
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, VOL. 69, NO. 2, PP. 371-382
Manuscript received January 31, 2023; revised April, 2023. DOI: 10.24425/ijet.2023.144373

Shared-Semaphored Cache Implementation for
Parallel Program Execution in Multi-Core Systems

Adam Milik, and Michał Walichiewicz

Abstract—The paper brings forward an idea of multi-threaded
computation synchronization based on the shared semaphored
cache in the multi-core CPUs. It is dedicated to the implemen-
tation of multi-core PLC control, embedded solution or parallel
computation of models described using hardware description lan-
guages. The shared semaphored cache is implemented as guarded
memory cells within a dedicated section of the cache memory that
is shared by multiple cores. This enables the cores to speed up the
data exchange and seamlessly synchronize the computation. The
idea has been verified by creating a multi-core system model using
Verilog HDL. The simulation of task synchronization methods
allows for proving the benefits of shared semaphored memory
cells over standard synchronization methods. The proposed idea
enhances the computation in the algorithms that consist of
relatively short tasks that can be processed in parallel and
requires fast synchronization mechanisms to avoid data race
conditions.

Keywords—thread synchronization; scheduling; mapping; par-
allel execution; compiler

I. INTRODUCTION

A. Concurrent Execution Models

There can be distinguished two basic data processing for-
mats. The graphical processing unit (GPU) consists of multi-
tude of cores that share the same cache; they are coordinated
together by a main core. This design allows processing data
set of mutually exclusive data in parallel using the same
computation formula [4].

Fig. 1. Diagram Of Parallel Execution Model

This work was supported by funding from the Ministry of Educa-
tion and Science for Statutory Activities of Digital Systems Division of
the Silesian University of Technology of Gliwice (BK247/RAu12/2022 and
BKM576/RAu12/2022).

Authors are with Silesian University of Technology, Gliwice,
Poland, Faculty of Automatic Control, Electronics and Computer Sci-
ence, Digital Systems Division, Poland (e-mail: adam.milik@polsl.pl,
michal.walichiewicz@polsl.pl).

The following fig.1 represents the typical parallel execution
model of GPUs. Each data from a data set is concurrently
computed by the same task. The GPU compilers generate
code for multiple-threads by vectorization of a generated
intermediate representation code as one of the steps within
the GPU’s compiler code optimization. [4], [6]. Described
model falls into Single Instruction Multiple Data (SIMD) mul-
tiprocessing scheme. Artificial intelligence, image processing,
aerodynamics, etc. assimilate parallel data processing due to
calculations of huge data sets [2]–[4].

The central processing units (CPUs) are single or multi-core
systems that perform parallel or diverse sequential processing
on the mutually inclusive or exclusive set of data. The CPUs
most often execute multiple sequentially independent tasks
which do not share any data. This universality makes the
architecture more complex [2]–[4].

Fig. 2. Diagram Of Multiple Sequential Execution Model

The general purpose multi-core CPUs are the extension of
the von Neuman machine (Singel Instruction Single Data -
SISD) toward multiple machines sharing common memory
space (Multiple Instructions Multiple Data - MISD). There can
be considered a situation when the multiprogram operation
is implemented where each core executes an independent
program as shown in fig.2. The utilization of multiple cores
for performing mutually dependent computations requires cre-
ating synchronization mechanisms eliminating the data race
conditions. This allows the distribution of computations of
a single program (a computation problem) across several
processing units. Depending on the operating system (su-
pervisor) implementation there can be distinguished different
synchronization mechanisms available through the operating
system functions call or are implemented independently by
user programs dedicated synchronization mechanisms [4],
[11], [12]. The compilers often are oriented to deliver the SISD
implementation program passing the problem of partitioning
and synchronizing the computations to the user. From the user

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

372 A. MILIK, M. WALICHIEWICZ

(programmer) point of view this is a complicated task. This
requires not only careful computation implementation but also
requires partitioning to multithreaded execution. There arises
the problem of race conditions between threads or deadlock
conditions when multiple conditional paths are managed.
The debugging is problematic and still remains the question
about the partitioning correctness and effectiveness. In many
applications parallel processing is possible but it is ineffi-
cient due to a lack of fast computing thread synchronization
mechanisms disallowing for efficient utilization of multiple
core architectures. At this point should be recalled specific
types of computations performed by digital system simulators
(event-driven simulators e.g. hardware description simulation,
SystemC) and Programmable Logic Contorllers (PLCs) based
on IEC61131-3 standard.

