
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, VOL. 69, NO. 2, PP. 319-324 

Manuscript received February 28, 2023; revised April, 2023.                              DOI: 10.24425/ijet.2023.144367 

 

 

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited. 
 

 

  

Abstract—In this paper, we show why the descriptions of the 

sampled signal used in calculation of its spectrum, that are used in 

the literature, are not correct. And this finding applies to both 

kinds of descriptions: the ones which follow from an idealized way 

of modelling of the signal sampling operation as well as those 

which take into account its non-idealities. The correct signal 

description, that results directly from the way A/D converters 

work (regardless of their architecture), is presented and dis-cussed 

here in detail. Many figures included in the text help in its 

understanding. 

 
Keywords—Sampled signal descriptions used for calculation of 

its spectrum 

I. INTRODUCTION 

N the literature, there exists a variety of descriptions of the 

sampling operation of analog signals and of the sampled 

signals, which result from the execution of this operation. And 

the latter is carried out by analog-to-digital (A/D) converters. So 

all these three things must coincide strictly with each other.  But 

this is not the case in any of the models used nowadays in the 

literature for description of the sampling process. 

The author of this article, in a series of recent papers [1]–[9] 

drew attention to this problem and analyzed it in detail. He 

showed that the three things mentioned above are not compatible 

within any of the models of the signal sampling process that are 

exploited in textbooks as well as by researchers in their papers. 

The papers referred to above are indirect or direct responses 

to critique of those researchers, who imply that they do not see 

the aforementioned problem at all, or that everything is fine with 

the formulas that determine the spectrum of the sampled signal. 

Here we demonstrate once again, using other tools (primarily 

non-mathematical ones), that most of their interpretations and 

justifications are misguided. It might be even said that they are 

false in some aspects, which leads to confusion and 

misunderstanding. 

II. CRITICAL REVIEW OF THE DESCRIPTIONS USED IN THE 

LITERATURE 

What the literature models and descriptions of the sampled 

signal are we refer to here? Let us try to list and illustrate them; 

they are represented successively by Figs. 1–4 below. 
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The description of a sampled signal as, for example, the signal 

( ),D Tx t  in Fig. 1(a), in the form of a sequence of the weighted 

Dirac impulses, is highly celebrated and commonly used in 

textbooks and by researchers [11]–[29]. It is an idealized model, 

as the figure illustrating it consists of point-like objects 

(weighted D  irac pulses) on the time axis t. 

 
Fig. 1. Illustration of two graphical “ideal” representations of a sequence of 

samples on the continuous time axis t that are used in the literature. These are 

the weighted Dirac comb (upper curve) and the weighted Kronecker comb 
(middle curve), respectively. The former is a distribution (not a function), but 

the latter represents a not continuous function. Both of them represent the same 

sequence of samples – of an analog (i.e. un-sampled) signal x(t) shown at the 
bottom of the figure. But each of them does this a little bit differently. 

Furthermore, the upper curve is a sampled signal description in form of a series 

of weighted Dirac deltas (so-called generalized functions of this type) occurring 
uniformly on the continuous time axis t in the distance of T from each other. 

Whereas the middle curve is a description built of finite-value time-dependent 

signal elements (occurring also uniformly on the continuous time axis t in the 
distance of T from each other). Finally, we remark here that this figure is based 

on a one, which was used in discussions presented in [1] and [3]. 
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The problem with the description visualized in Fig. 1(a) is the 

use of inappropriate, non-physical objects (Dirac deltas) in its 

construction that leads to an incorrect formula for the spectrum 

of the sampled signal. That is to the following formula: 

 

 ( ) ( ),

1
D T

k

X f X f k T
T



=−

= −  , (1) 

 

where ( ),D TX f  and ( )X f  stand for the Fourier transforms of 

the signals: ( ),D Tx t  and ( )x t , respectively, and f means 

frequency. Obviously, derivation of the formula (1) from the 

form of the ( ),D Tx t  signal (visualized in Fig. 1(a)) cannot be 

faulted. Its incorrectness results exclusively from the use of an 

incorrect form of the description of the sampled signal. And this 

fact was first pointed out by the author of this paper in [1], who 

supported his view with detailed analyses presented in the 

subsequent works [3]–[6]. 

