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Abstract—The paper presents a solution to the problem of 

synthesis of control with respect to the sliding interval length for 

the optimization of a class of discrete linear multidimensional 

objects with a quadratic performance criterion. The equation of 

motion of a closed multidimensional discrete system in the general 

non-stationary case is derived based on the length of the 

optimization interval and their main properties. The closed-loop is 

fitted with a signal representing the predicted values averaged over 

the whole sliding interval of optimization with a certain weight. A 

problem with a sliding optimization interval may not require a 

real-time solution by means of a sequence of solutions on 

compressed intervals. Therefore, the study of control systems with 

optimization on a sliding interval is of undoubted interest for a 

number of practically important control problems. 

 

Keywords—discrete process control; optimization; sliding 

interval; closed loop control system; equation of a closed loop 

system 

I. INTRODUCTION 

HE problem of adaptive control synthesis assumes solving 

the identification problem, which leads to minimizing 

some pre-selected quality functional. Thus, the minimization of 

the quadratic functional directs to the least squares method 

(LSM), whose estimates for interference having a normal 

distribution are effective, correct and unbiased.  The problems 

of technical cybernetics are important for ensuring the 

effectiveness of automated technological complexes and 

individual enterprises. 

At controlling complex objects, there are difficulties in cases 

where the nature of the processes occurring in them is unknown 

or poorly investigated, that is, one has to deal with incomplete 

information about the control object. The optimal type of 

strategy from the point of view of a given criterion in the above 

stated conditions significantly depends on the restrictions on the 

set of acceptable strategies that arise due to incomplete 

information. The elaboration of varied approaches to the 

development of control systems that optimize control processes 

under incomplete information conditions is of particular interest 

for automating and improving the efficiency of diverse 

production processes, controlling automated technological 

aggregates as components of integrated automated plants. 

Therefore, the development of effective methods of operational  
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control and mathematical models of control of technological 

objects under conditions of specific incompleteness of 

information about an object is a task of current concern of the 

research. 

II. SETTING AND SOLVING THE PROBLEM 

 One of the unsolved problems is the versatility of the types 

of incomplete information about controlled objects. Therefore, 

the goal of control is usually presented as a requirement for 

optimization (minimization or maximization) of some 

functional Q that depends on the nature of the processes of the 

state of the object – x and control parameters – u, as well as on 

some externally specified process xs (setting effect). Thus, in 

order to obtain the equation of motion of a closed loop system 

for optimizing the forecast on a sliding interval, it is necessary 

to solve the problem of optimal control synthesis, which is in 

minimizing the value of the quality criterion Q in all future 

states of the control object available for forecasting. It is 

proposed to solve this problem by searching for the absolute 

minimum of the Lagrange function because this allows 

obtaining a solution to the optimal control synthesis problem in 

a form that explicitly reveals the dependence of optimal control 

on the length of the sliding interval N. 

Let’s consider a generalized setting of the control problem 

with incomplete information about the behavior of the object 

and external influencing factors. 

For the infinite set of discrete time values   0,1,N


=  we will 

define the following its subsets: 

1. A set of discrete time values  0,1, ,y yN N


=  is the control 

interval. At this interval, we will consider the motion of a 

controlled object. Ny is the length of the control interval (a finite 

or infinite number of discretization intervals of the constituents 

of this interval). 

2. A set of discrete time values  , 1, ,nN n n n N


= + +  forms a 

sliding prediction interval. Here n is the arbitrary (current) 

moment of the discrete time of the control interval 0  n  Ny, 

and N is the length of the sliding prediction, i.e. the number of 

discretization intervals for which the object movement and the 

external influences acting on it are predicted (Figure 1).  
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Fig. 1. A set of discrete values of forecast optimization time 

3. A set of discrete time values  0 0, 1, ,N n n n N


= + +  forms 

the optimization interval. N0 – the length of the interval, that is, 

the number of discretization intervals at which forecasts are 

optimized. 

