
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, VOL. 69, NO. 3, PP. 571-577

Manuscript received May 21, 2023; revised July, 2023. DOI: 10.24425/ijet.2023.146509

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—This study proposes a method that combines

Histogram of Oriented Gradients (HOG) feature extraction and

Extreme Gradient Boosting (XGBoost) classification to resolve the

challenges of concrete crack monitoring. The purpose of the study

is to address the common issue of overfitting in machine learning

models. The research uses a dataset of 40,000 images of concrete

cracks and HOG feature extraction to identify relevant patterns.

Classification is performed using the ensemble method XGBoost,

with a focus on optimizing its hyperparameters. This study

evaluates the efficacy of XGBoost in comparison to other ensemble

methods, such as Random Forest and AdaBoost. XGBoost

outperforms the other algorithms in terms of accuracy, precision,

recall, and F1-score, as demonstrated by the results. The proposed

method obtains an accuracy of 96.95% with optimized

hyperparameters, a recall of 96.10%, a precision of 97.90%, and

an F1-score of 97%. By optimizing the number of trees

hyperparameter, 1200 trees yield the greatest performance. The

results demonstrate the efficacy of HOG-based feature extraction

and XGBoost for accurate and dependable classification of

concrete fractures, overcoming the overfitting issues that are

typically encountered in such tasks.

Keywords—HOG; XGBoost; classification; feature extraction;

concrete crack monitoring

I. INTRODUCTION

XCESSIVE loading, extreme temperature fluctuations,

and soil movement can all contribute to the formation of

concrete cracks. These fractures can weaken a building's

structure and reduce the durability of concrete [1]–[6].

Therefore, monitoring surface fissures is essential for

infrastructure safety and quality. Although traditional

monitoring by inspectors can record crack data such as location,

length, and breadth, manual visual inspection is regarded as less

effective in terms of safety, accuracy, cost, and dependability

[7]–[11].

Numerous researchers and engineers have studied concrete

crack monitoring to devise safer, more cost-effective, and more

effective methods[12]–[14]. However, a significant challenge is

accurately identifying fractures from images containing actual

concrete cracks and distinguishing cracks from non-cracks. In

recent decades, owing to the development of image processing

techniques and machine learning, numerous fissure

Ida Barkiah is with Department of Civil Engineering, Universitas Lambung

Mangkurat, Indonesia (email: idabarkiah@ulm.ac.id).

Yuslena Sari is with Department of Information Technology, Universitas
Lambung Mangkurat, Indonesia (email: yuzlena@ulm.ac.id).

identification methods have been proposed [15]–[18] . These

methods have demonstrated effective performance, but a

significant disadvantage is that overfitting frequently occurs in

training and testing results. In addition, low-quality images

make it difficult to attain accurate performance in image

processing [19]–[25]. Therefore, it is difficult for infrastructure

managers to employ these research findings directly to real-

world scenarios.

Ensemble methods have recently gained popularity for

addressing overfitting issues. Extreme gradient boosting

(XGBoost) is a reliable ensemble method with several

adjustable hyperparameters to optimize the model's

performance [26]–[31]. The following are some advantages of

XGBoost hyperparameters: (1) Managing overfitting:

Hyperparameters such as max_depth, min_child_weight, and

gamma can help prevent overfitting, which occurs when the

model becomes overly complex and learns noise from the

training data, rendering it incapable of accurately predicting

new data. XGBoost can take advantage of multiple CPU cores

to optimize training performance. Adjusting hyperparameters

such as nthread can optimize CPU utilization. (3) handling

unbalanced data: XGBoost's hyperparameters scale_pos_weight

and max_delta_step can aid in handling unbalanced data in

which the number of samples in one class is substantially larger

than the others. (4) improved accuracy XGBoost has several

adjustable hyperparameters, such as learning_rate, subsample,

and colsample_bytree, to optimize the model's accuracy. By

optimizing these hyperparameters, XGBoost is able to produce

more accurate models than other machine learning techniques

[32]–[36].

HOG (Histogram of Oriented Gradients) is utilized to derive

features. The structure of this paper is as follows: In Section 1,

the history of concrete fractures and a brief overview of

XGBoost are presented. The second section discusses the

components and fundamentals of the concrete fracture

classification framework. Section 3 describes the research

methodology, beginning with data collection and ending with

performance evaluation. The fourth section contains

experimental results and discussions. In Section 5, conclusions

and perspectives are presented. These are the contributions of

Overcoming Overfitting Challenges with HOG

Feature Extraction and XGBoost-Based

Classification for Concrete Crack Monitoring
Ida Barkiah, and Yuslena Sari

E

https://creativecommons.org/licenses/by/4.0/
mailto:idabarkiah@ulm.ac.id

572 J.R.BALA, M.M.R.SINDHA,.J.SAHAYAM, P.GOVIND, K.P.RAKESH

this research:

1) HOG-based feature extraction for concrete fissure

classification.