The first attempt to find an appropriate description of the 

sampled signal for the purpose of its spectrum calculation was 

already made in [1], by freeing the previous description from 

non-physical Dirac deltas. This was a natural step because they 

do not actually appear at the outputs of manufactured A/D 

converters (in any of their implementations; for example, see 

[31]–[37]). It is illustrated here with the example signal 

( ),K Tx t  in Fig. 1(b). 

As can be seen, the latter description is formed by a sequence 

of weighted Kronecker functions (these are defined and 

discussed in detail in [1]). Further, all values of a Kronecker 

function, except of only one, are identically equal to zero. So, 

because of this reason, this representation is also called an ideal 

one (just like the previous one). 

Its main disadvantage is that the sampled signal spectrum 

calculated with its use is identically equal to zero. To 

circumvent this drawback, a reasonable approach was proposed 

in [1]. Namely, the signal ( ),K Tx t  was associated there with a 

closely related one (in some sense – as proposed and explained 

in detail in [1]), which does possess a spectrum that is not 

identically a zero function for all frequencies. But the problem 

with this method is that there exists a certain freedom 

(arbitrariness, in fact) for the choices of the aforementioned 

“closely related” functions. This has already been pointed out 

in [1], and further explained as well as discussed in [3]. 

Consequently, this approach turned out to be not entirely 

satisfactory. 

In his further investigations, the author of this paper reached 

out to descriptions of the sampled signal based on the models 

that describe the sampling process by taking into account also 

its non-idealities. Such models are available in the literature 

[12], [19], [25], [38]–[41]. The task was to check whether they 

can provide some justification for the formula (1) – in an 

approximate sense, of course. 

Let us now illustrate some of them and start with the 

description presented in Fig. 2. 

Note that the not ideally sampled signal of Fig. 2 was called 

( ),S Tx t  in [2] because it can be considered as a “smeared” 

version of the one shown in Fig. 1(b). That is of the signal 

( ),K Tx t , in which now each “ideal sample value” is “smeared” 

on a time segment of the length of   seconds. For more details, 

see [2]. 

Fig. 2. Graphical illustration of a not ideally sampled example analog signal of 

Fig. 1(c), for which the switching time   in the A/D converter model was taken 

to be finite; for more details, see, for example, [38]–[40]. 
 

The smearing effect referred to in [2] can be also viewed and 

modelled a little bit differently. That is as a local blurring of the 

values of the signal samples multiplied by Dirac deltas (i.e. 

assuming that they have, prior filtering, an ideal form shown in 

Fig. 1(a)). As a result, we get then sequences of the blurred 

weighted Dirac deltas; see, for example, [39] (page 3) and [40] 

(page 17). Furthermore, a non-immediate switching (i.e. with a 

finite value of the switching time  ) can be connected with a 

blurring filtering (of the signal fragment; not of the sample 

value multiplied by a Dirac delta)  hoping to get an even better 

model for A/D converters. The latter approach is presented in 

[42]. However, if we think for a moment about the latter method 

and compare it with the approach presented in [9], it will turn 

out that, in principle, they do not differ much from each other. 

It has been shown in the literature (see, for example, [43] or 

[44]) that the operation of averaging over consecutively shorter 

time intervals (or geometric distances) involves the use of Dirac 

deltas in describing a given phenomenon. For example, this is 

the case when point masses distributed in a space are described 

with the use of the mass density function. Then, we can say that 

the Dirac deltas play a role of local impulse responses for the 

relationship between the mass density in the space and the point 

masses in it. Further, one can see an analogy of this scenario 

with the operation of ideal signal sampling. And, in fact, very 

many researchers working in the field of digital signal 

processing understand these matters so. A more extensive 

discussion and critique of this view is presented in [4]. 