Fig. 3. Computation model of PLC control processing or digital simulation

The execution model in the fig.3 ilustrates computations
which are being done in computing control algorithms in
PLCs or simulation of HDL models (event-driven simulation).
Such models of execution enables parallel execution provided
synchronization of computation task is efficient. The HDL
model requires additionally an efficient scheduler that allows
selecting tasks to be processed according to observed signal
changes. The control program processing in PLCs requires
only data dependency triggering that organizes ordered com-
putation task processing. In this case scheduling problem can
be simplified to static distribution of computation tasks across
available processing cores. Both problems requires the correct
synchronization of multiple computation threads sharing the
same data. [5].

B. Shared-Memory Synchronization

The shared memory allows for fast data exchange between
processors of the system. The Organization of memory hierar-
chy such as the distribution of local and shared caches between
multiple cores, types of caches and the implementation of
different cache coherence protocols are the factor contributing
to the multi-threaded execution performance. [3]–[5].

The memory hierarchy model is shown in fig.4. The orga-
nization of memory increases the data exchange performance
by implementing small size fast cache memories that reflects
random data access of CPU to a single memory cell while the
main memory (typically implemented as dynamic memory)
is located behind the cache that exchanges entire data line
allowing for fast and efficient data burst exchange. Addition-
ally, a memory hierarchy allows having shared caches between
multiple cores which allows for faster data synchronization
by omitting a long time-consuming hardware mechanism of
writing through the shared data back to the main memory.

Fig. 4. Diagram Of Memory Hierarchy Model

Shared caches are connected to local caches by a bus which
requires the implementation of cache coherency mechanisms
through Cache Coherency Controllers (Snoopers) to maintain
the cache coherency in the local caches [3], [5].

Listing 1. Atomic Operation Lock
1: Lock L
2: Thread 1: Thread 2:
3: L.acquire() L.acquire()
4: cnt++; cnt++
5: L.release() L.release()

It is expected to have data races in the shared data synchro-
nization that is originated with differences in the completion
time of particular computation tasks. The data races in the
shared data synchronization can corrupt the results of com-
putations. It is necessary to implement a mechanism which
would allow a thread to acquire and lock a block of data, and
let other threads wait for the given data to be released. As
it is shown in the Atomic Operation Lock, the first thread
is going to acquire and lock data, which forces the second
thread to wait until the other thread releases the lock after the
increment of the cnt variable.

The Primitive atomic instructions are used to get exclusive
access to data. The compilers that provide functionality im-
plements control blocks that guarantee variable protection for
requesting thread [5].

II. SYNCHRONIZATION

A. Primitive Atomic Instructions

Introducing the automatic parallel execution of algorithms
that are represented by sequential languages (here PLC lan-
guages are considered) or sequential processing of concurrent
or event-driven modelling requires precise task scheduling and
synchronization. The task can be simplified to the function that
is described over three sets of variables X, Y, Q.

{Y,Q} = f(X,Y,Q) (1)

Where: X is a set of input variables, Y is a set of output
variables and Q is a set of internal state variables. In order to
retain the function in processing, there should be a nonempty

SHARED-SEMAPHORED CACHE IMPLEMENTATION FOR PARALLEL PROGRAM EXECUTION IN MULTI-CORE SYSTEMS 373

X set. When the Q set is empty the described processing
is memoryless and the result of processing depends only
on the current value of variables in the X set, independent
of the previous history of changes. The processing order
of the task is created based on the variable dependencies.
The function cannot be scheduled before all arguments are
known. In order to meet this requirement, a synchronization
of computations between tasks is necessary, while in general
the task execution time varies and depends on logic conditions.
The processing start of the task(s) must be synchronized. The
considered situation resembles the transformation of the tasks
to be executed into a Petri net, where places denote tasks
and transitions are unconditional. Directed arcs record the
order of control passing. The token passing is only possible
when all preceding tasks possess the token. The possession
of the token represents the completion of processing. The
synchronization mechanisms allow correct data flow across the
task, independently of completion time variation of particular
tasks. The number of available cores and task ordering enables
some optimizations in the observation of tokens’ arrival. Let
assume that the program is partitioned statically between
processing cores. Here are examined the commonly used
atomic procedures for data exchange