In a general case the lengths of these intervals satisfy the 

following ordering relationship: 

 N0  N Ny . (1) 

Let us consider the problem of controlling an object that has 

an r-dimensional control vector u  and at each current moment 

of discrete time n is characterized by an m-dimensional vector 

of the state x  that can be measured. 

Assuming that with the help of some forecasting method, we 

are able to predict the change of the state vector x  depending 

on the law of change of the control vector u  and external 

disturbances ω . At the same time, we want to take into account 

the fact that a reliable forecast is practically possible only for a 

limited number of cycles ahead N, which form a sliding 

prediction interval Nn. Without limiting the generality of 

consideration, we can consider this equivalent to the fact that on 

the sliding prediction interval we know a functional equation 

that is satisfied by the predicted values of the state vector Ky , the 

control vector Kv  the perturbation vector Kω : 

 ( )1 , ,ωK K K Ky F y v+ = .  (2) 

Here K is the arbitrary moment of the sliding prediction 

interval: 

 n  K   n+N. (3) 

The functional equation (2) is set on the interval Nn and is 

considered under the initial conditions set at the left end of the 

sliding prediction interval (i.e. at K = n): 

 K n ny x= = ,  (4) 

where nx  is the actual value of the state vector at the current 

moment n. 

The generalized indicator of the quality of the functioning of 

the object Q is generally determined by the nature of the change 

in the actual vector of the object state nx  and control nu  on the 

entire control interval Ny and represents the functional: 

 𝑄 = 𝑄[�̄�𝑛 , �̄�𝑛]|
𝑛=0

𝑛=𝑁𝑦
 . (5) 

The task of controlling the object is to find such a sequence 

of control actions nu  that minimizes (maximizes) the optimality 

criterion provided the above information about the object at 

each current n (5). 

The above formulation of the problem differs from the 

usually accepted (classical) formulation of the optimal control  

 

problem in that usually, instead of the general relationship (1), 

its special case (6) is considered, when all the intervals N0, Nn 

and Ny agree with each other: 

 N0= Nn = Ny.  (6) 

In the above setting of the control task the solution is carried 

out under conditions of specific incompleteness of information 

about the control object, which consists in the unavailability of 

information about the object circulation in the interval Ny/Nn for 

the formation of a management strategy at the current moment 

n. 

Thus, acceptable control strategies are a set of reflections: 

 ( )

1

3 3 1 3

1

3 3 1 3

, , ,

, , ,

, , ,

, , ,

n n n N

n n n N

n

n n n N

n n n N

y y y

y y y
Z N

v v v

v v v

+ +


+ +

+ +

+ +

 
 
 

= 
 
 
 

,  (7) 

where the set ( ) :n n nU Z N U→  is formed by a predictive 

device (N – step determinant). 

The way of solving the problem is mainly indicated in [1, 2], 

and in the symbols adopted above it boils down to the fact that 

the optimization of a given functional should be carried out over 

the entire sliding prediction interval, i.e. N0 = N. 

In fact, in all physically feasible processes, the influence 

applied to an object at the current moment of time can only 

change its future states. For the optimal control of an object, it 

is necessary at each current moment to take into account the 

reaction of an object and the impact of external disturbances 

throughout the expected control interval. In the theory of 

optimal control, this circumstance has its mathematical 

expression in the fact that the equation of motion of an object is 

defined over the entire control interval (N = Ny), and the 

minimum of the functional Q for objects without consequence 

(having the Markov property) is achieved using the control, 

which minimizes the “remaining part” at each current moment: 

𝑄 = 𝑄[�̄�𝑖 , �̄�𝑖]|𝑛

𝑁𝑦
 (Bellman’s optimality principle). The 

consistent application of this idea to the above-mentioned case 

of an object with incomplete information leads to a control 

algorithm with optimization of the forecast at a sliding interval, 

proposed in [3, 4]. 