2) Comparison of classification models for concrete cracks

using XGBoost, Random Forest, and...

3) Improve the efficacy of the XGBoost algorithm by

analyzing its hyperparameters.

II. MATERIAL

This research utilized a computer system with the following

specifications: 11th Gen Intel(R) Core(TM) i7-1165G7 @

2.80GHz (8 CPUs), ~2.8GHz, 16384MB RAM, Intel(R) Iris(R)

Xe Graphics as the VGA. The coding was done in Python

3.9.13. The research data was obtained from Kaggle [Özgenel,

Çağlar Fırat (2019), "Concrete Crack Images for

Classification", Mendeley Data, V2,

https://doi.org/10.17632/5y9wdsg2zt.2]. The research data

consists of 40,000 (forty thousand) image data with a size of 227

x 227 pixels and RGB channels. Each class comprises 20,000

data, with 20,000 positive-labeled images and 20,000 negative-

labeled images.

Fig. 1. Positive (a) and Negative (b) Concrete Image

Data division technique using hold-out technique. This

method is utilized due to the availability of sufficient data and

the reduced efficiency of hold-out estimates in comparison to

resampling validation. The dataset is arbitrarily partitioned into

training data and test data, with a proportion of 70% training

data and 30% test data. Therefore, we acquire 28,000 examples

for the training data and 12,000 examples for the test data. Each

dataset's performance will be evaluated using a confusion

matrix to calculate precision, recall, F1-score, and accuracy

values.

III. PROPOSE METHOD

This study will apply algorithms to classify concrete cracks.

Several popular classification algorithms such as Random

Forest (RF), AdaBoost, and XGBoost will be utilized. The study

employs the train_test_split() function to divide the dataset. The

classification model will be trained with the training data and

subsequently used to classify concrete cracks. The research

workflow can be seen in Figure 2.

Fig. 2. The research workflow

A. HOG Feature Extraction

Histogram of Oriented Gradient (HOG) offers superior

performance in comparison to other extant features. The

fundamental hypothesis is that the distribution of local gradient

intensities or edge directions can frequently adequately

characterize the appearance and local objects. HOG aims to

represent an image with a histogram of local gradient

orientations [37]–[42]. This study employs images with a

resolution of 227 by 227 pixels, with clarity-enhancing patches

extracted from the original images. HOG requires a specific

dimension to compute feature values; therefore, to obtain

feature values, the researchers will resize the images to 126 by

64 pixels.

Fig. 3. 227 x 277 (a) Concrete Image and 126 x 6 (b) Concrete Image

The Histogram of Oriented Gradients (HOG) method is used

to identify objects based on gradient patterns suitable for

concrete fissure images during the image's feature extraction

phase. The

a b

a b

OVERCOMING OVERFITTING CHALLENGES WITH HOG FEATURE EXTRACTION AND XGBOOST-BASED CLASSIFICATION FOR … 573

HOG method is implemented in the Python programming

language using the scikit-image library. There is a module

within the scikit-image library that provides computations for

the HOG method. In the HOG implementation for feature

extraction, the following parameters are utilized: the number of

orientations is set to 8, the number of pixels per cell is set to 8,

and the number of cells per block is set to 2. Image feature

extraction is implemented as follows in the Python

programming language:

The output of feature extraction is 23,328 features, resulting

in a data size of 40,000 rows by 23,329 columns. The results are

presented in table I.

TABLE I

HOG FEATURE EXTRACTION

B. XGBoost

XGBoost is a gradient-enhanced ensemble decision tree

designed for scalability. XGBoost constructs an additive

extension of the function in an effort to minimize the loss

function [4] using (1) and (2).

This loss function can be incorporated into the individual

criteria of the decision tree, leading to a strategy for pre-pruning.

The higher the x value, the simpler the tree or derivative. The

minimal loss reduction required to split an internal node is

controlled by the y value. Shrinkage is an additional

regularization parameter in XGBoost that reduces the bulk of

additive expansion steps. Other strategies, such as derived

depth, can also be used to reduce derivative complexity.

XGBoost enhances model performance by concentrating

primarily on model speed and performance. This algorithm has

several features that promote parallelization by generating

decision trees in parallel in order to accomplish speed and

efficiency. It employs distributed computing techniques to

evaluate large or intricate models. The algorithm also employs

out-of-core computation to ensure that large and diverse data

sets are analyzed and the cache is optimized to make use of the

most efficient hardware and resources. All of these distinctive

characteristics make XGBoost the ideal tool for this study

The XGBoost algorithm is explained in the following five

steps:

• Step 1: The objective function must be defined. As

demonstrated by (3) and (4), the objective function consists

of two parts.