At this point, we also draw the reader's attention to the fact 

that the blurring filtering of the weighted Dirac deltas, applied 

in [39] and [40], replaces there the local averaging understood 

in the sense as just presented above. It uses a prescribed form 

of non-ideal samples having character of Gaussian (or similar) 

functions (as already mentioned), which, in the limiting case, 

when their widths go to zero, become Dirac deltas [45]–[47]. 

For this reason, their action in the type of modelling of the 

signal sampling process considered now appears to be similar. 

But for more details, see [42]. 

Modelling of the behavior of A/D converters by means of a 
local averaging operation has been analyzed in depth in papers 
[9] and [48]. It has been shown there, among other things, that 
the (time) sequences of signal samples cannot assume in this 

case the form of weighted Dirac delta sequences. They always 
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take on the form of weighted Kronecker delta sequences, as the 
one shown in Fig. 1(b), with the coefficients equal to the values 
of the signal samples (in the limiting case of averaging over a 
zero time interval) or more or less different from these values 

(in the case of averaging over a non-zero time interval). 
An important conclusion from the analysis of the results 

obtained in works [9] and [48] is as follows. The sequences of 
locally averaged signal values, which give the consecutive 
values (accurate or inaccurate ones) of signal samples (i.e. the 
values of the sampled signal), and the associated sequences of 

impulse responses of the filters describing the averaging 
operations are not identical. These are two different things. And 
since this is the case, one should not expect that these two 
sequences will have the same spectra (representations in the 
frequency domain). 

Fig. 3. Illustration to the sampled signal description that exploits the averaging 
operation as described and used in [9] and [48]: a) a comb of impulse responses 

involved in convolution representations of averaging operations performed 

locally; b) the resulting sampled signal form at the output of a modelled A/D 
converter. 
 

The type of modelling of the sampled signal with the use of 

averaging operation, which was used in [9] and [48], is 

illustrated in Fig. 3. (In this figure,   means a time interval of 

each local signal averaging, but  ( ), ,A Tc t
 and ( ),A Tx t  are a 

comb of impulse responses for an equivalent convolution 

representation of averaging operations performed locally and a 

resulting sampled signal in this model, respectively.) Note that 

this model relies upon calculation of the values of the sampled 

signal for time instants ,  .., 1,0,1,..,kT k = −  as average values 

of the signal to be sampled in time intervals from kT  to kT +  

with ..., 1,0,1,...k = − ; or equivalently, as convolutions of the 

impulse responses shown in Fig. 3(a) with the signal to be 

sampled. Obviously, these values are, in reality, available only 

in the modelled converter at time instants ( ) 'skT + , however, 

we assign them to the instants 'skT . Such a treatment is 

legitimate of course, since the signal processor behind the D/A 

converter treats them exactly that way (that is as the ones 

associated with these time instants, not with the ( )( )1 'sk T+ ). 

The remaining values of the sampled signal on the time axis are 

assumed to be zeros (per definition) in this model. 

It is worth noting that the form of the signals ( ),A Tx t  of Fig. 

3(b) and ( ),K Tx t  of Fig. 1(b) is the same. The only difference 

between them is that in the averaging model the values of the 

signal samples differ from those shown in Fig. 1(b). These 

differences are visualized in Fig. 3(b) by showing both the 

perfect values, which are marked there with the use of horizontal 

dashes (and being equal to sample values in Fig. 1(b)), and the 

averaged ones marked with black circles. 

