
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2023, VOL. 69, NO. 3, PP. 599-604

 Manuscript received September 10, 2022; revised July, 2023. DOI: 10.24425/ijet.2023.146513

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The field programmable gate array (FPGA) is used to
build an artificial neural network in hardware. Architecture for a
digital system is devised to execute a feed-forward multilayer
neural network. ANN and CNN are very commonly used architec-
tures. Verilog is utilized to describe the designed architecture. For
the computation of certain tasks, a neural network’s distributed
architecture structure makes it potentially efficient. The same
features make neural nets suitable for application in VLSI
technology. For the hardware of a neural network, a single neuron
must be effectively implemented (NN). Reprogrammable computer
systems based on FPGAs are useful for hardware implementations
of neural networks.

Keywords—artificial neural network; Spartan-6; field pro-

grammable gate arrays (FPGAs); convolutional neural network

I. INTRODUCTION

NArtificial neural network and Convolutional network is

a form of intelligent processing system that aims to

replicate the composition and functionality of the human brain.

In recent days it is a major topic in a broad range of fields

and an effective in problem-solving situations. ANNs have been

used to resolve issues where conventional methods have failed

in the past, such as speech synthesis, recognition, image

processing ,coding, pattern recognition and classification,

forecasting power load, interpreting and predicting financial

trends for the financial markets, generating composite structures,

and processing model construction, monitoring [1]. The FPGA’s

flexibility and adaptability allow it to meet the needs of

reiterative learning processes, weight adjustment, and even

architectural reconfiguration. FPGAs cannot incorporate

infinite amounts of logical resources into a single package,

hence optimizations are necessary [5]. The implementation of

ANN digital computer systems has been relatively limited, with

examples representing recent research available from it. The

latest developments in the systematic concept allow for the

use of large ANNs on a single scheduled gateway device

(FPGA) device. A small improvement in component production

technique, where the data capacity of electronic components

increases every 18 months, is the main cause [3]. ANNs are

biologically motivated which needs DSPs and

microprocessors which are not suitable for comparable systems.

ASICs and VLSIs can be utilized to design fully compatible

modules, but creating such devices is expensive and time

consuming. To offer ANN a design effect that is just suitable for

a particular use. FPGAs offer flexible designs, cost savings, and

design cycles in addition to compatibility [4].

II. RELATED WORKS

The development and use of Floating Point Multipliers and

Adders (FPMA)-based Artificial Neural Networks (ANN) with

Authors are with Sri Jayachamarajendra College of Engineering,JSS Science

and Technology University, Mysore, India (e-mail: sujathakumari@sjce.ac.in,

sudarshan_pk@sjce.ac.in, sinchanacg03@gmail.com).

Field Programmable Gate Array (FPGA). On the Spartan II

FPGA, several nine neurons were implemented at a speed of 13

M bits/sec. It is possible to employ multiple FPGAs on each

layer to create a larger ANN on an FPGA. [3].

The implementation of essential ANN in FPGA is described.

The FPGA implementation could use parallelism to accelerate

processing time in comparison to software. In addition, hard-

ware implementation can use fewer resources than CPU/GPU.

Additionally, the system is intended for identifying objects with

minimal hardware resources and low power usage as part of the

work. [2].

Taxonomy for dividing up ANN for FPGA implementations

is discussed. Design challenges and several implementation

strategies are discussed. Furthermore, future research trends are

presented. A parallel and distributed network of straight-

forward nonlinear processing units connected in a layered con-

figuration make up an artificial neural network (ANN). Three

computational characteristics highly associated with ANNs they

are parallelism, modularity, and dynamic adaptation [6]. A

hardware implementation of an ANN using an FPGA is

proposed. The FPGA was identified due to its more affordable

costs for a single implementation. Creating a hardware solution

that enabled the direct use of weight training is typically created

in a software environment with a much higher resolution than

typically obtained in FPGAs implementation was the main

objective [10].

FPGA-based design and implementation of an ANN are dis-

cussed. The FPGA was identified due to its more affordable

costs for a single implementation. The objective was to create a

hardware solution that allowed the direct use of weights, which

is typically prepared in a software environment with resolutions

that are significantly higher than any of those often achieved

in FPGA implementation [11]. The creation of a hardware

architecture that uses a Convolutional Neural Network (CNN)

framework that is adaptable and enables the configuration

and execution of different neural network models. The new

HW-CNN module was tested and the CNN framework was

developed using the High-Level Synthesis (HLS) language on

an Altera Stratix V FPGA integrated with a Teresa DE-5-Net

board [13].

