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Abstract—This study proposes a method that combines 

Histogram of Oriented Gradients (HOG) feature extraction and 

Extreme Gradient Boosting (XGBoost) classification to resolve the 

challenges of concrete crack monitoring. The purpose of the study 

is to address the common issue of overfitting in machine learning 

models. The research uses a dataset of 40,000 images of concrete 

cracks and HOG feature extraction to identify relevant patterns. 

Classification is performed using the ensemble method XGBoost, 

with a focus on optimizing its hyperparameters. This study 

evaluates the efficacy of XGBoost in comparison to other ensemble 

methods, such as Random Forest and AdaBoost. XGBoost 

outperforms the other algorithms in terms of accuracy, precision, 

recall, and F1-score, as demonstrated by the results. The proposed 

method obtains an accuracy of 96.95% with optimized 

hyperparameters, a recall of 96.10%, a precision of 97.90%, and 

an F1-score of 97%. By optimizing the number of trees 

hyperparameter, 1200 trees yield the greatest performance. The 

results demonstrate the efficacy of HOG-based feature extraction 

and XGBoost for accurate and dependable classification of 

concrete fractures, overcoming the overfitting issues that are 

typically encountered in such tasks. 

 

Keywords—HOG; XGBoost; classification; feature extraction; 

concrete crack monitoring 

I. INTRODUCTION 

XCESSIVE loading, extreme temperature fluctuations, 

and soil movement can all contribute to the formation of 

concrete cracks. These fractures can weaken a building's 

structure and reduce the durability of concrete [1]–[6]. 

Therefore, monitoring surface fissures is essential for 

infrastructure safety and quality. Although traditional 

monitoring by inspectors can record crack data such as location, 

length, and breadth, manual visual inspection is regarded as less 

effective in terms of safety, accuracy, cost, and dependability 

[7]–[11]. 

Numerous researchers and engineers have studied concrete 

crack monitoring to devise safer, more cost-effective, and more 

effective methods[12]–[14]. However, a significant challenge is 

accurately identifying fractures from images containing actual 

concrete cracks and distinguishing cracks from non-cracks. In 

recent decades, owing to the development of image processing 

techniques and machine learning, numerous fissure 
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identification methods have been proposed [15]–[18] . These 

methods have demonstrated effective performance, but a 

significant disadvantage is that overfitting frequently occurs in 

training and testing results. In addition, low-quality images 

make it difficult to attain accurate performance in image 

processing [19]–[25]. Therefore, it is difficult for infrastructure 

managers to employ these research findings directly to real-

world scenarios. 

Ensemble methods have recently gained popularity for 

addressing overfitting issues. Extreme gradient boosting 

(XGBoost) is a reliable ensemble method with several 

adjustable hyperparameters to optimize the model's 

performance [26]–[31]. The following are some advantages of 

XGBoost hyperparameters: (1) Managing overfitting: 

Hyperparameters such as max_depth, min_child_weight, and 

gamma can help prevent overfitting, which occurs when the 

model becomes overly complex and learns noise from the 

training data, rendering it incapable of accurately predicting 

new data. XGBoost can take advantage of multiple CPU cores 

to optimize training performance. Adjusting hyperparameters 

such as nthread can optimize CPU utilization. (3) handling 

unbalanced data: XGBoost's hyperparameters scale_pos_weight 

and max_delta_step can aid in handling unbalanced data in 

which the number of samples in one class is substantially larger 

than the others. (4) improved accuracy XGBoost has several 

adjustable hyperparameters, such as learning_rate, subsample, 

and colsample_bytree, to optimize the model's accuracy. By 

optimizing these hyperparameters, XGBoost is able to produce 

more accurate models than other machine learning techniques 

[32]–[36]. 

HOG (Histogram of Oriented Gradients) is utilized to derive 

features. The structure of this paper is as follows: In Section 1, 

the history of concrete fractures and a brief overview of 

XGBoost are presented. The second section discusses the 

components and fundamentals of the concrete fracture 

classification framework. Section 3 describes the research 

methodology, beginning with data collection and ending with 

performance evaluation. The fourth section contains 

experimental results and discussions. In Section 5, conclusions 

and perspectives are presented. These are the contributions of 
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this research: 

1) HOG-based feature extraction for concrete fissure 

classification. 

