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Abstract—Acquiring labels in anomaly detection tasks is 

expensive and challenging. Therefore, as an effective way to 

improve efficiency, pretraining is widely used in anomaly detection 

models， which enriches the model's representation capabilities, 

thereby enhancing both performance and efficiency in anomaly 

detection. In most pretraining methods, the decoder is typically 

randomly initialized. Drawing inspiration from the diffusion 

model, this paper proposed to use denoising as a task to pretrain 

the decoder in anomaly detection, which is trained to reconstruct 

the original noise-free input. Denoising requires the model to learn 

the structure, patterns, and related features of the data, 

particularly when training samples are limited. This paper 

explored two approaches on anomaly detection: simultaneous 

denoising pretraining for encoder and decoder, denoising 

pretraining for only decoder. Experimental results demonstrate 

the effectiveness of this method on improving model’s 

performance. Particularly, when the number of samples is limited, 

the improvement is more pronounced. 
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I. INTRODUCTION 

NOMALY detection in medical imaging aims to identify 

and locate abnormal regions in various types of medical 

images, including X-ray, CT scans, and MRI [1]. This technique 

has diverse applications in clinical practice. It can be employed 

for early detection, diagnosis, and localization of diseases, 

including lung nodules, tumor segmentation, and stroke 

recognition. The advancement of this technology equips doctors 

with precise, rapid, and reliable tools to enhance the 

management and treatment of patients' health is-sues. 

Simultaneously, this technology significantly assists doctors in 

early diagnosis, treatment planning, and disease progression 

monitoring. 

The rapid advancement of computer and artificial intelligence 

technology has led to the widespread attention and adoption of 

neural networks for detecting abnormalities in medical images 

[2]. It plays a crucial role in various tasks, including disease 

screening, diagnosis, prediction of disease development trends, 

and detection of organ and tissue lesions. 

However, the practical application of deep learning in 

medical anomaly detection poses several challenges, with the  
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sample size problem being the most prominent. Due to 

numerous limitations, acquiring large-scale annotation data for 

medical images is prohibitively expensive, and annotating 

medical images necessitates extensive expertise and experience 

from medical professionals. Pretraining is a viable strategy to 

partially address the issue of limited sample size in medical 

image anomaly detection, which involves initially training the 

model on a large-scale dataset and subsequently fine-tuning it 

on the target task using the learned parameters as initial values 

[3]. In medical anomaly detection, pretraining can utilize large-

scale non-medical image data or conventional medical data to 

acquire general feature representations. By transferring these 

learned features, the scarcity of medical image data in anomaly 

detection tasks can be mitigated. 

Currently, in medical image anomaly detection, pretraining 

primarily focuses on encoders, using classification tasks as a 

guide, while disregarding decoders and initializing their 

parameters randomly. This approach can result in suboptimal 

models. In this paper, we proposed ADDP, which undergoes 

pretraining for denoising tasks to enable a series of 

initializations. Denoising pretraining can be considered a form 

of self-supervised learning, where the decoder is trained to 

reconstruct the original input without noise. This task 

necessitates the decoder to grasp the structure, patterns, and 

relevant features of the data in order to minimize the 

reconstruction error. Consequently, the decoder will acquire a 

representation that demonstrates robustness against noise and 

irregularities in the input data. Furthermore, there exist several 

additional advantages to employing denoising tasks for 

pretraining. Firstly, the denoising task is an unsupervised 

learning task that operates without label information, enabling 

the utilization of extensive unlabeled data for pretraining. 

Consequently, it compensates for the expensive and challenging 

label acquisition process. Secondly, pretraining with denoising 

tasks can yield stable feature representations, diminish noise 

interference in training samples, and enhance the model's 

generalization ability and robustness. The contributions of this 

paper can be summarized as follows: 

(1) This work proposed a method for initializing parameters 

in anomaly detection guided by denoising, which 

effectively enhances the performance of anomaly 

detection. 
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(2) This paper optimizes several techniques within the 

denoising process to maximize its benefits for the 

model. 

(3) This work explored two denoising pretraining methods. 

One can choose to conduct denoising pretraining on 

both the encoder and decoder simultaneously, 

depending on the situation, or solely on the decoder. 

(4) This work conducted extensive experiments to examine 

the influence of different denoising variables, and these 

findings can serve for multiple other tasks. 