As it was already noted above, this control algorithm consists 

in building at each current n sequences of future values of 

command variables 0

Kv  that optimize the predicted value of the 

quality criterion Q in the prediction interval. The first members 

of these sequences in the general case form another sequence of 

command variables implemented on the object (Figure 2). 

nN

yN

nU

0

kV

0

kV

 

Fig. 2. The sequence of command variables implemented on the object 



SOLVING THE PROBLEM OF DISCRETE PROCESS CONTROL SYNTHESIS USING OPTIMIZATION ON A SLIDING INTERVAL 385 

 

 

The properties of the control sequence, the minimum 

achievable value of the quality criterion Q, the controlled object, 

etc. depend on the length of the interval N. 

The availability of conducting an analytical study of these 

dependencies strongly depends on the forecasting equations 

class under consideration (2) and the type of an optimized 

functional (5). Therefore, we limit ourselves to considering a 

class of objects whose movement in the prediction interval 

allows representation as a solution of a system of linear 

equations, and the quality criterion is a quadratic functional. 

Let us assume that some object is characterized at each 

current moment of time n by state vector nx  and control vector 

nu . 

At each current n, the given prediction equation (2), defined 

at N future discrete time points, is a linear difference equation: 

 1 Kω ,K K K K K Ky A y B v W n K n N+ = + +   + .  (8) 

and is considered under initial conditions: 

 , 0 .K n n yy x n N= =    (9) 

Here K, , ωK Ky v  are the predicted values of the state, control and 

disturbance vectors, respectively. 

The object is controlled in such a way so that to minimize the 

value of the quality criterion in all future states of the object 

available for prediction: 

 𝑄(�̄�𝐾) =
1

2
∑ [(�̄�ЗК − �̄�𝐾)𝑇𝑄𝐾(�̄�ЗК − �̄�𝐾) + (�̄�ЗК −𝑛+𝑁

𝐾=𝑛

�̄�𝐾)𝑇𝑅𝐾(�̄�ЗК − �̄�𝐾)].. (10) 

In this case, the condition for closing the system through 

optimization of the prediction on a sliding interval takes the 

form 0

n K nu v == , where 0

K nv =  are the first members of optimizing 

sequences  �̄�𝐾
0 : 𝑄(�̄�𝐾

0 ) = 𝑚𝑖𝑛
�̄�

𝑄(�̄�𝐾). 

The task is to research the dynamic properties and, above all, 

the stability of systems that are closed due to optimization of the 

forecast on a sliding interval for a given class of objects and 

functionals. 

In order to carry out this study, it is necessary to derive the 

equation of motion of a closed loop system, for which, first, it is 

necessary to solve the problem of synthesis of optimal control 
0

Kv  (i.e., to find control as a function of phase coordinates) at a 

sliding optimization interval. The problem of synthesis of 

optimal control for a linear object and a quadratic functional has 

been studied by many authors [5-8] under the assumption that 

optimization is carried out over the entire control interval (fixed 

or infinite), that is, provided that N0=N=Ny. 

In our study, there is a need to consider the sliding 

optimization interval, and the solution should be obtained in a 

form that explicitly reveals the dependence of optimal control 

on the length of the sliding interval N. 

These circumstances do not allow the use of known solutions 

to the problem of analytical design of regulators [6-10] and 

require the development of such approaches to solving the 

problem that take into account its features. 

The need to study optimization on a sliding interval of 

constant length was stipulated by the fact that we considered 

only reflection (7) as acceptable strategies, which was a 

mathematical expression of the limitations of real predictable 

devices. However, the above statement of the problem is quite 

general and includes a number of tasks with different content, 

allowing for a different interpretation. 

In this regard the works [8, 9] are of particular interest, as 

they are devoted to calculations related to one class of optimal 

control systems, thus leading their authors to the need to 

consider the optimization of an integral quadratic functional on 

a sliding interval with a one-dimensional linear control object, 

in which some issues related to optimization on a sliding 

interval were investigated. As is known, the need to solve the 

Riccati equation with an initial condition set at infinity under 

these initial conditions arises in the problems of analytical 

design of regulators on an infinite control interval. 