2) Comparison of classification models for concrete cracks 

using XGBoost, Random Forest, and... 

3) Improve the efficacy of the XGBoost algorithm by 

analyzing its hyperparameters. 

II. MATERIAL 

This research utilized a computer system with the following 

specifications: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 

2.80GHz (8 CPUs), ~2.8GHz, 16384MB RAM, Intel(R) Iris(R) 

Xe Graphics as the VGA. The coding was done in Python 

3.9.13. The research data was obtained from Kaggle [Özgenel, 

Çağlar Fırat (2019), "Concrete Crack Images for 

Classification", Mendeley Data, V2, 

https://doi.org/10.17632/5y9wdsg2zt.2]. The research data 

consists of 40,000 (forty thousand) image data with a size of 227 

x 227 pixels and RGB channels. Each class comprises 20,000 

data, with 20,000 positive-labeled images and 20,000 negative-

labeled images. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Positive (a) and Negative (b) Concrete Image 

Data division technique using hold-out technique. This 

method is utilized due to the availability of sufficient data and 

the reduced efficiency of hold-out estimates in comparison to 

resampling validation. The dataset is arbitrarily partitioned into 

training data and test data, with a proportion of 70% training 

data and 30% test data. Therefore, we acquire 28,000 examples 

for the training data and 12,000 examples for the test data. Each 

dataset's performance will be evaluated using a confusion 

matrix to calculate precision, recall, F1-score, and accuracy 

values. 

III. PROPOSE METHOD 

This study will apply algorithms to classify concrete cracks. 

Several popular classification algorithms such as Random 

Forest (RF), AdaBoost, and XGBoost will be utilized. The study 

employs the train_test_split() function to divide the dataset. The 

classification model will be trained with the training data and 

subsequently used to classify concrete cracks. The research 

workflow can be seen in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The research workflow 

A. HOG Feature Extraction 

Histogram of Oriented Gradient (HOG) offers superior 

performance in comparison to other extant features. The 

fundamental hypothesis is that the distribution of local gradient 

intensities or edge directions can frequently adequately 

characterize the appearance and local objects. HOG aims to 

represent an image with a histogram of local gradient 

orientations [37]–[42].  This study employs images with a 

resolution of 227 by 227 pixels, with clarity-enhancing patches 

extracted from the original images. HOG requires a specific 

dimension to compute feature values; therefore, to obtain 

feature values, the researchers will resize the images to 126 by 

64 pixels. 

 

 

 

 

 

 

 

 

 

Fig. 3. 227 x 277 (a) Concrete Image and 126 x 6 (b) Concrete Image 

The Histogram of Oriented Gradients (HOG) method is used 

to identify objects based on gradient patterns suitable for 

concrete fissure images during the image's feature extraction 

phase. The  
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HOG method is implemented in the Python programming 

language using the scikit-image library. There is a module 

within the scikit-image library that provides computations for 

the HOG method. In the HOG implementation for feature 

extraction, the following parameters are utilized: the number of 

orientations is set to 8, the number of pixels per cell is set to 8, 

and the number of cells per block is set to 2. Image feature 

extraction is implemented as follows in the Python 

programming language: 

 

 

The output of feature extraction is 23,328 features, resulting 

in a data size of 40,000 rows by 23,329 columns. The results are 

presented in table I. 

TABLE I 

HOG FEATURE EXTRACTION 

B. XGBoost 

XGBoost is a gradient-enhanced ensemble decision tree 

designed for scalability. XGBoost constructs an additive 

extension of the function in an effort to minimize the loss 

function [4] using (1) and (2). 

 

 

 

 

 

This loss function can be incorporated into the individual 

criteria of the decision tree, leading to a strategy for pre-pruning. 

The higher the x value, the simpler the tree or derivative. The 

minimal loss reduction required to split an internal node is 

controlled by the y value. Shrinkage is an additional 

regularization parameter in XGBoost that reduces the bulk of 

additive expansion steps. Other strategies, such as derived 

depth, can also be used to reduce derivative complexity. 