Listing 2. Atomic Compare-And-Swap
1: procedure CAS(Data Pointer,Old,New)
2: if Data Pointer ̸= Old then
3: return False
4: else
5: Data Pointer := New
6: return True
7: end if
8: end procedure

Listing 3. Atomic Load-Linked/Store-Conditional
1: procedure LL(Data Pointer)
2: Link Data Pointer
3: return Data Pointer
4: end procedure
5:

6: procedure SC(Data Pointer,New)
7: if No Change since LL in Data Pointer then
8: Data Pointer := New
9: return True

10: else
11: return False
12: end if
13: end procedure

The given CAS and LL/SC are most often use atomic
primitive instructions that are capable of implementing shared
data algorithms for an arbitrary number of threads. However,
Atomic Compare-And-Swap can lead to the ABA problem
in the multi-core systems which can lead to unpredicted
behaviours (in the critical case to deadlock condition). The
implementation of local caches in each core makes this phe-
nomenon possible and fatal [5].

B. Mapping Multi-Threaded Algorithms

In order to map the sequentially described processing over
multiple processing resources the computation dependencies
and complexity must be determined. The computation process
is expressed by means of data flow graphs (DFGs) and control
flow graphs (CFGs) as a result of systematic analysis of
language statements [10]. Using dual graph representation
introduces difficulties in revealing parallel processing. This is
caused by the sequential nature of the control flow graph. It
could be observed that a correctly formulated control program
can be represented by acyclic data and a control flow graph
after merging. It illustrates all possible processing in a single
processing cycle of a control program. Owing to the graph
representation of computations, mutual dependencies can be
explored, and possible parallelism can be used for speeding up
the computations. An exemplary control and data flow graph
is shown in fig.5.

Fig. 5. Diagram Of Data Flow

The mentioned tools are used in compilers to optimize the
code written in high-level syntax to assembly. [6]–[8]. Besides
generating a more optimized assembly code for a CPU, it also
enables to map a multi-threaded execution code for algorithms
such as Parallel Execution shown below.

Listing 4. Parallel Execution
1: function PARALLEL(Data Buffer)
2: for all Data Buffer do
3: Spawn Work()
4: end for
5: end function

The GPUs tend to be most efficient at computing multiple
data in parallel; however, it is only for algorithms which can
be vectorized such as Parallel Execution; thus, each data in
the set must have the same processing scheme which is the
SIMD mentioned previously. The following fig.6 serves as a
straightforward diagram of the execution model which GPU
can compute faster than CPU.

The data buffer in the diagram consists of three data which
have to be sequentially computed by a task T1. The total

374 A. MILIK, M. WALICHIEWICZ

Fig. 6. Diagram Of Execution Model using sequential (A) and vectorized
approach (B)

sequential computation of the data buffer takes 3 processing
cycles of T1. Such an Execution model can be vectorized
which produces a parallel execution model as shown in case B
of fig.6. The vectorized execution model permits the GPU to
execute the whole data buffer in parallel by three processing
units sharing a common control scheme resulting in a triple
performance increase.

The GPU’s cores are controlled by a main core, and
its internal memory allows multitude of cores to write and
read huge data blocks simultaneously. However, algorithms
in which each data of the buffer, is computed by distinctive
tasks, and the anterior functions depend on the prior inputs and
outputs of the posterior computations as in the fig.7. In such
execution models, vectorization is very limited. This imposes
a serious problem for the GPU to compute [4], [6]–[8].

Fig. 7. Execution Model Which cannot be vectorized

C. Multi-Threading and Compiler Optimizers

The computation models such as shown in fig.7 are not im-
possible for a compiler to analyze. Compilers often are divided
into front-end, middle-end and back-end layers. The front-
end is responsible for parsing and generating the Intermediate
Representation (IR) instruction of the code. The Middle-end as
it can be seen in the fig.8, is responsible for running optimizes
(also called Passes) to generate optimized code for a specific

problem such as vectorization of the execution model (which
was outlined in the previous section). [6]–[8].

Fig. 8. Diagram of Compiler Architecture such as LLVM

The Intermediate Representation Code is the compiler’s
private data structure to represent a parsed code from a high-
level language. Each compiler has its own IR structure from
which, it is able to analyze, optimize and generate assembly
code.