II. RELATED WORK 

A. Medical anomaly detection based on deep learning 

Medical anomaly detection based on deep learning is a widely 

researched and significant problem in the field. One prominent 

aspect of deep learning is its capability to model non-linear 

relationships. By increasing the non-linearity in the model, it 

becomes possible to achieve improved separation between 

normal and abnormal samples, as well as better modeling of 

inconsistencies within the data. Deep learning methods can be 

classified into two main categories: unsupervised methods and 

supervised methods. Unsupervised methods commonly employ 

autoencoders (AE) [4] and generative adversarial networks 

(GAN) [5]. For instance, Lu et al. proposed a VAE framework 

for detecting skin image abnormalities [6], while Zimmerer et 

al. enhanced VAE for MRI anomaly detection [7]. Uzunova et 

al. also utilized VAE for pathological detection [8]. Notably, 

Schlegl et al. applied GAN to medical anomaly detection, 

representing significant contributions in this area [9]. On the 

other hand, supervised learning methods frequently rely on 

convolutional neural networks (CNN). Esteva et al. employed 

CNN for skin cancer detection [10], and Turner et al. utilized 

deep belief networks for detecting abnormal signals in 

electrocardiograms (ECG) [11]. Wang et al. employed cascaded 

anisotropic convolutional neural networks for segment brain 

tumor [12]. Overall, deep learning has emerged as a crucial 

technology in medical anomaly detection, with continual 

updates and iterations in training techniques and network 

models to enhance performance. 

B. Diffusion models 

Diffusion models have a long-standing history in the field of 

machine learning [13,14]. Their primary objective is to train 

models to eliminate noise from data and distinguish between 

noisy and clean data. In recent developments, the denoising 

diffusion probability model (DDPM) [15]has demonstrated 

unparalleled performance in the domains of image and text 

generation. It significantly outperforms alternative generative 

models in terms of both density estimation and sample quality, 

while also exhibiting extensive pattern coverage [16–19]. 

DDPM is a highly potent model that achieves its capabilities by 

learning to transform Gaussian noise into the target distribution 

via a series of iterative denoising steps, approximating complex 

empirical distributions [20]. Its performance is truly impressive. 

The concept of denoising can yield numerous additional 

advantages for contemporary neural network methodologies. 

C. Pretraining 

Pretraining is a crucial technique in deep learning, used to 

initialize the parameters of neural network models by initially 

training them on large-scale datasets. The objective of 

pretraining is to acquire a generalized feature representation for 

a given task and subsequently utilize these learned features to 

address specific downstream tasks. The pretraining method 

capitalizes on prior knowledge during the pretraining process, 

encompassing an understanding of the image's structure, 

texture, and semantics. Despite a reduction in the number of 

training sets, this prior knowledge remains valuable in assisting 

the model to improve its performance in image tasks. 

Pretraining is also a valuable approach in the domain of medical 

image processing, proven to enhance model performance 

[3,21,22]. Typically, pretraining involves training the encoder 

(backbone) either as a classifier [23] or as a self-supervised 

feature extractor [24–26]. Our observation reveals that while 

there exists a plethora of methods for pretraining the encoder, 

the decoder is frequently initialized randomly. Considering the 

decoder's significant role in tasks involving pixel-level output 

granularity, attention must be given to its pretraining. 

III. METHODOLOGY 

We proposed employing denoising pretraining for encoder 

and decoder (DPED), as well as denoising pretraining for 

decoder (DPD), to discover an improved pretraining approach. 

The former approach employs a one-stage process that directly 

utilizes the autoencoder within the data, while the latter employs 

a two-stage process. It first trains the encoder guided by other 

tasks, then freezes its parameters and trains the decoder guided 

by denoising. This chapter will provide a detailed introduction 

to both methods. 
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Fig.1. Trans UNet [27] 

 

A. Encoder and decoder 

This study aims to define an autoencoder denoted as 𝑓𝜃 , 𝑔𝜙, 

which comprises two sets of parameters 𝜃 and 𝜙, allowing for 

their transferability. The autoencoder takes 𝑋 ⊂ ℝ𝐻×𝑊×𝐶  as 

input, where 𝑓𝜃  generates a high dimensional tensor, and 𝑔𝜙 

produces mask. The implementation of Trans-UNet [27] is 

chosen for this paper, as depicted in Figure 1. UNet is a suitable 

choice for diffusion work and is regarded as the optimal model 

for mapping noise to the original distribution. Trans-UNet 

employs a hybrid model that combines CNN and Transformer. 