In equations ∑ 𝒍(𝒚𝒊𝒊 , 𝒚�̂�) is a loss term, measuring how

good the model is. ∑ Ω𝒇(𝒌)𝒌 is a regularization term that

measures the complexity of a tree. 𝒚𝒊 is a real category.

𝒚�̂� is the classification value. 𝒍 used to find the difference

between 𝒚𝒊 and 𝒚�̂�, this is usually called the loss function.

T: indicates a leaf node.

W: represents the mass of the k leaf node

γ : useful for regulating leaf node

λ : Utilizable for regulating the weight of leaf nodes.

Regularization is utilized to control overfitting issues.

• Step 2: Following the formation of t trees, the newly

created tree is used to match the remainder of the

previously made predictions. Consequently, (5) and (6)

convey the classification of values.

Then rewrite the objective function as below:

• Step 3: Expansion of the Tylor series for the loss function,

as shown in (7) and (8).

Converting the original objective function to a dominant

Euclidean function using conventional optimization

techniques.

• In Step 4, maintain the constant expression (9). The

previous loss function has no bearing on the required time

and effort to construct a decision tree. After removing the

constant term, must satisfy the given equation (10)

• Step 5 presupposes that the instance group of leaves j is

defined as lj = {i|q(xi) = j} then obtain the equation (11)

and (12) by expanding the term Ω.

fd, hog_image = hog(image, orientations=8,

pixels_per_cell=(8, 8),

cells_per_block=(2, 2), visualize=True)

0 1 2 … 23325 23326 23327 Label

0.17

4694

0.14

2588

0.04

6688

… 0.2399

43

0.2100

49

0.1259

05

Positive

0.21

8352

0.04

9377

0.27

8014

… 0.0463

93

0.0824

43

0.1044

40

Postive

0.28
0815

0.00
0000

0.12
2703

… 0.1058
28

0.0880
20

0.1671
59

Postive

0.15
3354

0.13
1769

0.11
6218

… 0.2479
18

0.2589
77

0.0986
37

Postive

𝐿𝑥𝑔𝑏 = 𝐿(𝑦𝑖 ,
𝑁
𝑖=1 𝐹(𝑥𝑖)) + Ω(ℎ𝑚)𝑀

𝑚=1 (1)

Ω ℎ = 𝛾𝑇 +
1

2
𝜆| 𝑤 |2 (2)

𝐿𝑥𝑔𝑏 = 𝐿(𝑦𝑖 ,
𝑁
𝑖=1 𝐹(𝑥𝑖)) + Ω(ℎ𝑚)𝑀

𝑚=1 (1)

Ω ℎ = 𝛾𝑇 +
1

2
𝜆| 𝑤 |2 (2)

(1)

(2)

𝐿 𝟇 = 𝒍(𝒚𝒊𝒊 , 𝒚𝒊 + Ω𝒇(𝒌)𝒌

 Ω𝒇(𝒌)𝒌 = 𝜸𝑻 +
𝟏

𝟐
𝝀| 𝒘 |𝟐

(3)

(4)

𝑦𝑖 = 𝑦 𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)
(5)

𝑜𝑏𝑗 = 𝑙(𝑦𝑖 , 𝑦 𝑖
(𝑡−1)

𝑛

𝑖=1

+ 𝑓𝑖(𝑥𝑖)) + Ω(𝑓𝑡) (6)

ℒ 𝑡 ≃ [𝑙(𝑦𝑖

𝑛

𝑖=1

, 𝑦 𝑖
 𝑡−1

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡) (7)

𝑔𝑖 =
𝛿𝑙(𝑦𝑖 ,𝑦 𝑖

 𝑡−1
)

𝛿𝑦
𝑖
(𝑡−1) 𝑎𝑛𝑑ℎ𝑖 =

𝛿2𝑙(𝑦𝑖 ,𝑦 𝑖
 𝑡−1

)

𝛿(𝑦 𝑖
 𝑡−1

)2
 (8)

 𝑙(𝑦𝑖 , 𝑦 𝑖
(𝑡−1)𝑛

𝑖=1 (9)

ℒ(𝑡) ≃ [𝑔𝑖

𝑛

𝑖=1

𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡) (10)

574 J.R.BALA, M.M.R.SINDHA,.J.SAHAYAM, P.GOVIND, K.P.RAKESH

For a given structure of (q(xi)), the value of the

optimization objective function and the weight

optimization (wi) of a leaf node j are expressed as

(13) and (14).