Since the solution of the Cauchy problem by numerical 

methods is impossible for a differential equation if the initial 

conditions are set to infinity, such difficulties are usually solved 

by the fact that the restriction can be a large but finite integration 

interval on which the solution is numerically developed in 

reverse time. In order for the integration interval not to shorten 

over time, its end, at which the initial conditions are set, is 

moved during repeated calculations, which leads to the 

appearance of a sliding optimization interval. 

Thus, the solution to the original functional optimization 

problem on an infinite interval: 

 ( ) ( ) ( ) ( ) 2 2

1 1 1 1 1 1σ σ σ σ σ
t

e Q q M m d



=   −  +   −     ,  (11) 

for the object 

 
( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

II II

II

Z t b z t c m t u t

q t a z t

= + +

=
,  (12) 

is replaced by the solution of the functional optimization 

problem on a sliding interval of constant length  >0: 

 ( ) ( ) ( ) ( ) 
τ

2 2

1 1 1 1 1 1σ σ σ σ σ

t

t

e Q q M m d

+

=   −  +   −     ,   (13) 

where е is error criterion (optimization functional); z1 – object 

state coordinate; q1 – the original coordinate; m1 – command 

variable; u1 – disturbance; Q1 and M1 - desired values of the 

initial coordinate and the impact coordinates; Q1 and 1     – of 

the command variable; Q1 and M1 – weight values of the 

functional; aII, bII, cII – object parameters. 

Using the proposed normalization method, the author 

estimates the shortest interval length , at which repeated 

calculations give estimates of the optimal parameters of the 

regulator, which differ little from those calculated at an infinite 

interval. 

Thus, the main definitions drawn in [8, 9] relate to the issue 

of the relationship between the quality of the system and the 

length of the interval  over which the output error is averaged, 

since the interval  is a value proportional to the time required 

to calculate the parameters R̂ . 

Therefore, if repetitive calculations performed at high speed 

are used to obtain a continuous optimum, then the interval  

determines the speed at which changes in the system can be 

received. This allows determining the limits within which the 

discrete nature of parameter changes R̂  can be neglected.  

Further, the authors of [8, 9] come to the conclusion that the 

relationship between quality and time of calculation results in 
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the relationship between quality and information about the 

future, necessary for the system operation. 

With the decrease in the interval , the amount of information 

about the required output of the system decreases, as a result of 

which a decrease in the quality of the system should be 

expected. The increase in the error (with the decrease of n) 

takes place because an increasing amount of information about 

the required output is discarded. At n = 1, the increase in error 

compared to n =  is insignificant – less than 4%, which made 

it possible to find the invariant 1ac  =


 that determines the 

relationship between the quality of the system and the 

calculation time [8, 9]. Thus, the research on first-order objects 

with an integral quadratic quality functional was focused around 

optimization issues on sliding intervals of sufficiently long 

length, when the difference in optimization results on sliding 

and endless intervals becomes small. 

The main conclusion reached by the authors of [8, 9] as a 

result of the discussion of the above difficulties is that even in a 

problem with a sliding interval, it is not always necessary to 

recalculate the parameters of the regulator. In other words, a 

problem with a sliding optimization interval may not require a 

real-time solution by means of a sequence of solutions at 

compressed intervals. Therefore, the study of control systems 

with optimization on a sliding interval is of undoubted interest 

for a number of practically important control tasks. 

III. THE CONTROL OF DISCRETE PROCESSES WITH 

OPTIMIZATION ON A SLIDING INTERVAL 

The control object O at each current moment of discrete time 

n is characterized by an m-dimensional state vector nx  and an r-

dimensional control vector nu . 

Let's assume that the future values of the vector of state Ky , 

control Kv , and measured perturbation Kω on a sliding 

prediction interval with a length of N cycles satisfy a system of 

linear difference equations (8): 
1 KωK K K K K Ky A y B v W+ = + +  under 

initial conditions K n ny x= = . Here nNy,  Ny = {0, }, KNn ,  

Nn = {n, n+N},  N  0, AK - (mxm), BK - (mxr), WK - (mxp). 