Using the FPGA hardware ZYBO Z7, a convolution neural

network based on the Lenet-5 model was implemented. The

three-layer convolution layer, the two-layer down sampling

layer, and the two-layer fully connected layer make up the

Lenet-5 network module. The typical FPGA clock frequency

is merely a few hundred MHz, and it may often be clocked more

rapidly than general-purpose CPUs [20].

The evaluation of various journal articles on numerous subjects

indicated that designing hardware accelerators for neural

B A Sujatha Kumari, Sudarshan Patil Kulkarni, and C G Sinchana

FPGA Implementation of Neural Nets

A

https://creativecommons.org/licenses/by/4.0/

600 B A SUJATHA KUMARI, SUDARSHAN PATIL KULKARNI, AND C G SINCHANA

networks is significant as it greatly improves computational

efficiency. The effectiveness and efficiency of machine learning

models would rise with the usage of neural networks. Some

researchers also suggest utilizing the FPGA to implement ANN

or CNN in hardware. The parallelism, flexibility, power

consumption, reconfigurability, and lower costs for a single

implementation were thought about while selecting the FPGA.

III. MATERIALS AND METHODS

A. Vivado ISE

High-level synthesis and system on a chip development are

now possible with the Xilinx software package Vivado Design

Suite. It is used to synthesize and analyze designs published in

the hardware description language (HDL). Vivado offers a total

rebuild and rethinking of the whole design cycle in comparison

to ISE. Vivado contains an integrated logic simulator, just like

later versions of ISE. Another development of Vivado is high-

level synthesis. It converts C code into programmable circuits

via a tool chain. The Vivado High-Level Synthesis compiler

enables programs written in C, C++, and System C to be

directly targeted at Xilinx devices without manually writing

RTL. The capability of Vivado HLS to support C++ classes,

modules, functions, and operator overloading has been proven.

B. NIST standard Data set

In the Modified National Institute of Standards (MNIST),

10,000 test instances compensate for the dataset of handwritten

digits, which has 60,000 training sets. It is a modest portion of a

larger dataset that NIST has made available. The characters have

been size-normalized and placed in a fixed-size image. The

source NIST (bi-level) dark images were scaled down to fit

inside a 20x20 pixel box while preserving their aspect ratio. The

resulting photos have grey levels because of the anti-aliasing

strategy used by the normalization algorithm. The images were

centered in a 28x28 image by finding the centroid of the pixels

and translating the image to place this point in the center of

the 28x28 field.

IV. PROPOSED METHOD

Figure 1 depicts the block diagram of ANN implementation.

This paper involves a handwritten dataset as input and which is

converted into vectors of 784 lines and saved into a txt file. Once

the neuron gets trained the architecture will be built with the

desired number of layers.The used inputs are 784 and two

hidden layers and one output layer with 10 neurons. With the

help of the Xilinx Vivado, the simulation tool will be

synthesized to the desired number of LUTs, flip-flops, and

Power consumption.

The block diagram CNN implementation is shown in figure 2

CNN architecture uses the same data which is used in the

ANN architecture. As we are using the convolution, first

convolute the image of size 200*72 and with the help of bias

values, The model is trained. Synthesis is done using Xilinx

Vivado simulation tool to get the desired number of LUTs, flip-

flops, and Power consumption.

Fig. 1. Block Diagram for ANN

Fig. 2. Block Diagram for CNN

V. IMPLEMENTATION

A. ANN Implementation

ANN is based on the structure and function of the biological

neural network. The input layer with 784 neurons, because there

have been used 28*28 pixel value images and each pixel is

converted into 16 bits.

A. Input Layer: The layer has been implemented with 784

neuron inputs, because the data set image had 28*28

pixels and converted into binary for each pixel and made

into 784 lines, and given input to all the 784 neurons on

the first layer of the architecture.

B. Three hidden Layers: Each hidden layer for 30 neurons and

sent to each neuron of the input layer output, and in a

similar fashion sent to another layer also.

C. At the output layer, there are 10 neurons and with help of

maximum function can determine the output from the

neuron.

D. The Expected output and output of the neuron obtained

from the architecture and used as comparision factor. The

serial, parallel, and Distributed Architectures used for

ANN implementation is shown in the figure 3.