It initially employs CNN to generate feature maps and then uses 

Transformer for feature processing. This approach enables the 

utilization of deep features mentioned by CNN in the decoder, 

while encoding image features as a sequence provides 

significant global context information. This enhancement aids 

in comprehending the semantics and structure of the image, 

ultimately leading to improved segmentation performance. 

B. Denoising objective 

The objective of the denoising task is to remove noise from 

the data. There are various methods to accomplish this task, such 

as predicting clean data directly. For instance, given an image 

sample 𝑥, Gaussian noise 𝜀 can be added to create 𝑥𝜖. 

𝑥𝜖 = 𝑥 + 𝜎𝜀 (1) 

Among them, 𝜀~𝑁(0, 𝐼), 𝜎 corresponds to a fixed standard 

deviation. Equation (1) provides a straightforward method for 

introducing noise. Moreover, the direct addition of noise 

significantly influences the final outcome. Equation (1) has been 

enhanced to exert control over the impact of noise on the final 

result while preserving the original data information. This 

improvement is demonstrated in (2). 

𝑥𝜎 =
1

√1 + 𝜎2
(𝑥 + 𝜎𝜀) (2) 

 

Currently, it can control the influence of noise on the final 

result to a certain extent. When 𝜎 = 1, it corresponds to (1), 

while (2) is better suited for tasks that exhibit sensitivity to the 

data's norm. Let the encoder be denoted as 𝑓𝜃 and the decoder 

as 𝑔𝜙. Consequently, the objective function can be formulated 

in (3): 

𝐿1 = ‖𝑔𝜙(𝑓𝜃(𝑥𝜎)) − 𝑥‖
2

2
 (3) 

 

However, Ho et al. demonstrated that incorporating noise as 

the loss function during training the diffusion model yields 

better results. In this approach, the final prediction target is 

changed from 𝑥 to 𝜀. The objective function can be written as: 

𝐿2 = ‖𝑔𝜙(𝑓𝜃(𝑥𝜎)) − 𝜀‖
2

2
 (4) 

 

Methods targeting predictive noise can reduce prior 

assumptions regarding the input image, which assumes a 

specific distribution or structure. In contrast, the diffusion 

model can adapt to various types and levels of noise without 

prior knowledge of specific details in the input image, 

enhancing generalization and robustness. We have thoroughly 

investigated this choice in the subsequent experimental chapters. 

C. Denoising pretraining for encoder and decoder 

When denoising pretraining is performed simultaneously on 

the encoder and decoder, it can also be considered as the 

denoising pretraining of the complete model, as depicted in 

Figure 2. Let {𝑋1, … , 𝑋𝑁} ⊂ ℝ𝐻×𝑊×𝐶  represent an unlabeled 

dataset that can be normal samples or abnormal samples. 

Initially, noise is added to this dataset using (2), resulting in 

{𝑋𝜖1, … , 𝑋𝜖𝑁} ⊂ ℝ𝐻×𝑊×𝐶 . Subsequently, Equation (4) is 

utilized to train 𝑓𝜃  and 𝑔𝜙 . The parameters 𝜃  and 𝜙  are then 

fine-tuned on the target task dataset to obtain the optimal set. 
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Fig.2. Denoising pretraining for encoder and decoder (DPED) 

D. Denoising pretraining for only decoder 

The process of pretraining only the decoder is illustrated in 

Figure 3, comprising three steps. Initially, the encoder is trained 

using alternative tasks. We suggest employing classification 

tasks to guide the encoder towards convergence. Let 

{𝑋1, … , 𝑋𝑁} ⊂ ℝ𝐻×𝑊×3  be a sample dataset and 

{𝑌1, … , 𝑌𝑛}ℝ𝐻×𝑊×{1,…,𝐾} be its corresponding label set, where K 

represents the number of categories. The encoder 𝑓𝜃 is trained 

until convergence, after which the parameters 𝜃  are frozen. 