XGBoost enhances model performance by concentrating 

primarily on model speed and performance. This algorithm has 

several features that promote parallelization by generating 

decision trees in parallel in order to accomplish speed and 

efficiency. It employs distributed computing techniques to 

evaluate large or intricate models. The algorithm also employs 

out-of-core computation to ensure that large and diverse data 

sets are analyzed and the cache is optimized to make use of the 

most efficient hardware and resources. All of these distinctive 

characteristics   make  XGBoost   the  ideal  tool  for  this  study 

The XGBoost algorithm is explained in the following five 

steps: 

• Step 1: The objective function must be defined. As 

demonstrated by (3) and (4), the objective function consists 

of two parts. 

 

 

 

 

In equations ∑ 𝒍(𝒚𝒊𝒊 , 𝒚�̂� ) is a loss term, measuring how  

good the model is. ∑ Ω𝒇(𝒌)𝒌  is a regularization term that 

measures the complexity of a tree. 𝒚𝒊 is a real category. 

𝒚�̂� is the classification value. 𝒍 used to find the difference 

between 𝒚𝒊 and 𝒚�̂�, this is usually called the loss function. 

T: indicates a leaf node. 

W: represents the mass of the k leaf node 

γ : useful for regulating leaf node 

λ : Utilizable for regulating the weight of leaf nodes. 

Regularization is utilized to control overfitting issues. 

• Step 2: Following the formation of t trees, the newly 

created tree is used to match the remainder of the 

previously made predictions. Consequently, (5) and (6) 

convey the classification of values. 

 

 

 

Then rewrite the objective function as below: 

 

 

 

• Step 3: Expansion of the Tylor series for the loss function, 

as shown in (7) and (8). 

 

 

 

 

 

  

Converting the original objective function to a dominant 

Euclidean function using conventional optimization 

techniques. 

 

 

 

• In Step 4, maintain the constant expression (9). The 

previous loss function has no bearing on the required time 

and effort to construct a decision tree. After removing the 

constant term, must satisfy the given equation (10) 

 

 

 

 

• Step 5 presupposes that the instance group of leaves j is 

defined as lj = {i|q(xi) = j} then obtain the equation (11) 

and (12) by expanding the term Ω. 

fd, hog_image = hog(image, orientations=8, 

pixels_per_cell=(8, 8),                                                                                    

cells_per_block=(2, 2), visualize=True) 
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For a given structure of (q(xi)), the value of the 

optimization objective function and the weight 

optimization (wi) of a leaf node j are expressed as 

(13) and (14).  

 

 

 

 

 

 

After assessing the tree's structure and dividing the 

tree's nodes, the resulting in equation (15). 

 

 

 

In addition, randomization strategies have been used into 

XGBoost in order to slow down the process of overfitting and 

speed up the training process. XGBoost additionally includes 

the implementation of numerous strategies for increasing the 

pace of training decision trees. These approaches are not 

directly related to the accuracy of the ensemble. XGBoost, in 

particular, places an emphasis on simplifying the computational 

work necessary to locate the optimal separation [4]. The 

maximum depth, the learning rate (eta), and the number of 

estimators are the three input parameters that XGBoost requires. 

The following is an illustration of the implementation: 

 

C. Modeling 

During the modeling phase, the three algorithms are utilized to 

generate the most accurate classification for predicting concrete 

cracking. Cross-validation, a method for measuring or 

validating the accuracy of a model derived from a training 

dataset, is the only method for determining the optimal model 

for each algorithm. The model is then evaluated using training 

data and measurements of the confusion matrix. 

• Modeling with cross-validation using XGBoost 

In XGBoost, an attractive type of hypermeter must be set 

using cross validation techniques. The list of hypermeters 

is displayed in table II [1]. 

These are the stages involved in the XGBoost 

modeling phase: 

- Defines a set of hyperparameter configurations for 

XGBoost 

- Using the features chosen from the training 

dataset, perform XGBoost modeling 100 times 

with arbitrarily selected hyperparameter 

combinations and 10 times cross-validation. The 

hyperparameter with the greatest ROC score is 

saved as the optimal model configuration. 