Fig. 3. Serial Architecture

FPGA IMPLEMENTATION OF NEURAL NETS 601

B. CNN Implementation:

The architecture of CNN is shown in figure 4. CNN’s

architecture can be summarized in the following manner. The

network’s input is an RGB patch of 32 × 32 pixels. There are

three pooling layers in addition to three convolutional layers.

The convolutional layer has a 5 x 5 kernel with 2- pixel

padding. The input patch is 32 × 32 in size and features 3 RBG

channels. 32×32 feature mappings are provided by the first

convolutional layer.

Fig. 4. Parallel Architecture

Fig. 5. Distributed architecture

Fig. 6. Block diagram of CNN Architecture Implementation

After max pooling, the 32 feature maps were down-sampled

into 16 × 16. Finally, 125 feature maps with a 5 x 5 size are

formed employing two more convolutional layers and average

pooling layers. The features are combined into a feature vector,

which is subsequently fed to the ReLU and full connection

layers for classification. Local response normalizing layers and

rectified linear unit layers are also included in CNN but are

not shown for simplicity.

VI. RESULT

The Serial, Parallel and distributed architecture are imple-

mented for ANN and the obtained results are discussed in the

following section.

A. Distributed Architecture:

Distributed Architecture which permits the completion of

an intricate image recognition assignment on a number of

resources.The method significantly reduces the amount of

memory and processing power needed by each devices to store

and process ANN model. Designers create several ANN models

and use the models for identifying human posture as the case

study. In this architecture. It permits the completion of an

intricate image recognition assignment on a number of

resources used one input layer consists of 784 neurons and 2

hidden layers of 30 neurons each, and an output layer of 10

neurons. The architecture was designed for the handwritten

recognition dataset. In this neuron architecture, each neuron will

take input from all the neurons of the previous layer. For

example, in the 2nd hidden layer, the 1st neuron will receive the

output of 30 neurons of the 1st hidden layer. Resource

utilization is shown in the below figure. LUT is 12.95% used,

Flipflop is 6.23%,BRAM is 10.71% DSAP is 72.72%,IO is

52.50%,BUFG is 3.13% used.

TABLE I

RESOURCE UTILIZATION OF DISTRIBUTED ARCHITECTURE
OBTAINED IN SYNTHESIS

Resource Utilization Available Utilization [%]

LUT 6887 53200 12.95

FF 6653 106400 6.25

BRAM 15 140 10.71

DSAP 160 220 72.73

IO 105 200 52.50

BUFG 1 32 3.13

Fig. 7. Resource utilization graph of Distributed architecture

602 B A SUJATHA KUMARI, SUDARSHAN PATIL KULKARNI, AND C G SINCHANA

B. Serial Architecture

In this architecture, the input layer consists of 784 neurons

and 2 hidden layers of 30 neurons each, and an output layer of

10 neurons. The architecture was also designed for the hand-

written recognition dataset. In this neuron architecture, each

neuron will take input from all the neurons of the previous layer

but with some time delay. For example, in the 2nd hidden layer,

the 1st neuron will receive the output of 30 neurons of the

1st hidden layer. Instead of going to the next neuron of the

3rd hidden layer, it will forward the output to all the 10

neurons of the output layer. Once it’s all neuron receives the

data then it goes to the 2nd neuron of the second hidden layer.

As a result, the amount of information transmitted to each

neuron will be more.

Fig. 8. Resource utilization graph of Serial architecture

TABLE II

RESOURCE UTILIZATION OF SERIAL ARCHITECTURE OBTAINED IN

SYNTHESIS

C. Parallel Architecture

In this architecture, the input layer consists of 784 neurons

and 2 hidden layers of 30 neurons each, and an output layer of

10 neurons. The architecture was designed for the handwritten

recognition dataset. In this neuron architecture, each neuron will

take input from all the neurons of the previous layer. For

example, in the 2nd hidden layer, the 1st neuron will receive the

output of the 1st neurons of the 1st hidden layer. Similarly, the

2nd neuron of the second hidden layer will receive the 2nd

neuron output. As a result, the number of information

transmitted to each neuron will be more and takes more lookup

table. Obtained accuracy is around 82percent.

