansion of the input and output signals of the compensator at 

forthcoming time instants k = 1, 2,...m (n): 

𝑦(𝜏 − 𝑘 ⋅ ℎ) = 𝑦(𝜏) +∑(−1)𝑖
𝑘𝑖 ⋅ ℎ

𝑖

𝑖!

𝑑𝑖𝑦(𝜏)

𝑑𝜏𝑖

𝑀

𝑖=1

 

𝑦𝐾(𝜏 − 𝑘 ⋅ ℎ) = 𝑦𝐾(𝜏) +∑(−1)𝑖
𝑘𝑖 ⋅ ℎ

𝑖

𝑖!

𝑑𝑖𝑦𝐾(𝜏)

𝑑𝜏𝑖

𝑁

𝑖=1

 

   (14) 

The differentiability of these signals is assumed. Making the 

fusion of equations (13) and (14) we obtain the system of 

equations (15) resulted from the comparison of equations (12) 

and (13): 

'

0 1 0 1

'

1 2 1 1

2 2 2 2 2
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1 2 2 1
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1
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=  + + +

n n

n n n n n
n n n

n

n n

b B b b

h h n h
b b b

n n n

B b b

 

(15) 

 

It is convenient to use a matrix form (16) as more useful for 

further calculations: 

 𝐗 ⋅ 𝐖 = 𝐘  (16) 

where: 

X - generalized matrix of time instants, 

Y - vector of coefficients of input differential equation, 

W - the vector of estimated coefficients of the difference 

equation. 

The W and Y vectors are defined as follows: 

 𝐖 = [𝑎0, … , 𝑎𝑚, 𝑏1, … , 𝑏𝑛]
𝑇 (17) 

 𝐘 = [𝐴′
0, … , 𝐴′

𝑚, 𝐵
′
1, … , 𝐵′

𝑛]
𝑇 (18) 

The X matrix is defined in two steps. For indices i = 0, 1,..., m; 

j = 0, 1, ..., m we have: 

𝑥0,0 = 1   and   𝑥𝑖,𝑗 = (−1)𝑖
𝑗𝑖⋅ℎ𝑖

𝑖!
   for i ≠ 0 and j ≠ 0 (19a) 

If n > 0 then there exist elements of the matrix X expressed by 

formulae (19b) and (19c). Accordingly, for i = 0, 1,..., m and 

 j = m+1, m+2, ..., m+n we have: 

 𝑥𝑖,𝑗 = −𝑦𝑖           𝑥𝑗,𝑖 = 0 (19b) 

and 

 𝑥𝑖,𝑗 = (−1)𝑖−𝑚
(𝑗−𝑚)𝑖−𝑚⋅ℎ𝑖−𝑚

(𝑖−𝑚)!
− 𝑦𝑖  (19c) 

for indices i = m + 1, m + 2,..., m + n; j = m + 1, m + 2,…,m+n.  

In formula (19) it are denoted: x - element of matrix X,  

y - element of the vector Y. The algorithm for determining the 

above coefficients of a difference equation consists of several 

steps. The input values are the discretization step h and the 

vector of coefficients of the differential equation Y. Based on 

these inputs, a matrix X is generated. The next step is solving 

the set of equations expressed by (16). It is proposed to use the 

Gauss elimination method because it reduces the matrix X to a 

triangular matrix. Solving a system of equations with a 

triangular matrix does not pose serious algorithmic problems 

and is not too much time consuming. 