After assessing the tree's structure and dividing the

tree's nodes, the resulting in equation (15).

In addition, randomization strategies have been used into

XGBoost in order to slow down the process of overfitting and

speed up the training process. XGBoost additionally includes

the implementation of numerous strategies for increasing the

pace of training decision trees. These approaches are not

directly related to the accuracy of the ensemble. XGBoost, in

particular, places an emphasis on simplifying the computational

work necessary to locate the optimal separation [4]. The

maximum depth, the learning rate (eta), and the number of

estimators are the three input parameters that XGBoost requires.

The following is an illustration of the implementation:

C. Modeling

During the modeling phase, the three algorithms are utilized to

generate the most accurate classification for predicting concrete

cracking. Cross-validation, a method for measuring or

validating the accuracy of a model derived from a training

dataset, is the only method for determining the optimal model

for each algorithm. The model is then evaluated using training

data and measurements of the confusion matrix.

• Modeling with cross-validation using XGBoost

In XGBoost, an attractive type of hypermeter must be set

using cross validation techniques. The list of hypermeters

is displayed in table II [1].

These are the stages involved in the XGBoost

modeling phase:

- Defines a set of hyperparameter configurations for

XGBoost

- Using the features chosen from the training

dataset, perform XGBoost modeling 100 times

with arbitrarily selected hyperparameter

combinations and 10 times cross-validation. The

hyperparameter with the greatest ROC score is

saved as the optimal model configuration.

- Evaluate the best model by displaying all relevant

metrics and model evaluation scores derived from

the training dataset.

- Using the best model to forecast the positive and

negative labels of concrete crack images in the test

dataset, and then evaluating the results of the

prediction using metrics and model evaluation

scores.

TABLE II

THE LIST HYPERMETERS

Figure 4 depicts the XGBoost modeling flowchart that follows.

Fig. 4. XGBoost Modeling Flowchart

D. Evalution Models

By calculating the Confusion Matrix, the classification model is

assessed. According to Bisri and Wahono (2015), the

classification model is evaluated based on its accuracy. The

precision of a model can be measured using a Confusion Matrix.

The results of the confusion matrix are used to calculate the

accuracy, sensitivity, and specificity of the classification

model's predictions using the formulation shown in equation

(16).

TABLE III

CONFUSION MATRIX

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

import xgboost as xgb

xgb_classifier =

xgb.XGBClassifier(n_estimators=1000,eta=0.1,max_depth=

3)

Actual Class
Predicted Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Hyperparamter Value

max_dept [3, 5, 7, 9]

min_child_weight [1, 3, 5]

gamma [0.0, 0.33333, 0.25, 0.5,
0.66667, 0.75]

reg_alpha [1e-5, 1e-2, 0.1, 1, 100]

ℒ(𝑡) ≃ [𝑔𝑖
𝑛
𝑖=1 𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝛾𝑇 +
1

2
𝜆 𝑤𝑗

2𝑇
𝑗=1 (11)

ℒ(𝑡) ≃ [

𝑇

𝑗=1

(𝑔𝑖) 𝑤𝑗 +
1

2
 (ℎ𝑖 + 𝜆) 𝑤𝑗

2

𝑖∈𝐼𝑗

] + 𝛾𝑇

𝑖∈𝐼𝑗

 (12)

𝑤𝑖
∗ =

− 𝑔𝑖

 ℎ𝑖 + 𝜆𝑖∈𝐼𝑗

 (13)

ℒ𝑡 𝑞 = −
1

2
 [

𝑇

𝑗=1

−(𝑔𝑖𝑖∈𝐼𝑗)2

 (ℎ𝑖 + 𝜆)𝑖∈𝐼𝑗

] + 𝛾𝑇 (14)

ℒ𝑠𝑝𝑙𝑖𝑡 =
1

2
 [

(𝑔𝑖𝑖∈𝐼𝐿)2

 ℎ𝑖 + 𝜆𝑖∈𝐼𝐿

+
(𝑔𝑖𝑖∈𝐼𝑅)2

 ℎ𝑖 + 𝜆𝑖∈𝐼𝑅

+
(𝑔𝑖𝑖∈𝐼𝐽)2

 ℎ𝑖 + 𝜆𝑖∈𝐼𝐽

] – 𝛾 (15)

(16)

OVERCOMING OVERFITTING CHALLENGES WITH HOG FEATURE EXTRACTION AND XGBOOST-BASED CLASSIFICATION FOR … 575

IV. RESULTS AND DISCUSSION

A. Performance Evaluations of Method

Using a confusion matrix, this research evaluates the

precision of feature extraction and classification. The efficacy

of the method is evaluated using the default parameters that have

been determined by the XGBoost library. Utilizing the Python

programming language's scikit-learn library, testing was

conducted. The library is searched for the values for accuracy,

f1 score, precision, and recall.