The construction of the matrices АK , ВK , WK ,   KNn  

makes the content of the forecasting problem, which is not 

considered in this paper, and the matrices АK, ВK  and  WK  are 

assumed to be already known. 

The entire set of reflections is accepted as valid at each 

current moment of time n of the set of control strategies Un: 

( ) nnn UNZU →:
 , 

where Zn(N) is the set of sequences of vectors defined on the 

prediction interval Nn: 

.

,,,

,,,

,,,

,,,

)(

3133

1

3133

1

























=

++

++

++

++



Nnnn

Nnnn

Nnnп

Nnnn

n

vvv

vvv

yyy

yyy

NZ









 
Here, the sequences of vectors �̄�3𝐾 𝑎𝑛𝑑 �̄�3𝐾 are the preferred 

(preset) values of the sequences of state and control vectors on 

the prediction interval. 

The quality criterion is a quadratic functional Q (10) defined 

on the set Zn(N): 

𝑄[�̄�𝐾] =
𝛥 1

2
∑ [ (�̄�3𝐾 − �̄�𝐾)𝑇𝑄𝐾(�̄�3𝐾 − �̄�𝐾) + +(�̄�3𝐾 −𝑛+𝑁

𝐾=𝑛

�̄�𝐾)𝑇𝑅𝐾(�̄�3𝐾 − �̄�𝐾)] ,   

where  QK  0,     RK > 0,       KNn. 

Thus, we take the optimization interval to be equal to the 

prediction interval. 

The object is controlled in such a way as to minimize the 

value of the quality criterion (10) on the set Zn, that is, on all 

future states of the object available for prediction. To do this, 

the system gets interlocked in accordance with the condition: 
0
nKn vu ==  , 

where 0

K nv =  are the first members of optimizing sequences: 

�̄�𝐾
0  :   𝑄[�̄�𝐾

0 ] = 𝑚𝑖𝑛
�̄�𝐾

𝑄[�̄�𝐾], 

∀𝐾 ∈ 𝑁𝑛 𝑎𝑛𝑑 ∀𝑛 ∈ 𝑁𝑦 . 

The task of control synthesis with forecast optimization on a 

sliding interval is to find a sequence of control actions 
,n yu n N   in the function of the current coordinates of the 

object state nx  and the length of the optimization interval N. 

Consider the minimum conditions of functional (10) in the 

form of a discrete analogue of the Pontryagin maximum 

principle: 

  

0 0

0

0 0

0

0

0

K K

K

K K

K

K

K

y H

H
y

H
v

 
 =


 

 = −


 
= 



     (14) 

under boundary conditions: 

 
0

0 ,

K n n

K n N

y x=

= +

 =


 = 
   (15) 

where the Hamilton function has the form: 

 
( )

( ) ( ) ( ) ( )3 3 3 3

ω

1
,

2

T

K K K K K K K K

T T

K K K K K K K K K K

H A y B v W

y y Q y y v v R v v



= + + −

 − − − + − −
 

 (16) 

and 1

1 .

K K K

K K K

y y y


+



+

 = −

 = − 

     (17) 

Here, the first condition (15) expresses the fact that in the 

prediction equations (8), the current state vector nx  is used as 

the initial conditions n  Ny, and the second boundary 

condition (15) expresses the fact of free variation of the value of 

the control optimization interval. 

Taking into account the designations (16) and (17), the 

control system (14) will take the form: 

 

0 0 0

1 K

0 0 0

1 3

0 1 0

3

ωK K K K K K

T

K K K K K K K

T

K K K K K

y A y B v W

Q y A Q y

v v R B

+

−

−

 = + +


 = − +  +
 = + 

 . (18) 

Since for discrete systems, the analogue of the Pontryagin 

maximum principle is in the general case neither a necessary nor 

sufficient condition for optimal control, and the main result 
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relating to linear discrete systems belonging to Rozonoer [8-14] 

is applicable only with a linear quality functional, then we prove 

the necessity and sufficiency of condition (18) for determining 

the sequence 0

Kv , the quadratic functional (10). 