Subsequently, the decoder 𝑔𝜙  is trained using denoising 

training. Noise is added to the dataset {𝑋1, … , 𝑋𝑁} ⊂ ℝ𝐻×𝑊×3 to 

obtain {𝑋𝜖1, … , 𝑋𝜖𝑁} ⊂ ℝ𝐻×𝑊×3, and (4) is utilized for training 

to determine the optimal parameter 𝜙. Finally, the parameters 𝜃 

are unfrozen, and both 𝑓𝜃 and 𝑔𝜙 are fine-tuned using the target 

task dataset. 

 
Fig.3. Denoising pretraining for only decoder (DPD) 

E. Noise level 

The noise level 𝜎 is a critical hyperparameter. Insufficiently 

small noise may hinder the model's ability to learn meaningful 

feature representations. While excessive noise will cause a 

significant shift between the distribution of the noise image and 

the original image. Consequently, the model becomes incapable 

of effectively learning and capturing the key features of the 

original image. Thus, this greatly impacts the model's overall 

performance and effectiveness. Figure 4 illustrates examples of 

varying noise levels. 

 
Fig.4. Different noise levels 

We set 𝜎 to 0.4, and this value will be further examined in the 

subsequent experimental sections. 

IV. EXPERIMENT RESULTS AND ANALYSIS 

This chapter aims to conduct a series of experiments to 

investigate the impact of denoising pretraining on anomaly 

detection. 

A. Experiment environment 

Table I presents the detailed configuration of hardware and 

software utilized during the experimental phase. 

 

B. Datasets 

BraTS (Brain Tumor Segmentation) is an annual challenge 

and dataset focused on brain tumor segmentation and 

classification. The challenge provides a platform for researchers 

and practitioners to evaluate and compare their algorithms for 

brain tumor analysis. The BraTS 2021 dataset consists of 

multimodal magnetic resonance imaging (MRI) scans of the 

brain, including T1-weighted (T1), T1-weighted with contrast 

enhancement (T1Gd), T2-weighted (T2), and Fluid Attenuated 

Inversion Recovery (FLAIR) images. These different MRI 

sequences capture distinct aspects of brain tissue and provide 

complementary information for tumor analysis [28]. 

We utilized the data from Task 1: Brain Tumor Sub-Region 

Segmentation. The dataset provided for this task comprises 

8,000 MRI scans obtained from 2,000 glioma patients. 

C. Metrics 

Dice coefficient, also known as Dice similarity coefficient or 

F1 score, is a common metric used to evaluate the similarity or 

overlap between two sets, particularly in the context of 

segmentation tasks. It is widely used in medical image analysis 

to assess the accuracy of segmentation algorithms. The Dice 

coefficient ranges from 0 to 1, where a value of 1 indicates 

perfect overlap or similarity between the two sets. The 

calculation formula for the Dice coefficient, shown in (5), 

represents the predicted segmentation as set A and the actual 

segmentation as set B. 

Dice coefficient =
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (5) 

D. Results analysis 

Table II presents the results obtained from four distinct 

approaches: without pretraining, encoder pretraining, denoising 

pretraining for encoder and decoder (DPED), and denoising 

pretraining for only decoder (DPD). Without pretraining, both 

encoder and decoder are randomly initialized. Encoder 

pretraining, on the other hand, involves pretrain the encoder for 

classification tasks, while the decoder remains randomly 

initialized. 

 

TABLE I  

EXPERIMENT ENVIRONMENT 

Environment Configuration 

CPU Intel Core i7 12700k 

GPU Nvidia Tesla V100 32GB 

Memory DDR4 16GB 

Hard Disc WestData SSD 1TB 

Operating System Windows11 

Python 3.8 

torch 1.12.1 
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Denoising pretraining methods exhibit superior performance. 

When the number of training samples significantly decreases, 

the results without pretraining become nearly unattainable. 

Conversely, the two denoising pretraining methods consistently 

achieve significant performance enhancements. Compared to 

solely pretrain the encoder, the benefits of denoising pretraining 

progressively increase as the number of samples decreases. The 

utilization of denoising pretraining enables the provision of a 

more comprehensive supervision signal by establishing the 

corresponding relationship between the noisy and clean images. 

This facilitates the model's capacity to effectively learn valuable 

information within the image. 

In situations where there are an ample number of training 

samples, DPD yields superior performance. The encoder's role 

involves extracting high level semantic features from images, 

while the decoder is responsible for converting these features 

into pixel level predictions. In cases where only the decoder 

undergoes denoising pretraining, the model primarily focuses 

on learning and optimizing the decoder component, particularly 

during pixel-level prediction, to reconstruct the image details 

accurately. 