In the confusion matrix, accuracy corresponds to the correct

prediction value for the entire data set. Precision refers to the

genuine positive predictive value in comparison to the overall

positive predicted outcome. Compared to all positive data, recall

is the genuine positive prediction value. The F1 score is a

comparison of the average precision and recall with weighting

applied.

The writing of program code in Python is as follows:

In the table of HOG and XGBoost performance evaluation

results, the values of precision, recall, f1-score, and accuracy

can be viewed alongside the corresponding results.

TABLE IV

PERFORMANCE EVALUATION RESULT FOR HOG AND XGBOOST

From these results, the best precision, recall, f1-score, and

accuracy values remain in the XGBoost method.

Fig. 5. Performance Comparison

In XGBoost, one of the hyper-parameters is the number of trees

(n_estimators). The number of trees represents the number of

processes XGBoost will attempt to learn. Number of trees is a

prevalent hyperparameter in boosting methods [Liquefaction

prediction with robust machine learning algorithms (SVM, RF,

and XGBoost) supported by genetic algorithm-based feature

selection and parameter optimization from the viewpoint of data

processing | SpringerLink].

TABLE V

EVALUTION PARAMETERS NUMBER OF TREES FOR

PERFORMANCE HOG AND XGBOOST

Based on the Table V, a value of 96.95% was obtained for 1200

trees, representing the number of trees with the utmost accuracy.

The greater the value of the number of trees, the greater the

obtained precision.

Fig. 6. Learning Curve XGBoost

Figure 6 provides the results of training and testing trials that do

not occur over fitting or under fitting. The manual calculation

for the confusion matrix with a number of trees of 1200 from

XGBoost obtained from the HOG feature extraction can be seen

in Table VI

TABLE IV

CONFUSION MATRIX

From these data it can be calculated:

No. Number

of Trees

Accuracy f1-score Precision Recall

1. 100 0.92216 0.92201 0.92516 0.92207

2. 200 0.94475 0.94471 0.94582 0.94469

3. 250 0.94842 0.94838 0.94929 0.94837

4. 300 0.95208 0.95206 0.95278 0.95204

5. 350 0.95534 0.95532 0.95591 0.95529

6. 500 0.96116 0.96115 0.96151 0.96113

7. 1000 0.96850 0.96849 0.96870 0.96849

8. 1200 0.96958 0.96956 0.96976 0.96956
accuracy_score(label, pred)

f1_score(label, pred, average=macro)

precision_score(label, pred, average= macro))

recall_score(label, pred, average= macro)

Accuracy F1 Score Precision Recall

0.92216666666
6667

0.9220168328
41968

0.925163053989
5845

0.92206940904
45604

 Positive Negative

Positive 5888 126

Negative 239 5747 0,75

0,8

0,85

0,9

0,95

Accuracy Precision Recall F1-Score

A
cc

u
ra

cy

XGBoost Performance Comparison

XGBoost Random Forest AdaBoost

0,79

0,84

0,89

0,94

0,99

100 200 250 300 350 500 1000 1200

A
cc

u
ra

cy

number of trees

Learning Curve of XGBoost

Training Testing

576 J.R.BALA, M.M.R.SINDHA,.J.SAHAYAM, P.GOVIND, K.P.RAKESH

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+ 𝑇𝑁+𝐹𝑁)
=

5888+ 5747

(5888+126+5747+239)
=

11622

12000
= 0.969583333 = 96.95%

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
=

5888

(5888+239)
=

5888

6127
=

0.960992329 = 96.10%

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
=

5888

(5888+126)
=

5888

6014
=

0.979048886 = 97.90%

• 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 (𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
=

2 (0.960992329𝑥 0.979048886)

(0.960992329+ 0.979048886)
= 0.969936579 = 97%

Based on the calculation above, the accuracy, recall, precision,

and f1-score values for HOG and XGBoost with a number of

trees of 1000 are obtained, respectively 96.95%, 96.10%,

97.90%, and 97%. With the performance results of the method

obtained, it took about ± 5 hours for each running of

experimental data measuring 40,000 rows x 23,329 columns

which were carried out to implement HOG as feature extraction

and XGBoost as a classification method for machine learning.