Fig. 9. Exemplary intermediate representation using Basic Blocks and IR
Instructions Dependency

The intermediate representation is organized into ”Basic
Blocks” which contain intermediate representation instruc-
tions. Every IR Operand can be used only once as a Result
Operand; thus, it is very simple to trace data flow and
dependency as it can be noticed in the fig.9.

In the following example shown in fig.10. It can be deduced
that there is shared data dependency in the Sensor A and B

SHARED-SEMAPHORED CACHE IMPLEMENTATION FOR PARALLEL PROGRAM EXECUTION IN MULTI-CORE SYSTEMS 375

Fig. 10. Data Dependency Example using automatic pedestrian crossing

functions. However, Sensors’ functions introduce branches in
the data flow shown with red arrows in the fig.11. The branches
do not change the data dependency, but it only forces multiple
cores to execute longer chunks of code before synchronization
occurs as it is shown with the blue and green arrows.

As it was shown, a custom optimizer can map multi-
threaded programs for the execution models such as fig.7 by
tracing the data dependency and in the case of more complex
programs through a combination of data flow and dependency.

Fig. 11. Diagram of The Data Dependency Within Functions

The fig.12 shows that synchronization of multiple cores
requires buffers and a lock mechanism to synchronize cores
at each buffer. This mechanism can be implemented by an
atomic instruction or binary semaphores.

Fig. 12. Data Dependency Flow for the Parallel Execution Model

III. CACHE COHERENCY

A. Coherency Protocols

The cache hierarchy significantly decreases the latency
caused by the main memory. There are different cache hi-
erarchies designs which consist of multiple levels of local
or shared caches. The design of cache hierarchies in multi-
core systems highly influences the latency related to fetching
data from the main memory and data sharing synchronization
across multiple cores.

Fig. 13. Diagram Of Cache Coherency in Shared-Cache

Cache coherency is the problem which emerges when
instances of the same data block are found in numerous local
caches. The red line in fig.13 points to the coherency of shared
data in the local caches. The shared data is synchronized
by bus snoopers that implement cache coherence protocols
which is the hardware mechanism for data synchronization in
multiple local caches.

There are various cache coherence protocols. The choice
of a particular cache coherence protocol can be influenced
by the overall CPU design such as the need for minimizing
power usage, design complexity, bus transactions, writebacks,
etc. Additionally, different cache coherence protocols can
be used for different hierarchy levels of the caches in the
microprocessor. This hardware mechanism synchronizes data
by monitoring the corresponding core’s actions to its local
cache lines, a bus connecting the local caches and other local
caches’ lines [3], [5].

The fig.14 illustrates the MSI protocol from which more
advanced protocols are derived. The state diagram of the MSI

376 A. MILIK, M. WALICHIEWICZ

Fig. 14. State Diagram Of MSI protocol for the Core1 and the Same Data

protocol shown is performed for every cache line in every local
cache. The state of the line to which data is assigned changes
depending on the core’s and other cores’ actions that share
and modify the data in the line. Cores can read data directly
from another core’s cache which has the most recent copy of
the data. When a core requests to read the latest instance of
data which is found in another core, the second core flushes
the data to the bus which allows the first core to read the data
and to be written back to the shared memory [3], [5].

B. False Sharing

The cache memory size is limited, therefore cache mapping
is used to enable caches to point to every fragment of the main
memory, and it allows to fetch a segment of a program (a line
size) which is being executed at a time.

Fig. 15. Diagram Of Cache Line used for Memory Mapping

The fig.15 demonstrates the dynamics of the caching sys-
tem. To limit non-organized bus usage between caches and the
main memory, each cache line fetches a block of data. The tag
is used to save the most significant bits of an address which are
left after address offset and index bits. The index segment of
the cache’s lines allows associating each line with a segment
of memory. It can be noticed in the fig.15 that the memory is
divided into 4 colours indicating that there are 4 cache lines;

however, one of the Index bits is used as a Set bit that allows
each cache line to fetch two different segments represented in
two colours in the diagram. Meanwhile, this structure allows
for better management of limited-size caches because each
line is associated with a specific cache line. Setting two virtual
lines into one physical reduces expensive cache lines. It also
brings forth the problem associated with false sharing between
multiple local caches.