TABLE III
RESOURCE UTILIZATION OF PARALLEL ARCHITECTURE

OBTAINED IN SYNTHESIS

Resource Utilization Available Utilization [%]

LUT 1296 53200 2.44

FF 1505 106400 1.41

BRAM 0.50 140 0.36

DSAP 26 220 11.82

IO 105 200 52.50

BUFG 1 32 3.13

Fig. 9. Resource utilization graph of Parallel architecture

TABLE IV

RESOURCE UTILIZATION OF DISTRIBUTED ARCHITECTURE OBTAINED

IN IMPLEMENTATION

Resource Utilization Available Utilization [%]

LUT 6887 53200 12.95

FF 6653 106400 6.25

BRAM 15 140 10.71

DSAP 160 220 72.73

IO 105 200 52.50

BUFG 1 32 3.13

TABLE V

RESOURCE UTILIZATION OF SERIAL ARCHITECTURE OBTAINED IN

IMPLEMENTATION

Resource Utilization Available Utilization [%]

LUT 6907 53200 12.98

FF 6457 106400 6.07

BRAM 15 140 10.71

DSAP 160 220 72.73

IO 105 200 52.50

BUFG 1 32 3.13

TABLE VI
RESOURCE UTILIZATION OF PARALLEL ARCHITECTURE OBTAINED IN

IMPLEMENTATION

Resource Utilization Available Utilization [%]

LUT 1296 53200 2.44

FF 1505 106400 1.41

BRAM 0.50 140 0.36

DSAP 26 220 11.82

IO 105 200 52.50

BUFG 1 32 3.13

Resource Utilization Available Utilization [%]

LUT 6907 53200 12.98

FF 6457 106400 6.07

BRAM 15 140 10.71

DSAP 160 220 72.73

IO 105 200 52.50

BUFG 1 32 3.13

FPGA IMPLEMENTATION OF NEURAL NETS 603

D. Synthesis Results of CNN

The synthesis results for the CNN are found to be 1697 LUTs

and 910 Flip- flops which is occupying 1% of total available

LUTs and Flip-flops.

TABLE VII
RESOURCE UTILIZATION OF CNN

Fig. 10. Resource utilization graph of CNN architecture

E. Implementation of CNN

The model was trained for a handwritten digit recognition

dataset having an image size of 200*72.

TABLE VIII
SYNTHESIS RESULT OF CNN

Resource Estimation Available Utilzation [%]

LUT 1697 134600 1.26

FF 910 267600 0.34

BRAM 9 365 2.47

IO 357 500 71.40

BUFG 1 32 3.13

Fig. 11. Resource utilization graph of Distributed architecture

F. Comparison of ANN and CNN Architectures

The comparison of the architectures are shown in the table IX

Considering the power requirements the distributed architecture

takes around 248.273 W, where series architecture takes 243.273

and Parallel was found out to be less which is about 28W. The

architecture performs a better fitting to the image data set due to

the reduction in the number of param- eters involved and

reusability of weights. So this drastically reduces the actual

usage of neurons in the real scenarios and actual

implementation.

TABLE IX
COMPARSION OF ARCHITECTURE

 Distributed Serial Parallel

LUT 6805 6917 1296

FF 6625 6456 1505

Power [watt] 248.273 243.273. 27.43

Total time [ns] 218 2.20 480

Accuracy [%] 92 87 82

CONCLUSION

The ANN and CNN implementation on FPGA is done with

the help of neuron architecture. Four layers are imple- mented

and analyzed on FPGA and the results are compared. Using

Distributed architecture in ANN, an accuracy of 92 percent

is obtained and CNN has given accuracy of 89.42 percent. The

various other key considerations is the size, parameter validity,

and the number of interlayer connections of multipliers. The

first primarily outlines the area resources needed, while the

second outlines the routing. The arithmetic operations are not

the bottleneck, and it is possible to explore massive parallelism

in the convolutional trees. FPGAs offer enough memory

resources to implement the feature maps. The multilayer

approach enables the implementation of neural nets with a larger

number of hidden layers.

REFERENCES

[1] Jihong Liu, Deqin Liang, “A Survey of FPGA-Based Hardware
Implementation of ANNs”, School of Information Science and
Engineering Northeastern University, Shenyang-110004, China-2005.
Communications, vol. 25, no. 5, pp. 10-15, October 2018,
https://doi.org/10.1109/MWC.2018.1800049

[2] Shuai Li, Ken Choi, “Artificial Neural Network Implementation in
FPGA: A Case Study”, Department of Electrical and Computer En-
gineering, Illi- nois Institute of Technology, USA/Yunsik Lee, School
of ECE, UNIST, Ulsan, Korea- ISOCC 2016.
https://doi.org/10.1109/ISOCC.2016.7799795

[3] PDr. Reza Raeisi , Armin Kabir, “Implementation of Artificial Neural
Network on FPGA”, Indiana State University, Indiana., American Soci-
ety for Engineering Education, Illinois-Indiana and North Central Joint
Section Conference IPFW (Mar-2006).