B. Discussion

XGBoost employs a shrinkage method to avoid overfitting. This

method reduces the contribution of each tree in the model,

preventing the model from focusing excessively on the training

data. In addition, XGBoost employs regularization and early

halting techniques to prevent overfitting of the model's

performance. The hyper parameters with 1200 trees yield the

greatest accuracy, f1-score, precision, and recall. The ensemble

method is a machine learning technique that combines the

results of multiple learning models to enhance predictive

performance and reduce the risk of overfitting. This method

utilizes the assets of multiple models to generate more accurate

predictions than using a single model alone. Several methods,

including bagging, boosting, and layering, can be used for

ensemble learning. Comparing the performance of XGBoost

with other ensemble methods demonstrates that it is a reliable

method for detecting concrete fractures.

CONCLUSION

In this paper, we address the problem of overfitting that often

occurs in the results of training and testing of machine learning

methods. XGBoost is a reliable method for overcoming over-

fitting with improving hyper parameters. The results of

improving the number of tree hyper parameter obtained a value

of 1200 is the highest result of the overall performance tested.

These results also show that the higher the number of trees, the

better the performance value. XGBoost can overcome over

fitting with shrinkage, regularization, and early stopping

techniques. Comparison of the ensemble method between

XGBoost, Random Forest, and ADBoost produces the most

reliable XGBoost method for classifying cracked concrete

images.

ACKNOWLEDGEMENTS

We are very grateful to Big Data Laboratory Faculty of

Engineering Universitas Lambung Mangkurat.

REFERENCES

[1] K. Gao, H. Xie, Z. Li, J. Zhang, and J. Tu, “Study on eccentric behavior
and serviceability performance of slender rectangular concrete columns

reinforced with GFRP bars,” Compos. Struct., vol. 263, no. February, p.

113680, 2021, https://doi.org/10.1016/j.compstruct.2021.113680
[2] P. Guo, W. Meng, and Y. Bao, “Automatic identification and

quantification of dense microcracks in high-performance fiber-reinforced

cementitious composites through deep learning-based computer vision,”
Cem. Concr. Res., vol. 148, no. July, p. 106532, 2021,

https://doi.org/10.1016/j.cemconres.2021.106532

[3] K. Harsh, P. P. V., P. J. B., and K. Nikhil, “Implementation of Computer
Vision Technique for Crack Monitoring in Concrete Structure,” J. Inst.

Eng. Ser. A, vol. 104, no. 1, 2023, https://doi.org/10.1007/s40030-022-

00695-5
[4] X. Xie, L. Zhang, and Z. Qu, “A Critical Review of Methods for

Determining the Damage States for the In-plane Fragility of Masonry

Infill Walls,” J. Earthq. Eng., vol. 26, no. 9, pp. 4523–4544, 2022,

https://doi.org/10.1080/13632469.2020.1835749

[5] C. Yuan, B. Xiong, X. Li, X. Sang, and Q. Kong, “A novel intelligent

inspection robot with deep stereo vision for three-dimensional concrete
damage detection and quantification,” Struct. Heal. Monit., vol. 21, no.

3, pp. 788–802, 2022, https://doi.org/10.1177/14759217211010238

[6] C. Camille, D. Kahagala Hewage, O. Mirza, and T. Clarke, “Full-scale
static and single impact testing of prestressed concrete sleepers reinforced

with macro synthetic fibres,” Transp. Eng., vol. 7, p. 100104, 2022,

https://doi.org/10.1016/j.treng.2022.100104
[7] J. Deng, Y. Lu, and V. C. S. Lee, “Concrete crack detection with

handwriting script interferences using faster region-based convolutional

neural network,” Comput. Civ. Infrastruct. Eng., vol. 35, no. 4, pp. 373–
388, 2020, https://doi.org/10.1111/mice.12497

[8] V. P. Golding, Z. Gharineiat, H. S. Munawar, and F. Ullah, “Crack

Detection in Concrete Structures Using Deep Learning,” Sustain., vol.
14, no. 13, 2022, https://doi.org/10.3390/su14138117

[9] H. Kim, S. Lee, E. Ahn, M. Shin, and S. H. Sim, “Crack identification

method for concrete structures considering angle of view using RGB-D
camera-based sensor fusion,” Struct. Heal. Monit., vol. 20, no. 2, pp.

500–512, 2021, https://doi.org/10.1177/1475921720934758
[10] and R. C. L. Deng, T. Sun, L. Yang, “Binocular video-based 3D

reconstruction and length quantification of cracks in concrete structures,”

Autom. Constr, vol. 148, 2023,
https://doi.org/10.1016/j.autcon.2023.104743

[11] H. Kim, E. Ahn, M. Shin, and S. H. Sim, “Crack and Noncrack

Classification from Concrete Surface Images Using Machine Learning,”
Struct. Heal. Monit., vol. 18, no. 3, pp. 725–738, 2019,

https://doi.org/10.1177/1475921718768747

[12] N. Kheradmandi and V. Mehranfar, “A critical review and comparative
study on image segmentation-based techniques for pavement crack

detection,” Constr. Build. Mater., vol. 321, 2022,

https://doi.org/10.1016/j.conbuildmat.2021.126162
[13] S. S. N., K. S., and R. G, “Review and Analysis of Crack Detection and