Proof 

Let us consider on the interval Nn the functional  Kv as a 

function of 2(N+1) variables 

 𝑄[�̄�𝐾] = 𝛷(�̄�𝑛, �̄�𝑛+1, … , �̄�𝑛+𝑁 , �̄�𝑛, … , �̄�𝑛+𝑁),  (19) 

subject to additional conditions in the form of equalities: 

 1 ω , , .K K K K K K K K n n ny A y B v W y x K N+ == + + =   sin α ± sin β =

2 sin
1

2
(α ± β) cos

1

2
(α ∓ β)  (20) 

The problem of minimizing the functional (10) is equivalent 

to finding the conditional minimum of the function (19). 

By deducing the vector of indefinite multipliers Kλ , this 

problem is reduced to finding the unconditional minimum of the 

Lagrange function:  

( ) ( )3 3 3 3

T

K 1 K

1 1
[ ( ) ( )
2 2

λ ( ω )]

n N
TT

K K K K K K K K K K

K n

K K K K K K

L y y Q y y v v R v v

y A y B v W

+

=

+

= − − + − − +

+ − − −



for 2(N+1) variables  �̄�𝐾 and ȳK и v̄K. 

Since the resulting Lagrange function is quadratic, a 

necessary and sufficient condition for its minimum is that its 

gradient is equal to zero for all variables: 

 

( )

( )

K-1 3 K

3 K

λ λ 0

λ 0.

T

K K K K

K

T

K K K K

K

L Q y y A
y

L R v v B
v


= − − − =


 = − − − =



 (21) 

With the account of the limiting condition for the multiplier

K n Nλ 0,= + =  the system of equations (20) and (21) coincides 

exactly to the notation with the system (18). 

Thus, the discrete analogue of the Pontryagin maximum 

principle is a necessary and sufficient condition for the 

minimum of the quadratic functional (10) under constraints of 

the equality type in the form of linear difference equations (8), 

as was to be proved. 

The synthesis of discrete process control with optimization 

on a sliding interval.  

Consider the system of equations (18). After shutting off the 

vector 0

Kv from the first equation and reducing the first two 

equations to a matrix form, an equivalent system is obtained: 

  
0 0

3 K1

0 0
31

ω
,

K K KK K

K

K KK

B v Wy y
G

Q y

+

−

+
= +

 
  (22) 

where (2 2 ),
K K

K T

K K

A P
G m m

Q A



= − 
−

 and 1 .TK K K KP B R B


−=  

The system of equations (18) with boundary conditions (15) 

forms a two-point boundary value problem, the solution of 

which will allow finding the desired control as a function of the 

current coordinates of the state and the length of the 

optimization interval. 

The peculiarity of the discrete analogue of the maximum 

principle is that if the equation of motion of an object is given 

in direct differences, then the equation for the conjugate vector 
0

K  will be obtained in inverse differences – and vice versa. 

This makes it difficult to present a general solution to the 

boundary value problem. These difficulties can be avoided by 

converting system (18) (under certain conditions) into an 

equivalent system of equations in direct differences. 

For this purpose, we will consider the second equation of the 

system (18) with the independent variable K+1. 

In this case, the system (18) will be equivalent to the system 

0 0
3 K1 1

0 0
1 3 11 1 1 1

ω0

0

K K KK KK K

T

K KK K K K

B v WE A Py y

Q yQ A E

+ +

+ ++ + + +

+
 =  +

−−  
,  (23) 

because the determinant 
1

1 1

0
,KT

K K

E
A

Q A
+

+ +


−

 and the condition  

0,K nA K N    are necessary and sufficient for the inverse 

matrix to exist 

  
( ) ( )

1 1

1 1 1

00
.

T T
K K K K K

EE

Q A A Q A
− −

+ + +


−

  (24) 

Multiplying equation (23) on the left by matrix (24), we 

obtain a system of equations (25) in direct differences 

equivalent to the system of equations (18), provided that all 

matrices АК are non-singular: 

0 0
3 K1

0 0
3K 11

ω
,

y

K K KK K

K K

K K

B v Wy y
L L+

++

+
= +

 
  (25) 

where  

( ) ( ) ( )

( ) ( )

1 1

1 1 1 1

1 1

1 1 1 1

0
.