- Evaluate the best model by displaying all relevant 

metrics and model evaluation scores derived from 

the training dataset. 

- Using the best model to forecast the positive and 

negative labels of concrete crack images in the test 

dataset, and then evaluating the results of the 

prediction using metrics and model evaluation 

scores. 

TABLE II 

THE LIST HYPERMETERS 

 

Figure 4 depicts the XGBoost modeling flowchart that follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. XGBoost Modeling Flowchart 

D. Evalution Models 

By calculating the Confusion Matrix, the classification model is 

assessed. According to Bisri and Wahono (2015), the 

classification model is evaluated based on its accuracy. The 

precision of a model can be measured using a Confusion Matrix. 

The results of the confusion matrix are used to calculate the 

accuracy, sensitivity, and specificity of the classification 

model's predictions using the formulation shown in equation 

(16). 

TABLE III 

CONFUSION MATRIX 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

import xgboost as xgb 

xgb_classifier = 

xgb.XGBClassifier(n_estimators=1000,eta=0.1,max_depth=

3) 

Actual Class 
Predicted Class 

Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

   

Hyperparamter Value 

max_dept [3, 5, 7, 9] 

min_child_weight [1, 3, 5] 

gamma [0.0, 0.33333, 0.25, 0.5, 
0.66667, 0.75] 

reg_alpha [1e-5, 1e-2, 0.1, 1, 100] 

ℒ(𝑡) ≃   [𝑔𝑖
𝑛
𝑖=1 𝑓𝑡(𝑥𝑖) + 

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] +  𝛾𝑇 +
1

2
𝜆  𝑤𝑗

2𝑇
𝑗=1   (11) 

ℒ(𝑡) ≃   [

𝑇

𝑗=1

( 𝑔𝑖) 𝑤𝑗 +
1

2
 ( ℎ𝑖 + 𝜆) 𝑤𝑗

2

𝑖∈𝐼𝑗

] +  𝛾𝑇  

𝑖∈𝐼𝑗

 (12) 

𝑤𝑖
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−   𝑔𝑖

  ℎ𝑖 +  𝜆𝑖∈𝐼𝑗

 (13) 

ℒ𝑡 𝑞 =  −
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2
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𝑇
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−( 𝑔𝑖𝑖∈𝐼𝑗 )2

 ( ℎ𝑖 +  𝜆)𝑖∈𝐼𝑗

] + 𝛾𝑇 (14) 

ℒ𝑠𝑝𝑙𝑖𝑡 =  
1

2
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( 𝑔𝑖𝑖∈𝐼𝐿 )2

  ℎ𝑖 +  𝜆𝑖∈𝐼𝐿
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(16) 
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IV. RESULTS AND DISCUSSION 

A. Performance Evaluations of Method 

Using a confusion matrix, this research evaluates the 

precision of feature extraction and classification. The efficacy 

of the method is evaluated using the default parameters that have 

been determined by the XGBoost library. Utilizing the Python 

programming language's scikit-learn library, testing was 

conducted. The library is searched for the values for accuracy, 

f1 score, precision, and recall. 

In the confusion matrix, accuracy corresponds to the correct 

prediction value for the entire data set. Precision refers to the 

genuine positive predictive value in comparison to the overall 

positive predicted outcome. Compared to all positive data, recall 

is the genuine positive prediction value. The F1 score is a 

comparison of the average precision and recall with weighting 

applied. 

The writing of program code in Python is as follows: 

 

 

In the table of HOG and XGBoost performance evaluation 

results, the values of precision, recall, f1-score, and accuracy 

can be viewed alongside the corresponding results. 

 

TABLE IV 

PERFORMANCE EVALUATION RESULT FOR HOG AND XGBOOST 

 

From these results, the best precision, recall, f1-score, and 

accuracy values remain in the XGBoost method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Performance Comparison 

 

 

In XGBoost, one of the hyper-parameters is the number of trees 

(n_estimators). The number of trees represents the number of 

processes XGBoost will attempt to learn. Number of trees is a 

prevalent hyperparameter in boosting methods [Liquefaction 

prediction with robust machine learning algorithms (SVM, RF, 

and XGBoost) supported by genetic algorithm-based feature 

selection and parameter optimization from the viewpoint of data 

processing | SpringerLink]. 