Classification Techniques based on Crack Types,” Int. J. Appl. Eng. Res.,

vol. 13, no. 8, p. 6056, 2021,
https://doi.org/10.37622/ijaer/13.8.2018.6056-6062

[14] R. G. Sheerin Sitara N., K. S., “Review and Analysis of Crack Detection

and Classification Techniques based on Crack Types,” Int. J. Appl. Eng.
Res., vol. 13, no. 8, 2021, https://doi.org/10.37622/ijaer/13.8.2018.6056-

6062

[15] L. Li, K. Ota, and M. Dong, “Deep Learning for Smart Industry: Efficient
Manufacture Inspection System with Fog Computing,” IEEE Trans. Ind.

Informatics, vol. 14, no. 10, pp. 4665–4673, 2018,

https://doi.org/10.1109/TII.2018.2842821
[16] B. Kim and S. Cho, “Automated vision-based detection of cracks on

concrete surfaces using a deep learning technique,” Sensors

(Switzerland), vol. 18, no. 10, 2018, https://doi.org/10.3390/s18103452.
[17] Y. Sari, P. B. Prakoso, and A. R. Baskara, “Road Crack Detection using

Support Vector Machine (SVM) and OTSU Algorithm,” 2019 6th Int.

Conf. Electr. Veh. Technol., pp. 349–354, 2019,
https://doi.org/10.1109/ICEVT48285.2019.8993969

[18] Y. Sari, P. B. Prakoso, and A. R. Baskara, “Application of neural network

method for road crack detection,” Telkomnika (Telecommunication
Comput. Electron. Control., vol. 18, no. 4, pp. 1962–1967, 2020,

https://doi.org/10.12928/TELKOMNIKA.V18I4.14825

[19] H. Hofbauer, F. Autrusseau, and A. Uhl, “Low Quality and Recognition
of Image Content,” IEEE Trans. Multimed., vol. 24, pp. 3595–3610,

2022, https://doi.org/10.1109/TMM.2021.3103394

OVERCOMING OVERFITTING CHALLENGES WITH HOG FEATURE EXTRACTION AND XGBOOST-BASED CLASSIFICATION FOR … 577

[20] T. He and X. Li, “Image quality recognition technology based on deep

learning,” J. Vis. Commun. Image Represent., vol. 65, p. 102654, 2019,

https://doi.org/10.1016/j.jvcir.2019.102654

[21] Y. Gao, L. Gao, and X. Li, “A Generative Adversarial Network Based
Deep Learning Method for Low-Quality Defect Image Reconstruction

and Recognition,” IEEE Trans. Ind. Informatics, vol. 17, no. 5, pp. 3231–

3240, 2021, https://doi.org/10.1109/TII.2020.3008703
[22] R. A. Pramunendar, D. P. Prabowo, D. Pergiwati, Y. Sari, P. N. Andono,

and M. A. Soeleman, “New workflow for marine fish classification based

on combination features and CLAHE enhancement technique,” Int. J.
Intell. Eng. Syst., vol. 13, no. 4, pp. 293–304, 2020,

https://doi.org/10.22266/IJIES2020.0831.26
[23] Y. Sari, M. Alkaff, and R. A. Pramunendar, “Classification of coastal and

Inland Batik using GLCM and Canberra Distance,” AIP Conf. Proc., vol.

1977, no. June 2022, 2018, https://doi.org/10.1063/1.5042901
[24] Y. Sari, A. R. Baskara, and R. Wahyuni, “Classification of Chili Leaf

Disease Using the Gray Level Co-occurrence Matrix (GLCM) and the

Support Vector Machine (SVM) Methods,” 2021 6th Int. Conf.

Informatics Comput. ICIC 2021, 2021,

https://doi.org/10.1109/ICIC54025.2021.9632920

[25] Y. Sari, M. Alkaff, and M. Maulida, “Classification of Rice Leaf using
Fuzzy Logic and Hue Saturation Value (HSV) to Determine Fertilizer

Dosage,” 2020, https://doi.org/10.1109/ICIC50835.2020.9288585

[26] A. Alazba and H. Aljamaan, “Software Defect Prediction Using Stacking
Generalization of Optimized Tree-Based Ensembles,” Appl. Sci., vol. 12,

no. 9, 2022, https://doi.org/10.3390/app12094577

[27] S. Deng, Y. Zhu, S. Duan, Z. Fu, and Z. Liu, “Stock Price Crash Warning
in the Chinese Security Market Using a Machine Learning-Based Method

and Financial Indicators,” Systems, vol. 10, no. 4, pp. 1–25, 2022,

https://doi.org/10.3390/systems10040108
[28] V. Rathakrsihman, S. B. Beddu, and A. N. Ahmed, “Comparison Studies