[4] Esraa Zeki Mohammed and Haitham Kareem Ali, “Hardware Implemen-
tation of Artificial Neural Network Using Field Programmable Gate
Array”, International Journal of Computer Theory and Engineering, Vol.
5, No. 5, 2013. https://doi.org/10.7763/IJCTE.2013.V5.795

[5] Philippe Dondon, Julien Carvalho, R´emi Gardere, Paul Lahalle, Georgi
Tsenov and Valeri Mladenov, “Implementation of a Feed-forward Arti-
ficial Neural Network in VHDL on FPGA”, 12th Symposium on Neural
Network Applications in Electrical Engineering (NEUREL 2014), Mare,
Romania (2019).

[6] Jihan Zhu and Peter Sutton, “FPGA Implementations of Neural Net-
works A Survey of a Decade of Progress”, School of Information
Technology and Electrical Engineering, The University of Queensland,
Brisbane, Queensland 4072, Australia

[7] Marcin Pietras, “Hardware conversion of neural networks simulation
models for Neural Processing Accelerator implemented as FPGA-based
SoC”, Com- puter Science and Information Technology West Pomera-
nian University of Technology, ZUT Szczecin, Poland (2018).

[8] Saima Kanwal , Arslan Yousaf , Maria Imtiaz , Jalil Abbas , Arslan Ali,
“Survey paper on Advanced Equipment Execution of ANN for FPGA”,
Computer Engineering and Intelligent Systems Vol.9, No.7, (2019).

Resource Estimation Available Utilization [%]

LUT 1697 134600 1.26

FF 910 267600 0.34

IO 357 500 71.40

BUFG 1 32 3.13

https://doi.org/10.1109/MWC.2018.1800049
https://doi.org/10.1109/ISOCC.2016.7799795
https://doi.org/10.7763/IJCTE.2013.V5.795

604 B A SUJATHA KUMARI, SUDARSHAN PATIL KULKARNI, AND C G SINCHANA

[9] S. Oniga, A. Tisan, D. Mic, A. Buchman and A. Vida-Ratiu, “Optimiz-
ing FPGA Implementation of FeedForward Neural Networks”,
Electronic and Computer Engineering Department, North University,
Baia

[10] Pedro Ferreira, Pedro Ribeiro, Ana Antunes, and Fernando Morgado
Dias, “Artificial Neural Networks Processor – A Hardware Implemen-
tation Using a FPGA” – (2018).

[11] Hardik H. Makwana , Dharmesh J. Shah , Priyesh P. Gandhi, “FPGA
Implementation of Artificial Neural Network”, International Journal of
Emerg- ing Technology and Advanced Engineering (2004).

[12] Suhap Sahin, Yasar Becerikli, and Suleyman Yazici , “Neural Network
Implementation in Hardware Using FPGAs”, Department of Computer
Eng., Kocaeli University, Izmit, Turkey, Vol 12, 2018.

[13] Marco Bettoni, Gianvito Urgese, Yuki Kobayashi, Enrico Macii, and An-
drea Acquaviva, “A Convolutional Neural Network Fully Implemented
on FPGA for Embedded Platforms”, first New Generation of CAS
(2017).

[14] Yongmei Zhou, Jingfei Jiang, “An FPGA-based Accelerator Implemen-
tation for Deep Convolutional Neural Network”, 4th International Con-
ference on Computer Science and Network Technology (ICCSNT 2015).

[15] Yasmeen Farouk, Sherine Rady, “Optimizing MRI Registration using
Software/Hardware Co-Design Model on FPGA”, International Journal
of Innovative Technology and Exploring Engineering, Vol 10, Issue 12
(IJITEE) 2020.

[16] Yuchen Yao, Qinghua Duan, Zhiqian Zhang, Jiabao Gao, Jian Wang,
Meng Yang, “A FPGA-based Hardware Accelerator for Multiple
Convolutional Neural Networks”, State Key Laboratory of ASIC System,
Fudan University, Shanghai 2018.

[17] Yufeng Hao, “A General Neural Network Hardware Architecture on
FPGA”, University of Birmingham, 2018.