Fig. 16. State Diagram Of MESI protocol for Two Cores Showing False
Sharing

The false sharing does not corrupt computation, but it is
a huge performance loss. In the case when cache1 from the
fig.15 fetches the first block and the third block is fetched by
cache2. Both of the caches are going to use the first line which
is associated with the green and orange memory segments.

However, the bus snoopers set the status of both lines as
shared because the Tag segment of both lines in cache1 and
cache2 are the same. As it can be realized from the fig.16, a
lot of time is wasted for the unnecessary fetching and writing
back data blocks.

Fig. 17. State Diagram Of Four Cores Sharing One Cache

There are different multi-level cache design hierarchies for
multi-core systems. Placing a single shared cache between
multiple cores as in the fig.17, increases the synchronization
of cache lines, but introduces huge false sharing between
them. Meanwhile, separating cores into clusters shown in the
fig.18, reduces the false sharing, but it also cuts down the
synchronization performance.

This is a serious problem imposed by caching the main
memory by multiple cores. The introduction of an additional

SHARED-SEMAPHORED CACHE IMPLEMENTATION FOR PARALLEL PROGRAM EXECUTION IN MULTI-CORE SYSTEMS 377

Fig. 18. Block diagram of two Dual-Core clusters

level of local caches as in fig.19 introduces a reflection barrier
for false sharing. The barrier moves the phenomena shown
in fig.16 to a lower level of the memory hierarchy which
decreases the performance loss caused by false sharing, but
it is never eliminated.

Fig. 19. Block diagram of Two Cores utilizing additional Local Cache

IV. SHARED-SEMAPHORED CACHE

The parallel execution models such as the fig.7 impose a
problem for the GPUs and CPU’s caches. In multi-threaded
computations which require a rapid and frequent exchange
of data across multiple cores which cannot be vectorized;
the memory latencies suddenly cause a serious performance
decrease as it was shown in the previous section.

The shared-semaphored cache is able to synchronize
the processes at the moment when they exchange data.
Semaphored-based hardware synchronization is a faster and
simpler approach than the cache coherency protocols. The
shared semaphored cache is implemented at the same level
of memory hierarchy as the local caches as it is shown in the
fig.20.

Fig. 20. Memory hierarchy model with shared-semaphored cache

A. Semaphore Implementation

The hardware implementation relies on the binary
semaphores within the shared memory cells as it is shown
in fig. 21, binary semaphores are able to synchronize multiple
processes by making a process wait for another process to
pass the data. The hardware semaphored data synchronization
is a faster and simpler approach than any type of cache
coherency protocols; additionally, it does not require new
atomic instructions which might require modification of a
CPU’s pipeline, but a simply dedicated area of addresses to the
semaphored cells. As it was already mentioned in the previous
section, a dedicated compiler is required for multi-threaded
mapping of a control program.

Fig. 21. UML model of process synchronization using semaphored cache

The diagram in fig.22 represents the hardware implementa-
tion of the shared-semaphored cache and how it is connected
to the cores. Each core has a status register which is used to
lock or unlocked a core according to the status of the given
address of a semaphore cell.

378 A. MILIK, M. WALICHIEWICZ

Fig. 22. Diagram of a Multi-Core System with the Shared-Semaphored Cache

B. Status Register

The status register shown in the figs.22 and 28 is an array
of registers. Each register signifies a status of semaphore.
Multiple decoders are used to associate each register with an
address and decode multiple addresses at a time. An encoder
allows to retrive an address from the status register to check
the status of a semaphore.

C. Shared-Semaphored Cache

The diagram in fig.25 represents the hardware implementa-
tion of the shared-semaphored cache. It can be observed that
each core is connected to one of the memory blocks via a
separate input port. Additionally, each core has its own output
port. This was done to speed up the write mechanism for the
multiple cores. As it can be seen in fig.23, a single block of
memory would radically slow down the synchronization of the
cores.

Fig. 23. WaveForm of Single Port Shared-Semaphored Cache

The fig.24 shows that adding additional blocks of memory
into the shared-semaphored cache significantly speeds up the
process of writing and reading data by multiple cores.

Fig. 24. WaveForm of Four Ports Shared-Semaphored Cache

The fig.25 represents that the multiplexers are used to select
the correct memory block.