Between Machine Learning Optimisation Technique on Predicting

Concrete Compressive Strength,” Eur. PMC, pp. 1–5, 2021,
https://doi.org/10.21203/rs.3.rs-381936/v1

[29] J. J. Liu and J. C. Liu, “Permeability Predictions for Tight Sandstone

Reservoir Using Explainable Machine Learning and Particle Swarm
Optimization,” Geofluids, vol. 2022, no. 2, 2022,

https://doi.org/10.1155/2022/2263329

[30] D. Xiaoming, C. Ying, Z. Xiaofang, and G. Yu, “Study on Feature
Engineering and Ensemble Learning for Student Academic Performance

Prediction,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 5, pp. 495–502,

2022, https://doi.org/10.14569/IJACSA.2022.0130558
[31] W. Chen, H. Zhang, M. K. Mehlawat, and L. Jia, “Mean–variance

portfolio optimization using machine learning-based stock price

prediction,” Appl. Soft Comput., vol. 100, p. 106943, 2021,
https://doi.org/10.1016/j.asoc.2020.106943.

[32] Y. Qiu, J. Zhou, M. Khandelwal, H. Yang, P. Yang, and C. Li,

“Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and

BO-XGBoost models to predict blast-induced ground vibration,” Eng.

Comput., vol. 38, no. 0123456789, pp. 4145–4162, 2022,
https://doi.org/10.1007/s00366-021-01393-9

[33] G. Zhou, Z. Ni, Y. Zhao, and J. Luan, “Identification of Bamboo Species

Based on Extreme Gradient Boosting (XGBoost) Using Zhuhai-1 Orbita
Hyperspectral Remote Sensing Imagery,” Sensors, vol. 22, no. 14, 2022,

https://doi.org/10.3390/s22145434

[34] A. Ibrahem Ahmed Osman, A. Najah Ahmed, M. F. Chow, Y. Feng
Huang, and A. El-Shafie, “Extreme gradient boosting (Xgboost) model

to predict the groundwater levels in Selangor Malaysia,” Ain Shams Eng.
J., vol. 12, no. 2, pp. 1545–1556, 2021,

https://doi.org/10.1016/j.asej.2020.11.011

[35] C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, A comparative analysis
of gradient boosting algorithms, vol. 54, no. 3. Springer Netherlands,

2021.

[36] C. Bouchayer, J. M. Aiken, K. Thogersen, F. Renard, and T. V. Schuler,

“A Machine Learning Framework to Automate the Classification of

Surge-Type Glaciers in Svalbard,” JGR Earth Surf., 2022,

https://doi.org/10.1029/2022JF006597
[37] J. P. Tanjung and M. Muhathir, “Classification of facial expressions using

SVM and HOG,” J. Informatics Telecommun. Eng., vol. 3, no. 2, pp. 210–

215, 2020, https://doi.org/10.31289/jite.v3i2.3182
[38] T. Tri Saputra Sibarani and C. Author, “Analysis K-Nearest Neighbors

(KNN) in Identifying Tuberculosis Disease (Tb) By Utilizing Hog

Feature Extraction,” Int. Comput. Sci. Inf. Technol. JournalISSN, vol. 1,
no. 1, pp. 33–38, 2020.

[39] S. T. Narasimhaiah and L. Rangarajan, “Recognition of compound

characters in Kannada language,” Int. J. Electr. Comput. Eng., vol. 12,
no. 6, pp. 6103–6113, 2022,

https://doi.org/10.11591/ijece.v12i6.pp6103-6113

[40] K. V. Greeshma and K. Sreekumar, “Fashion-MNIST classification
based on HOG feature descriptor using SVM,” Int. J. Innov. Technol.

Explor. Eng., vol. 8, no. 5, pp. 960–962, 2019.

[41] S. Bakheet and A. Al-Hamadi, “A framework for instantaneous driver
drowsiness detection based on improved HOG features and naïve

bayesian classification,” Brain Sci., vol. 11, no. 2, pp. 1–15, 2021,

https://doi.org/10.3390/brainsci11020240
[42] T. Zhang et al., “HOG-ShipCLSNet: A Novel Deep Learning Network

with HOG Feature Fusion for SAR Ship Classification,” IEEE Trans.

Geosci. Remote Sens., vol. 60, no. June, 2022,
https://doi.org/10.1109/TGRS.2021.3082759