[18] Fasih Ud Din , Farrukh Tuo XieChun, ZhangZhihua Wang, Fellow, “Op-
timization for Efficient Hardware Implementation of CNN on FPGA”,
IEEE international conference on integrated circuits and technologies and
applications (2018).

[19] Mohammad Samragh, Mohammad Ghasemzadeh, and Farinaz Koushan-
far, “Customizing Neural Networks for Efficient FPGA Imple-
mentation”, IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines 2018.
https://doi.org/10.1109/FCCM.2017.43

[20] Dai Rongshi, Tang Yongming , “Accelerator Implementation of Lenet-
Convolution Neural Network Based on FPGA with HLS”, 2019 3rd
International Conference on Circuits, System and Simulation.

[21] Leandro D. Medus, Taras Iakymchuk, Jose V. Frances-Villora, Manuel
Bataller-Mompeán, Alfredo Rosado-Muñoz,”A Novel Systolic Parallel
Hardware Architecture for the FPGA Acceleration of Feedforward
Neural Networks”, IEEE Access,vol 2920885, 2019.
https://doi.org/10.1109/ACCESS.2019.2920885

[22] M. Zhu, Q. Kuang, J. Lin, Q. Luo, C. Yang and M. Liu, ”A Z Structure
Convolutional Neural Network Implemented by FPGA in Deep
Learning,”44th Annual Conference of the IEEE Industrial Electronics
Society, pp. 2677-2682,2018.

[23] H. O. Ahmed, M. Ghoneima and M. Dessouky, ”Concurrent MAC unit
design using VHDL for deep learning networks on FPGA,” IEEE
Symposium on Computer Applications Industrial Electronics ISCAIE,
pp. 31-36, 2018. https://doi.org/10.1109/ISCAIE.2018.8405440

[24] M. Hailesellasie, S. R. Hasan, F. Khalid, F. A. Wad and M. Shafique,
”FPGA-Based Convolutional Neural Network Architecture with Re-
duced Parameter Requirements,” IEEE International Symposium on
Circuits and Systems , pp. 1-5, 2018.

[25] L. Bai, Y. Lyu and X. Huang, ”A Unified Hardware Architecture for
Convolutions and Deconvolutions in CNN,” IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1-5,2020.

[26] S. -P. Pan, Z. Li, Y. -J. Huang and W. -C. Lin, ”FPGA realization of
activation function for neural network,” 7th International Symposium on
Next Generation Electronics , pp. 1-2, 2018.

[27] Y. -C. Ling, H. -H. Chin, H. -I. Wu and R. -S. Tsay, ”Designing A
Compact Convolutional Neural Network Processor on Embedded
FPGAs,” IEEE Global Conference on Artificial Intelligence and Internet
of Things (GCAIoT), pp. 1-7,2020.

[28] C. Crema et al., ”Embedded platform-based system for early detection
of Alzheimer disease through transcranial magnetic stimulation,” IEEE
Sensors Applications Symposium (SAS), pp. 1-6, 2018.
https://doi.org/10.1109/SAS.2018.8336774

[29] S. Ivanov, S. Stankov and T. Nenov, ”FPGA Based Neural Networks
for Characters Recognition,” 20th International Symposium on Electrical
Apparatus and Technologies (SIELA), pp. 1-3,2018.

[30] Yufei Ma, Yu Cao, Fellow, Sarma Vrudhula, and Jae-sun
Seo,”Optimizing the Convolution Operation to Accelerate Deep Neural
Networks on FPGA”, IEEE Transactions On Very Large Scale Integration
(Vlsi) Systems,2018. https://doi.org/10.1109/TVLSI.2018.2815603

[31] Sachin Nayak, Shweta Vincent, Sumathi K, Om Prakash Kumar, and
Sameena Pathan,” An Ensemble of Statistical Metadata and CNN
Classification of Class Imbalanced Skin Lesion Data”, Intl Journal of
Electronics and Telecommunications, 2022, vol. 68, no. 2, pp. 251-257
https://doi.org/10.24425/ijet.2022.139875

https://doi.org/10.1109/FCCM.2017.43
https://doi.org/10.1109/ACCESS.2019.2920885
https://doi.org/10.1109/ISCAIE.2018.8405440
https://doi.org/10.1109/SAS.2018.8336774
https://doi.org/10.1109/TVLSI.2018.2815603
https://doi.org/10.24425/ijet.2022.139875