K K

K T T

K K K K K

K T T

K K K K

A P
L

A Q A Q P E

E
L

A Q A Q



− −

+ + + +




− −

+ + + +

=
+

=
−

 

The solution of the system of equations (25) over the entire 

sliding interval from n to n+N can be represented as: 

( )
0 0 1

0 0
3 1

ω
( , ) , 1 ,

K
i i i iK K

i

i n iK K

Bv Wy y
K n K i L

y
 

−


= +

+
= + +

 
  (26) 

Where ( ) ( )11 12

21 22

( , ) ( , )
, 2 2

( , ) ( , )

K n K n
K n m m

K n K n

 


 



= −  . 

The fundamental matrix of solutions is defined by the 

expression: 

  𝜙(𝐾, 𝑛) = {
∏ 𝐿𝑖

𝐾−1
𝑖=𝑛

𝐸
  for 

𝐾 > 𝑛
𝐾 = 𝑛.

   (27) 

From (26) it follows that for K=n+N and taking into account 

the boundary conditions (15) we get: 

( ) ( )
0 1

i

0

3 1

ω
, , 1 .

0

n N
n i i in N

i

i nn i

x B v Wy
n N n n N i L

y
 

+ −
+

= +

+
= + + + +


   (28) 

Given the identical equation: ( ) ( ) ( )1

22 22 22, , 1 , 1 ,n N n n N i n i  − + + +  +  we 

solve the second equation of system (28) with respect to the 

combined vector 0

n , or, introducing the new notation, we 

represent the current vector of the conjugate system as:  
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 ( )0

3 3( ) ,ω,y , ,n n n nK N x P N v = − +  (29) 

where 1

22 21( ) ( , ) ( , )nK N n N n n N n 


−= + +  is the gain coefficients 

matrix, and 

1

22

1
1

( , ) 21 3 12 1 1 3 3 1

( ) ( , ) ( , ),

[ ( , 1)( ω ) ( , 1)( ) ( ω )]

n

K
T

K n i i i i i i i i i i i

i n

P N n N n n N n

K i B v W K i A Q B v W y



 


−

−
−

+ + +

=

=− +  +

 = + + + + + −
 

is the vector that takes into account the forecasts of all external 

influences affecting the movement of the system throughout the 

entire optimization interval.  

Knowing the dependence (29) of the current vector of the 

combined system 0

n on the vector of the current state nx , it is 

possible to determine all the variables of interest to us. 

The prediction of the optimal sequence of the state vector 0

Ky  

on the sliding optimization interval has the form: 

 0

11 12 12( ( , ) ( , ) ( )) ( ( , ) ( ) ( , )),K n n ny K n K n K N x K n P N Y K n  = − + +  

 (30) 

where 
1

1

11 3 12 1 1 3 3 1( , ) [ ( , 1)( ω ) ( , 1)( ) ( ω )].
K

T

i i i i i i i i i i i

i n

Y K n K i B v W K i A Q B v W y 
−

−

+ + +

=

= + + + + + −

The forecast of the optimal sequence of the control vector on the 

sliding optimization interval has the form: 
0 1

3 22 21

1

22

( ( , ) ( ) ( , ))

( ( , ) ( ) ( , ))

T

K K K K n n

T

K K n

v v R B K n K N K n x

R B K n P N K n

 



−

−

= − + +

+ + 
 

The desired current control action will be described by the 

equation: 

 1 1

3 3 3( ) ( ,ω, , )T T

n n n n n n n n nu v R B K N x R B P N y v− −= − +  (31) 

Thus, the control carried out according to the principle of 

optimizing the prediction of future values of the functional is 

equivalent to the above linear control law with negative 

feedback (31) and time-variable coefficients that also depend on 

the number of cycles N of the optimization interval. 

The dependence of the feedback gain coefficient matrix 

Kn(N) on the number of clock cycles N is given by expressions 

(27) and (29) and is uniquely determined by the values of the 

matrix LK (25) over the entire sliding optimization interval. 