B. Discrete model of the sensor dynamics 

By making slight modifications to the method presented 

above, a discretization of the sensor model can also be carried 

out. For this purpose, equation (9) is transformed to the form 

related to the sensor output signal: 

𝑡𝑇(𝜏) = 𝐵′
𝑁

𝑑𝑁𝑡(𝜏)

𝑑𝜏𝑁
+⋯+ 𝐵′

1

𝑑𝑡(𝜏)

𝑑𝜏
+ 𝐵′

0𝑡(𝜏) 

−𝐴′
𝑀

𝑑𝑀𝑡𝑇(𝜏)

𝑑𝜏𝑀
−⋯− 𝐴′

1
𝑑𝑡𝑇(𝜏)

𝑑𝜏
                      (20) 

where: A0  0,  A’i = Ai/A0,  i = 1, 2,...,M, 

and B’j = Bj/A0, j = 0, 1,..., N      (21) 

A difference equation of order m can be defined for discrete-

time: 

𝑦𝑇(𝜏) = 𝑏0𝑦(𝜏) + 𝑏1𝑦(𝜏 − ℎ) + ⋯+ 𝑏𝑛𝑦(𝜏 − 𝑛 ⋅ ℎ) 
−𝑎1𝑦𝑇(𝜏 − ℎ) − ⋯− 𝑎𝑚𝑦𝑇(𝜏 − 𝑚 ⋅ ℎ)         (22) 
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Using formula (14), the system of equations (23) is obtained to 

which the matrix notation (16) also applies. 

)...1(
!

)1(...
!

2
)1(

!
)1(
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!
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2
)1(
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2
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2

2
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1121
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mmm
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mm
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m
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mm

mnn

nn
n

nn
n

n
n

mn

mn

mn

aaAa
m

hm
a

m

h
a

m

h

aaAamhahah

aaBb
n

hn
b

n

h
b

n

h

aaBb
hn

b
h

b
h

aaBbnhbhbh

aaBbbb

+++=−++−+−

+++=−−−−

+++=−++−+−

+++=+++

+++=−−−−

+++=+++







 (23) 

In this case, the W and Y vectors are defined /as follows: 

 𝐖 = [𝑏0…𝑏𝑛, 𝑎1…𝑎𝑚]
𝑇 (24) 

 𝐘 = [𝐵′
0…𝐵′

𝑛, 𝐴
′
1…𝐴′𝑚]

𝑇 (25) 

The elements of the matrix X are defined similarly as in the 

case of compensator, but the indices m and n must be 

interchanged. Hence, for indices i = 0, 1,..., n; j = 0, 1,..., n 

ones obtains: 

𝑥0,0 = 1   and   𝑥𝑖,𝑗 = (−1)𝑖
𝑗𝑖⋅ℎ𝑖

𝑖!
   for i ≠ 0 and j ≠ 0 (26a) 

If m > 0, then there are elements of the matrix X expressed by 

formulae (26b) and (26c). Correspondingly, for indices i = 0, 

1,..., n;  j = n + 1, n + 2,..., n + m are assumed: 

 𝑥𝑖,𝑗 = −𝑦𝑖           𝑥𝑗,𝑖 = 0 (26b) 

and 

 𝑥𝑖,𝑗 = (−1)𝑖−𝑛
(𝑗−𝑛)𝑖−𝑛⋅ℎ𝑖−𝑛

(𝑖−𝑛)!
− 𝑦𝑖  (26c) 

for indices i = n+1, n+2,..., n+m;  j = n+1, n+2,..., n+m. 

For quick implementation of this method two MATLAB 

scripts were prepared based on basic functions and arithmetic 

operations that makes it easy to adapt to the other languages 

like C/C++ or Python. It is fully delivered in Appendix for 

sensor and compensator models as separately codes. 

