Community Clustering on Fraud Transactions Applied the Louvain-Coloring algorithm

Authors

  • Heru Mardiansyah Universitas Sumatera Utara
  • Saib Suwilo Universitas Sumatera Utara
  • Erna Budhiarti Nababan Universitas Sumatera Utara
  • Syahril Efendi Universitas Sumatera Utara

Abstract

Clustering is a technique in data mining capable of grouping very large amounts of data to gain new knowledge based on unsupervised learning. Clustering is capable of grouping various types of data and fields. The process that requires this technique is in the business sector, especially banking. In the transaction business process in banking, fraud is often encountered in transactions. This raises interest in clustering data fraud in transactions. An algorithm is needed in the cluster, namely Louvain's algorithm. Louvain's algorithm is capable of clustering in large numbers, which represent them in a graph. So, the Louvain algorithm is optimized with colored graphs to facilitate research continuity in labeling. In this study, 33,491 non-fraud data were grouped, and 241 fraud transaction data were carried out. However, Louvain's algorithm shows that clustering increases the amount of data fraud with an accuracy of 88%.

References

A. Triayudi, W. O. Widyarto, L. Kamelia, Iksal, and Sumiati, “Clg clustering for dropout prediction using log-data clustering method,” IAES Int. J. Artif. Intell., vol. 10, no. 3, pp. 764–770, 2021, doi: 10.11591/ijai.v10.i3.pp764-770.

W. Ramdhan, O. S. Sitompul, E. B. Nababan, and Sawaluddin, “Clustering Algorithm-Based Pandemic Multicluster Framework Analysis: K-Means and K-Medoids,” in 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM), 2022, pp. 1–6, doi: 10.1109/ICOSNIKOM56551.2022.10034927.

A. R. Lubis, S. Prayudani, M. Lubis, and Al-Khowarizmi, “Analysis of the Markov Chain Approach to Detect Blood Sugar Level,” J. Phys. Conf. Ser., vol. 1361, no. 1, 2019, doi: 10.1088/1742-6596/1361/1/012052.

S. Lailiyah, E. Yulsilviana, and R. Andrea, “Clustering analysis of learning style on anggana high school student,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 3, pp. 1409–1416, 2019, doi: 10.12928/TELKOMNIKA.V17I3.9101.

A. A. Baker and Y. Ghadi, “Cancerous lung nodule detection in CT-images,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 5, pp. 2432–2438, 2020, doi: 10.12928/TELKOMNIKA.v18i5.15523.

I. M. O. Widyantara, I. P. N. Hartawan, A. A. I. N. E. Karyawati, N. I. Er, and K. B. Artana, “Automatic identification system-based trajectory clustering framework to identify vessel movement pattern,” IAES Int. J. Artif. Intell., vol. 12, no. 1, pp. 1–11, 2023, doi: 10.11591/ijai.v12.i1.pp1-11.

S. E. Hashemi, F. Gholian-jouybari, and M. Hajiaghaei-keshteli, “A fuzzy C-means algorithm for optimizing data clustering,” Expert Syst. Appl., vol. 227, no. December 2022, p. 120377, 2023, doi: 10.1016/j.eswa.2023.120377.

X. Zhao and X. Zhao, “Clustering in Bitcoin balance,” Financ. Res. Lett., 2023, doi: 10.1016/j.frl.2023.103904.

A. C. Benabdellah, A. Benghabrit, and I. Bouhaddou, “A survey of clustering algorithms for an industrial context,” Procedia Comput. Sci., vol. 148, pp. 291–302, 2019.

J. M. D. Delgado et al., “Robotics and automated systems in construction: Understanding industry-specific challenges for adoption,” J. Build. Eng., vol. 26, p. 100868, 2019.

A. Al-Khowarizmi, R. Syah, and M. Elveny, “The Model of Business Intelligence Development by Applying Cooperative Society Based Financial Technology,” in Proceedings of Sixth International Congress on Information and Communication Technology, 2022, pp. 117–125.

K. W. F. Ma and T. McKinnon, “COVID-19 and cyber fraud: emerging threats during the pandemic,” J. Financ. Crime, vol. 29, no. 2, pp. 433–446, 2022.

A. Srivastav and S. Prajapat, “Text similarity algorithms to determine Indian penal code sections for offence report,” IAES Int. J. Artif. Intell., vol. 11, no. 1, pp. 34–40, 2022, doi: 10.11591/ijai.v11.i1.pp34-40.

M. Leo, S. Sharma, and K. Maddulety, “Machine learning in banking risk management: A literature review,” Risks, vol. 7, no. 1, p. 29, 2019.

X. Mao, H. Sun, X. Zhu, and J. Li, “Financial fraud detection using the related-party transaction knowledge graph,” Procedia Comput. Sci., vol. 199, pp. 733–740, 2021, doi: 10.1016/j.procs.2022.01.091.

M. Jans, J. M. Van Der Werf, N. Lybaert, and K. Vanhoof, “A business process mining application for internal transaction fraud mitigation,” Expert Syst. Appl., vol. 38, no. 10, pp. 13351–13359, 2011, doi: 10.1016/j.eswa.2011.04.159.

J. M. Arockiam and A. C. S. Pushpanathan, “MapReduce-iterative support vector machine classifier: novel fraud detection systems in healthcare insurance industry,” Int. J. Electr. Comput. Eng., vol. 13, no. 1, pp. 756–769, 2023, doi: 10.11591/ijece.v13i1.pp756-769.

I. A. Ajah and H. F. Nweke, “Big data and business analytics: Trends, platforms, success factors and applications,” Big Data Cogn. Comput., vol. 3, no. 2, p. 32, 2019.

I. Vorobyev and A. Krivitskaya, “Reducing false positives in bank anti-fraud systems based on rule induction in distributed tree-based models,” Comput. Secur., vol. 120, p. 102786, 2022, doi: 10.1016/j.cose.2022.102786.

S. Shirazi, H. Baziyad, N. Ahmadi, and A. Albadvi, “A new application of louvain algorithm for identifying disease fields using big data techniques,” J. Biostat. Epidemiol., vol. 5, no. 3, pp. 183–193, 2019.

W. Zhang, “Improving commuting zones using the Louvain community detection algorithm,” Econ. Lett., vol. 219, p. 110827, 2022, doi: 10.1016/j.econlet.2022.110827.

J. Zhang, J. Fei, X. Song, and J. Feng, “An improved Louvain algorithm for community detection,” Math. Probl. Eng., vol. 2021, pp. 1–14, 2021.

N. S. Sattar and S. Arifuzzaman, “Scalable distributed Louvain algorithm for community detection in large graphs,” J. Supercomput., vol. 78, no. 7, pp. 10275–10309, 2022.

C. Makris, D. Pettas, and G. Pispirigos, “Distributed community prediction for social graphs based on Louvain algorithm,” in Artificial Intelligence Applications and Innovations: 15th IFIP WG 12.5 International Conference, AIAI 2019, Hersonissos, Crete, Greece, May 24–26, 2019, Proceedings 15, 2019, pp. 500–511.

J. Qin, M. Li, and Y. Liang, “Minimum cost consensus model for CRP-driven preference optimization analysis in large-scale group decision making using Louvain algorithm,” Inf. Fusion, vol. 80, pp. 121–136, 2022.

Downloads

Published

2024-04-19

Issue

Section

Applied Informatics