Knowing the control (31) implemented on the object at each 

current moment of time n, it is possible to obtain the equation of 

motion of a closed loop system, which has the form: 

1 n( , ) ωn n n n n n nx A x B u x N W+ = + + , and given (31), we get: 

 1 3 3 3 3( ) ω ( ,ω,y , ),n n n n n n n n nx A N x B v W P P N v+ = + + +  (32) 

where  3 ( ) ( )n n n nA N A P K N


= −  is a matrix of closed loop 

parameters. 

The solution of equation (32), that is, the trajectory of a closed 

loop system from the initial state 0x  to the current nx , can be 

represented as: 
1

0 3 3

0

( ,0) ( , 1) ( ,ω,y , ),
n

n j j

j

x F n x F n j P P N v
−

=

= + +  

where the fundamental matrix of the equation of motion of a 

closed loop system is defined by the expression: 

𝐹(𝑛, 𝑝) =
𝛥

{
∏ (𝐴𝑙 − 𝑝𝑙𝐾𝑙(𝑁)𝑛−1
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𝐸
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𝑛 > 𝑝
𝑛 = 𝑝.        
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Fig. 3. The block diagram of a closed system equivalent to control with 

forecast optimization on a sliding interval 

The block diagram of a closed system equivalent to control 

with forecast optimization on a sliding interval is shown in 

Figure 3.  

The block diagram of a closed system equivalent to control 

with forecast optimization on a sliding interval (Figure 3) 

contains a feedback loop, as well as an open circle of averaging 

and transformation of external influences. 

IV. RESULTS AND DISCUSSION 

From the analysis of the expressions obtained above, the 

following conclusions can be drawn: 

1.  The equation of motion of a closed loop system has the same 

order as the equation of motion of an object, so that control 

with optimization of the forecast, under accepted 

assumptions, is equivalent to the introduction of linear rigid 

feedback. 

2.  The properties of a closed loop are determined by the matrix 

of parameters of a closed loop system: 

ynnnn NnNKPANA −=


),()(3  ,  

which depends on the length of the optimization interval N. 

This dependence is specified by the presence of a matrix of 

coefficients Kn(N), which is uniquely determined by the 

fundamental matrix of solutions (n+N,n). 

3.  A closed loop is affected by a signal that represents the 

predicted values, averaging with a certain weight over the 

entire sliding optimization interval. 

4.  The trajectory of the closed loop system (32) and its forecast 

on the sliding optimization interval (30) for arbitrary nNy 

and N0 have a contact at not lower than the first order 
0 0 0

1 ωn n n n n n ny A y B v W+ = + +  and 1 ωn n n n n n nx A x B u W+ = + +  with 

regard to conditions �̄�𝐾=𝑛
0 = �̄�𝑛  and  �̄�𝑛 = �̄�𝐾=𝑛

0 , it 

follows that nNy  identically satisfies 0

1 1n nx y+ + , although 

for arbitrary KNn and Kn+1, the trajectory (32) and the 

forecast of its optimal value (30) generally do not coincide. 

In other words, the trajectory of a closed loop system is a 

trajectory that envelopes up to a set of optimal forecasts. 

V. CONCLUSION 

The solution of the control synthesis problem is received 

taking into account the length of the sliding interval of 

optimization of a class of discrete linear multidimensional 

objects with a quadratic quality criterion. The equation of 

motion of a closed multidimensional discrete system in the 

general nonstationary case is derived, taking into account the 

length of the optimization interval and their basic properties. 
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The main feature of systems with optimization on a sliding 

interval of constant finite length with constant values of the 

parameters of the object model and functional is that the closed 

loop control system obtained in this case has time-invariant 

parameters that depend only on the length of the optimization 

interval N, unlike the case when the finite optimization interval 

has a fixed end in time. This makes it possible to obtain the 

equation of motion of a closed multidimensional system in the 

general non-stationary case, taking into account the length of the 

sliding optimization interval. 
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