IV. EXAMPLES OF APPLICATION 

Example I 

Let us assume that the dynamics of any sensor is described in 

the frequency domain by the following linear model: 

 𝐺𝑇(𝑠) =
2𝑠+1

4𝑠+1
 (27) 

and the sampling frequency is 20 Hz, i.e. the discretization step 

h=0.05s. For comparison, the discrete form of the compensator 

will be determined by different methods. The model obtained 

by zero-pole matching and also bilinear methods are: 

 𝐺𝐾(𝑧
−1) =

1.988−1.963𝑧−1

1−0.9753𝑧−1
 (28) 

 

 

The author's method presented in this paper led to the equation 

with similar but slight different coefficients: 

 𝐺𝐾(𝑧
−1) =

1.976−1.951𝑧−1

1−0.9756𝑧−1
 (29) 

Figure 1 shows the Bode characteristics for discrete transfer 

functions (28) and (29) compared with continuous-time model 

as reciprocal of equation (27). All methods returned similar 

results. The gain of the DC component is the same in all cases, 

and the differences in discrete zeros and poles are negligibly 

small. The phase characteristic shows slight differences only 

for the limit frequency 1/(2h)=10 Hz or /h  63 rad/s. 

 

Fig.1. Comparison of the Bode characteristics of the continuous and discrete 

-time compensators 

Example II 

Let us assume that the dynamics of any sensor is described in 

the frequency domain by the following linear model: 

 𝐺𝑇(𝑠) =
1

4𝑠+1
 (30) 

and the discretization step is h=0.01s. The sensor input signal 

is periodic and constructed as a sum of three cosine functions 

with different frequencies 10, 20 and 50 rad/s and different 

max. amplitudes. The white noise is added to simulate the 

random measuring errors. The undesired property of 

compensator is strengthen the amplitude of noise, therefore we 

decided to impose small inertia in model of compensator for 

noise reducing. The drawback of this solution is additional 

phase shift of the compensator output signal. The compensator 

model in continuous-time is as: 

 𝐺𝐾(𝑠) =
4𝑠+1

0.1𝑠+1
 (31) 

Applying the invented method again for this case we have: 

 𝐺𝐾(𝑧
−1) =

36.45−36.36𝑧−1

1−0.9091𝑧−1
 (32) 

The Fig. 2 presents an analyzed signal path in Simulink tool, 

i.e. sensor input, sensor output and compensator output.  
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Fig.2. Simulated signal path in the Simulink tool 

The results of the simulation are presented in Fig. 3. There can 

be noticed significant difference between measured signal and 

that one aimed to be measured. The sensor output signal is 

strongly attenuated by its dynamics. The compensator output 

signal is very close to the input. The output noises are at an 

acceptable level and the above mentioned phase shift is also 

visible. The axis units and numbers are not essential hence not 

presented in Fig. 3. 

 

Fig.3. Simulated signals in time using Simulink tool 

 

CONCLUSION 

The advantage of the presented method is, above all, the 

possibility of implementing the algorithm for the discretization 

of continuous models in popular programming languages, e.g. 

Python, C/C++, Java, or any dedicated mathematical packages, 

i.e. Mathcad, Mathematica. The quality of the discrete model 

obtained by this method for considered cases is similar to that 

of the method with a representation of zeros and poles but full 

properties and limitations should be investigated. Obviously, 

there are no limits to the number of differential equation 

coefficients. This is especially important when the sampling 

rate is low, leading to significant errors in the discrete model. 

The zero-pole matched method requires zero and pole transfer 

function form as an input. For models of higher orders, often 

with complex zeros and poles, this may constitute an 

additional computational difficulty for the user. The proposed 

method is working with a classical form of transfer function 

instead. 
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APPENDIX – METHOD IMPLEMENTED AS A MATLAB SCRIPTS 

 

% discrete model of the sensor; 

% G(s)=Y(s)/X(s)=(...+B1ps+Bp0)/(...+Ap1s+Ap0) – transfer function of sensor 
% inputs: [Bp], [Ap], h, 

% where h – discretization step 

% G(z)=Y(z)/X(z)=(b0+b1z^-1+...)/(1+a1z^-1+...); 

% outputs: [b],[a]; 

A=[]; B=[]; A1=[]; B1=[]; x=[]; M=0; K=0; a=[]; b=[]; a_b=[]; C=[]; C1=[]; 

%h=0.1;       <- only as an example  

%Bp=[1]       <- please uncomment  

%Ap=[10 1]  <- 

A=Ap/Ap(length(Ap)); 