Fig. 25. Diagram of Shared-Semaphored Cache

The occupied bits in the memory cells are used to select
the correct memory as it is seen in fig.26. Furthermore, the 8
bit registers are used to temporary store the address, so that
the status registers manage to retrieve the address from the
semaphored cache.

V. MEMORY MAPPING

The CPU’s pipeline is divided into multiple stages which
are separated by pipeline registers. During each clock cycle,
instructions are executed by previous pipeline stage and saved
to the next pipeline stage in registers. The amount of stages
depend on the architecture’s implementation; however, every
CPU has a stage in which data can be written to memory,
GPIOs, peripherals or written back to general purpose regis-
ters. CPUs use memory mapping to physically map addresses
of memory, GPIOs and peripherals as it is shown in the fig.27.
The shared-semaphored cache’s addresses are mapped this
way; thus, the shared-semaphored cache can be universally
implemented in different architectures, and it does not require
modification of a core’s pipeline.

SHARED-SEMAPHORED CACHE IMPLEMENTATION FOR PARALLEL PROGRAM EXECUTION IN MULTI-CORE SYSTEMS 379

Fig. 26. Diagram of Memory Block for Each Port-In in the Shared-
Semaphored Cache

Fig. 27. Diagram Of Memory/WriteBack Pipeline Stage

A. Mapping Shared-Semaphored Cache

The diagram in fig.28 represents the memory mapping with
the shared-semaphored cache. The status register is responsible
for stalling a core to synchronize it with another core from
which it is fetching the data.

The Stall CPU signal is connected to the pipeline registers
which enables to stalls the whole pipeline as it is shown in the
fig.29. The stalling of the pipeline works the same way when
the hazard unit stalls half of the pipeline during fetching of
data from the memory.

B. Semaphore Instructions

By Mapping semaphores, cores can write and fetch data
from semaphores without any modification of the CPU
pipeline. Furthermore, the constant values of shown in the
Semaphore Read Operation and Semaphore Write Op-
eration are stored in the instruction part of the memory
which further decreases the synchronization performance loss

Fig. 28. Diagram of Memory Map

Fig. 29. Diagram Of CPU Pipeline With Mapped Shared-Semaphored Cache

because it does not rely on any data which needs to be fetched
from the main memory.

Listing 5. Semaphore Read Operation
1: li $t1, SemaphoreOffSetAddr
2: lw $t2, SemaphoreNum($t1)

Listing 6. Semaphore Write Operation
1: li $t1, SemaphoreOffSetAddr
2: sw $t2, SemaphoreNum($t1)

VI. MULTI-THREAD MAPPING

Mapping to a multi-threaded program can be achieved by
representing the whole (sequentialy given) input program into
a data dependency graph as it ilustrated in fig.30. Intermediate
representation instructions are represented as Nodes and their
dependency as edges with blue arrows. A custom written

380 A. MILIK, M. WALICHIEWICZ

optimizer for the LLVM compiler was created to map multiple
threads. Additionally, other optimizers (inherited from the
main implementation of LLVM) are also used to eliminate
dead code, unroll loops and combine redundant instructions
before the optimizer for mapping multiple threads is called.

Fig. 30. An exemplary Data Dependency Graph of a program

The optimizer treats each Node input as the beginning of a
thread. It places Input Nodes into a List representing a Thread
as it is seen in the fig.31.

Fig. 31. Initial threads assignment to independent nodes

At moment when the optimizer notices that the result
operand of the current node is used as second source operand
in the next node, it places a temporary node between the nodes
as it can be observed in the fig.32.

Fig. 32. Program with completely mapped threads

Fig. 33. Threads merging step: Red to Green and Purple to Brown Thread

When all the instructions are placed into multiple threads,
the optimizer merges the shortest threads that share edges
and removes temporary nodes as it is shown in fig.33. The
optimizer merges threads until the specified number of threads
remain and permanently places Synchronization Nodes as it is
demonstrated in the fig.34.

The Assembly code is generated from each Thread List.
The Synchronization Nodes which are placed between differ-
ent threads are generated into store and load operations of
semaphores. The colour of Synchronization Nodes generates
into fetching of data from semaphores; meanwhile, the edges
to the previous Node pass data to semaphores.