It is also worth noting that the sampled signal description 

illustrated in Fig. 3, which belongs to the category of non-ideal 

ones, can be made an ideal one by assuming the averaging 

interval 0 →  (that is 0 =  in the limit). For this case, Fig. 3 

redraws to Fig. 4 with  ( ) ( ),0,A T Tc t t= , where ( )T t  means 

the so-called Dirac comb [1], but ( ) ( ) ( ), , ,A T I T K Tx t x t x t→ =  

assumes the form shown in Fig. 1(b). 

Fig. 4. Illustration to the sampled signal description with an “ideal” averaging 

operation: a) a comb of impulse responses involved in convolution 
representations of “ideal” averaging operations performed locally; b) the 

resulting sampled signal form at the output of a modeled A/D converter. 

 

Finally in this section, let us interpret in terms of the last 

model presented here what is done when calculating the 

spectrum of the sampled signal having the example form as 

shown in Fig. 1(a) (that leads to the formula (1)). Simply, then, 

one takes a weighted comb of impulse responses involved in 

convolution representations of “ideal” averaging operations 

performed locally (as that in Fig. 4(a)) and calculates its 

spectrum. Whether this obtained spectrum can be identified 

with the spectrum of the sampled signal is doubtful. 

III. BASIC CAUSE OF FAILURE OF SPECTRUM CALCULATIONS 

WITH THE USE OF HITHERTO DESCRIPTIONS OF SAMPLED 

SIGNAL 

The author of this paper has shown in a series of publications 

[1]–[6] that the formula (1), which determines the spectrum of 

a sampled signal, is not correct. And that the reason for this lies 

in an incorrect description in time of the sampled signal by 

means of a weighted Dirac comb (such an example signal is 

shown in Fig. 1(a)). In the same publications and further ones 

[7]–[10], he attempted to find a correct description of the 

sampled signal for the purpose of calculating its spectrum, 

analyzing for this purpose, in detail, all the other descriptions 

available in the literature. Unfortunately, none of these attempts 

yielded a satisfactory result. For what reason? 
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The reason for all the aforementioned failures is the same: an 

incorrect description in time of the sampled signal. 

Let us now take a closer look at this issue. And to this end, 

observe that in each of the descriptions discussed in Section II 

artificially forced values of the output voltages of modelled 

A/D converters equal to zero occur (i.e. having such values by 

definition), in each interval between the sampling instants kT  

and ( )1 ,  .., 1,0,1,..k T k+ = − . Note also that these smaller or 

larger gaps in the aforementioned intervals filled with forced 

zeros can be also understood (in another interpretation) as sets 

of unknown values; for more details on this, see [5]. Obviously, 

both the former and the latter of the above interpretations do not 

correspond with a true picture of how a real A/D converter 

works. 

At this point, it is worth recalling that in order to correctly 

calculate the spectrum of the output signal of an A/D converter 

with the use of the Fourier transform, we need to know 

precisely this signal as a function, for all time points (except 

maybe of a countable number of discontinuity points). But, as 

mentioned above, none of the descriptions discussed in Section 

II provided us with such a function. So it is not surprising that 

all attempts to calculate the spectrum of the sampled signal with 

their use proved unsatisfactory. 

The next remark concerns common but erroneous 

identification with each other of two de facto different 

functions, or an incorrect recovering one of these functions 

from another. We mean here the following functions: the 

function of time describing the actual (true) voltage waveform 

at the output of an A/D converter, which we denote as ( )ax t  in 

what follows (where the lower subscript a comes from the word 

“actual”), and the function  ,  .., 1,0,1,..,x k k = −  that 

expresses the relationship between the values of the signal 

samples and the values of time indices of the instants assigned 

to them. However, because of a lack of space here discussion 

of this point will be postponed to the next paper. 