B=Bp/Ap(length(Ap)); 

K=length(A)-1; 

M=length(B)-1; 

B1=fliplr(B); 

for i=1:K 

 A1(i)=A(i); 

 end; 

 A1=fliplr(A1); 

C1=[B1 A1]; 

C=C1’; 

% the first quadrant of the coordinate system 

for i=0:M 

 if i==0 sil=1; else sil=sil*i; end; 

 for j=0:M   

  x(i+1,j+1)=((-1)^i)*(h^i)*(j^i)/sil; 

 end;    

end; 

if K==0 a_b=inv(x)*C; a_b  

 elseif K>0 ; 

  else 

% bad inputs! 

end 

% the second and third quadrants of the coordinate system 

for i=0:M 

  for j=M+1:M+K   

    x(i+1,j+1)=-C(i+1); 

    x(j+1,i+1)=0; 

  end;    

end; 

% the fourth quadrant of the coordinate system 

 sil=1;  

for i=M+1:M+K 

 sil=sil*(i-M); 

 for j=M+1:M+K   

  x(i+1,j+1)=((-1)^(i-M))*(h^(i-M))*((j-M)^(i-M))/sil-C(i+1); 

 end; 

end;    

a_b=inv(x)*C 

for i=0:M 

   b(i+1)=a_b(i+1); 

end; 

for i=M+1:M+K 

 a(i-M+1)=a_b(i+1); 

end 

a(1)=1; 

sysz=tf(b,a,h) 

bode(sysz); 

%--------------- end of script ---------------- 

 

% discrete model of the compensator; 

% G(s)=Y(s)/X(s)=(...+B1ps+Bp0)/(...+Ap1s+Ap0) – transfer function of sensor 

% inputs: [Bp], [Ap], h 

% where h – discretization step 

% G(z)=X(x)/Y(z)=(a0+a1z^-1+...)/(1+b1z^-1+...) – transfer function  

% of the compensator 

% output: [a],[b]; 

A=[]; B=[]; A1=[]; B1=[]; x=[]; M=0; K=0; a=[]; b=[]; a_b=[]; C=[]; C1=[]; 

%h=0.1;         <- only as an example 

%Bp=[1]        <- please uncomment 

%Ap=[10 1]  <- 

A=Ap/Bp(length(Bp)); 

B=Bp/Bp(length(Bp)); 

K=length(B)-1; 

M=length(A)-1; 

A1=fliplr(A); 

for i=1:K 

B1(i)=B(i); 

end; 

B1=fliplr(B1); 

C1=[A1 B1]; 

C=C1’; 

% the first quadrant of the coordinate system 

for i=0:M 

 if i==0 sil=1; else sil=sil*i; end; 

 for j=0:M   

  x(i+1,j+1)=((-1)^i)*(h^i)*(j^i)/sil; 

 end;    

end; 

if K==0 a_b=inv(x)*C; a_b  

 elseif K>0 ; 

  else 

%   bad inputs! 

end 

   % the second and third quadrants of the coordinate system 

for i=0:M 

  for j=M+1:M+K   

    x(i+1,j+1)=-C(i+1); 

    x(j+1,i+1)=0; 

  end;    

end; 

 % the fourth quadrant of the coordinate system 

 sil=1;  

for i=M+1:M+K 

 sil=sil*(i-M); 

 for j=M+1:M+K   

  x(i+1,j+1)=((-1)^(i-M))*(h^(i-M))*((j-M)^(i-M))/sil-C(i+1); 

 end; 

end;    

a_b=inv(x)*C 

for i=0:M 

   a(i+1)=a_b(i+1); 

end; 

for i=M+1:M+K 

 b(i-M+1)=a_b(i+1); 

end 

b(1)=1; 

sysz=tf(a,b,h) 

bode(sysz); 

%--------------- end of script ---------------- 

https://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html
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