SHARED-SEMAPHORED CACHE IMPLEMENTATION FOR PARALLEL PROGRAM EXECUTION IN MULTI-CORE SYSTEMS 381

Fig. 34. Threads merging step: Brown Thread to Orange Thread

VII. RESULTS

The implementation of the custom optimizer for the LLVM
Compiler has allowed mapping multiple threads to execute in
parallel as it is given in fig.12. Additionally, it has enabled
an automatic generation of multi-threaded assembly code
utilizing semaphored synchronization mechanisms.

Fig. 35. Data Dependency Graph of Multi-Threaded Synchronization

The fig.35 shows four cores represented in different
colours, synchronizing the data-dependent instructions using
semaphore operation instructions.

The fig.36 and fig.37 simulate the synchronization of two
cores. It can be spotted that it takes 6 Clock Cycles For
Core3’s register V0’s value to Synchronize with Core0’s
register At’s value. The synchronization takes 4 Clock Cycles
after the Core3 requests the value. This is possible due to the
fact that cores bypass the traditional hierarchy of local and
shared caches for which the multi-core synchronization is a
performance and design challenge as it was demonstrated in
the article. Mapping the shared-semaphored cache in a multi-
core system permits to use of write and read operations as

Fig. 36. WaveForm of the simulated shared-semaphore cache is shown when
Core0 Writes a Data to a Semaphore

Fig. 37. WaveForm of the simulated shared-semaphore cache is shown when
Core3 Stalls for the Core0 and Gets the Data from the Semaphore

synchronization and data-sharing instructions with no modifi-
cation of the pipeline.

VIII. CONCLUSION

The paper presents an approach to multi-threaded sequential
program execution focusing on algorithms in which each
data set is computed in parallel by a completely different
computation task. This is done by implementing a custom
optimizer for LLVM Compiler which maps intermediate rep-
resentation instructions to multiple threads and automatically
places synchronization operation instructions between data-
dependent sequences assigned to two different threads. The
generated multi-threaded assembly code is dedicated to a
multi-core system. The multi-threaded parallelly executed pro-
gram synchronizes and shares data via automatically mapped
binary semaphores and omits the usage of the caches.

REFERENCES

[1] Morris Mano, Charles R. Kime and Tom Martin Logic and Computer
Design Fundamentals Pearson; 5th edition, 2015.

[2] David A. Patterson and John L. Hennessy Computer Organization and
Design. Morgan Kaufmann; 4th edition, 2011.

[3] William Stallings Computer Organization and Architecture: Designing
for Performance. Pearson; 10th edition, 2015.

[4] David A. Patterson and John L. Hennessy: Computer Architecture: A
Quantitative Approach. Elsevier, Oxford, UK; 6th edition, 2017.

[5] Michael L. Scott: Share-Memory Synchronization. Morgan & Claypool
Publishers, 2013

[6] Nacke, Kai Learn LLVM 12. Packt Publishing, 2021.
[7] Keith D. Cooper, Linda Torczon Engineering Compiler. Morgan Kauf-

mann; 2nd edition, 2011.
[8] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman Compil-

ers: Principles, techniques & tools Addison Wesley; 2nd edition, 2006.
[9] Vivek Sagdeo The Complete Verilog Springer; 1998th edition, 2007.

382 A. MILIK, M. WALICHIEWICZ

[10] P. Coussy, D. D. Gajski, M. Meredith and A. Takach An Introduction
to High-Level Synthesis IEEE Design & Test of Computers, vol. 26, no.
4, pp. 8-17, July-Aug. 2009, https://doi.org/10.1109/MDT.2009.69

[11] Robert Love Linux Kernel Development Addison-Wesley Professional;
3rd edition, 2010.

[12] Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, Philippe Gerum
Building Embedded Linux Systems O’Reilly Media; 2nd edition, 2008.

https://doi.org/10.1109/MDT.2009.69

	Introduction
	Concurrent Execution Models
	Shared-Memory Synchronization

	Synchronization
	Primitive Atomic Instructions
	Mapping Multi-Threaded Algorithms
	Multi-Threading and Compiler Optimizers

	Cache Coherency
	Coherency Protocols
	False Sharing

	Shared-Semaphored Cache
	Semaphore Implementation
	Status Register
	Shared-Semaphored Cache

	Memory Mapping
	Mapping Shared-Semaphored Cache
	Semaphore Instructions

	Multi-Thread Mapping
	Results
	Conclusion
	References