 

TABLE V 

EVALUTION PARAMETERS NUMBER OF TREES FOR 

PERFORMANCE HOG AND XGBOOST 

 

Based on the Table V, a value of 96.95% was obtained for 1200 

trees, representing the number of trees with the utmost accuracy. 

The greater the value of the number of trees, the greater the 

obtained precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Learning Curve XGBoost 

Figure 6 provides the results of training and testing trials that do 

not occur over fitting or under fitting. The manual calculation 

for the confusion matrix with a number of trees of 1200 from 

XGBoost obtained from the HOG feature extraction can be seen 

in Table VI 

TABLE IV 

CONFUSION MATRIX 

 

From these data it can be calculated: 

 

 

No. Number 

of Trees 

Accuracy f1-score Precision Recall 

1. 100 0.92216 0.92201 0.92516 0.92207 

2. 200 0.94475 0.94471 0.94582 0.94469 

3. 250 0.94842 0.94838 0.94929 0.94837 

4. 300 0.95208 0.95206 0.95278 0.95204 

5. 350 0.95534 0.95532 0.95591 0.95529 

6. 500 0.96116 0.96115 0.96151 0.96113 

7. 1000 0.96850 0.96849 0.96870 0.96849 

8. 1200 0.96958 0.96956 0.96976 0.96956 
accuracy_score(label, pred) 

f1_score(label, pred, average=macro) 

precision_score(label, pred, average= macro)) 

recall_score(label, pred, average= macro) 

Accuracy F1 Score Precision Recall 

0.92216666666
6667 

0.9220168328
41968 

0.925163053989
5845 

0.92206940904
45604 
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• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+ 𝑇𝑁+𝐹𝑁)
=

5888+ 5747

(5888+126+5747+239)
=

11622

12000
= 0.969583333 = 96.95%   

• 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
=

5888

(5888+239)
=

5888

6127
=

0.960992329 = 96.10%  

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
=  

5888

(5888+126)
=

5888

6014
=

0.979048886 = 97.90% 

• 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 (𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
=

2 (0.960992329𝑥 0.979048886)

(0.960992329+ 0.979048886)
= 0.969936579 = 97% 

Based on the calculation above, the accuracy, recall, precision, 

and f1-score values for HOG and XGBoost with a number of 

trees of 1000 are obtained, respectively 96.95%, 96.10%, 

97.90%, and 97%. With the performance results of the method 

obtained, it took about ± 5 hours for each running of 

experimental data measuring 40,000 rows x 23,329 columns 

which were carried out to implement HOG as feature extraction 

and XGBoost as a classification method for machine learning. 

B. Discussion 

XGBoost employs a shrinkage method to avoid overfitting. This 

method reduces the contribution of each tree in the model, 

preventing the model from focusing excessively on the training 

data. In addition, XGBoost employs regularization and early 

halting techniques to prevent overfitting of the model's 

performance. The hyper parameters with 1200 trees yield the 

greatest accuracy, f1-score, precision, and recall. The ensemble 

method is a machine learning technique that combines the 

results of multiple learning models to enhance predictive 

performance and reduce the risk of overfitting. This method 

utilizes the assets of multiple models to generate more accurate 

predictions than using a single model alone. Several methods, 

including bagging, boosting, and layering, can be used for 

ensemble learning. Comparing the performance of XGBoost 

with other ensemble methods demonstrates that it is a reliable 

method for detecting concrete fractures. 

 

CONCLUSION 

In this paper, we address the problem of overfitting that often 

occurs in the results of training and testing of machine learning 

methods. XGBoost is a reliable method for overcoming over-

fitting with improving hyper parameters. The results of 

improving the number of tree hyper parameter obtained a value 

of 1200 is the highest result of the overall performance tested. 

These results also show that the higher the number of trees, the 

better the performance value. XGBoost can overcome over 

fitting with shrinkage, regularization, and early stopping 

techniques. Comparison of the ensemble method between 

XGBoost, Random Forest, and ADBoost produces the most 

reliable XGBoost method for classifying cracked concrete 

images.  
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