An analysis of the various architectures of A/D converters 

and their technological realizations [31]–[37] allows us to 

distinguish two time segments in the ( )ax t  waveform in each 

of its intervals between the sampling instants kT  and 

( )1 ,  .., 1,0,1,..k T k+ = − . So describing the ( )ax t  waveform, 

one can make the first of these segments "responsible" for all 

transients associated with the operation of (ideal or non-ideal) 

switching, but the second for the process of quantizing the 

signal sample value and maintaining this quantized value until 

the end of the corresponding sampling interval. And modelling 

this, we can say that in the first of the time segments mentioned 

above of the length   we perform signal averaging (i.e. in this 

switching time interval), while in the second of the length T −  

we quantize the amplitude value of the averaged signal, i.e. we 

get ( ),A T Q
x kT  

, where the lower index Q stands for the 

operation of amplitude quantization. This value is maintained 

until the end of the interval ending at the instant ( )1k T+ . So 

the waveform ( )ax t  has the form as the one shown in Fig. 5. 

This is a staircase curve with transients taking place during an 

non-ideal transition from one discrete value of the signal to 

another, which is modelled with the use of an averaging 

operation. Further, note that if the averaging times denoted by 

's  in Fig. 5 go to zero, the aforementioned staircase curve 

assumes in the limit the form shown in Fig. 6(a), not that one 

visualized in Fig. 1(b). 
Fig. 5. Sketch illustrating the form of the waveform ( )ax t . 

 

In other words, the description of the voltage waveform at 

the output of the A/D converter as illustrated in Fig. 6(a) – for 

the case of not taking into account the non-idealities of the 

sampling process – represents the true form of the output 

waveform at the converter and, as such, must be used in 

calculations of its spectrum (no other one, such as, for example, 

the one of Fig. 1(a) or that in Fig. 1(b)). We recall also here that 

( ), 'sI T Q
x kT  

 shown in Fig. 6(a) denote ( ), 'sA T Q
x kT  

 for 

0 =  and equal the quantized values of the signal samples, 

according to  ( )  
Q Q

x kT x k =    
. 

Now, let us make a very interesting observation, namely that 

the differentiation of the function ( )ax t  results in the 

waveform containing Dirac deltas as shown in Fig. 6(b), and 

the latter is identical in form with that in Fig. 1(a). So we come 

to a contradiction because the output signal of an A/D converter 

cannot have the form shown in Fig. 1(a) as well as in Fig. 6(a) 

at the same time. Against accepting the form shown in Fig. 1(a) 

– as the form of the output signal of an A/D converter – is the 

fact that in none of the architectures and realizations of A/D 

converters [31]–[37] occur circuit elements that implement the 

operation of differentiation. 
 

Fig. 6. Sketches illustrating forms of the waveforms: a) of the ideal version of 

( )ax t  called here ( )aix t , and of the derivative of the latter. 
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IV. CONCLUSIONS 

The reason for the failure to calculate correctly the spectrum 

of a sampled signal is explained in this paper in an accessible 

way. In such calculations, the description of this signal as 

illustrated in Fig. 6(a) must be used, not the commonly 

exploited description of Fig. 1(a) containing the Dirac deltas. 

In this context, we note that calculation of the Fourier 

transform of a waveform such as the one presented in Fig. 6(a) 

results in 

 

 
( ) ( ) ( )

( ) , 

sinc exp

     

ai

s

k

X f fT j fT

X f kf

 



=−

= − 

 −
  (2) 

 

see [49] for details of calculations, where ( )aiX f  and ( )X f  

are the Fourier transforms of the signal ( )aix t  (see Fig. 6(a)) 

and of its un-sampled version ( )x t , respectively. Further, 

1sf T=  means the sampling frequency (rate), k belongs to the 

set of integers, and 1j = − . Moreover, the function ( )sinc x  

in (2) is given by 

 

 ( )
( )sin

  for  0
sinc

1   for  0

x
x

x x

x




= 
 =

  . (3) 

 

 Evidently, (2) differs from (1). The detailed analysis and 

discussions of descriptions used for sampled signals, conducted 

in this paper, show that the corrected version of (1), i.e. the 

formula given by (2), should be used as a proper formula for the 

sampled signal spectrum. 
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