Conversely, when the training samples are limited, DPED 

enables comprehensive learning of both semantic and detailed 

image information. Through cooperative training between the 

encoder and decoder, this approach enhances the model's 

expressive and generalization capabilities. Consequently, in 

scenarios with limited training samples, this method effectively 

utilizes available data to construct a more robust representation, 

thereby improving the performance of image segmentation. 

E. Ablation studies 

In the preceding chapters, we developed a range of techniques 

aimed at enhancing the effectiveness of pretraining. These 

techniques include optimizing the model’s structure, modifying 

the process of transforming and introducing noise, converting 

predicted images into predicted noise, and selecting appropriate 

levels of noise. This section includes a series of experiments 

designed to investigate the impact of the aforementioned 

methods. 

1) Architecture of encoder and decoder 

We selected Trans-UNet as our model for this study. To 

investigate the impact of the denoising pretraining method 

proposed in this paper on various models, this section includes 

other models including UNet [29], Attention-UNet [30] and 

SegNet [31]. We initialized different architectures with three 

variations: without pretraining, DPED, and DPD. In the case of 

DPD, we added three linear layers to the output layer in order to 

output categories for the second step of pretraining. As 

presented in Table 3, the other three models exhibited 

significant performance improvements when subjected to 

denoising pretraining. This demonstrates the universal and 

effective nature of the proposed denoising pretraining method 

across different models. Therefore, we consider it an 

outstanding pretraining technique. 

 

 

TABLE II 

THE RESULTS OBTAINED FROM THE THREE METHODS.  

Method a 100% 50% 10% 5% 1% 

Without Pretraining 0.59 0.43 0.31 0.23 0.19 

Encoder Pretraining 0.85 0.8 0.73 0.69 0.66 

DPED 0.87 0.84 0.79 0.75 0.74 

DPD 0.88 0.84 0.8 0.73 0.72 

a The first row represents the proportion of the subset 

TABLE III 

THE RESULTS OF THREE DIFFERENT METHODS ON DIFFERENT MODELS. 

Model Method 100% 50% 10% 5% 1% 

UNet 

Without Pretraining 0.52 0.39 0.26 0.14 0.1 

DPED 0.79 0.77 0.75 0.72 0.69 

DPD 0.82 0.8 0.71 0.68 0.67 

Attention 

UNet 

Without Pretraining 0.56 0.42 0.28 0.17 0.14 

DPED 0.83 0.83 0.77 0.73 0.7 

DPD 0.85 0.81 0.76 0.7 0.69 

SegNet 

Without Pretraining 0.49 0.3 0.25 0.16 0.13 

DPED 0.82 0.79 0.75 0.71 0.68 

DPD 0.81 0.77 0.72 0.69 0.65 
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2) Noise Schedule 

We have implemented improvements in the method of 

introducing noise, transitioning from (1) to (2), in order to 

regulate the impact of noise on the final outcome. This section 

investigates the impact of these enhancements, as demonstrated 

in Table 4. By utilizing (2) to introduce noise, we observe a 

discernible improvement. This enhancement stems from the 

effective regulation of noise within (2), allowing the model to 

acquire a more profound comprehension of the correlation 

between noise and image [33], consequently enhancing its 

ability to handle and comprehend noise. Simultaneously, 

employing (2) enables a more precise adjustment of image 

distribution and diminishes the disparity between the 

distributions of clean and noisy images. Consequently, this 

refinement enhances the transferability of pretrained 

representations to the ultimate task. 

3) Noise level 

We investigated the impact of various noise levels on 

pretraining [34], recognizing noise level as a critical 

hyperparameter. Figure 5 illustrates that lower levels of noise 

do not contribute positively to pretraining, whereas excessive 

noise negatively affects the model's performance. The DPED, 

whose encoder and decoder are pretrained by denoising, is more 

susceptible to noise, whereas the DPD, which only pretrains the 

decoder through denoising, exhibits greater stability. Excessive 

noise can also impact the pretraining process, leading to 

numerous negative effects by excessive focus on noise. 

Therefore, we chose a noise level of 0.4 to strike a balance 

between sufficient learning signals and minimizing the impact 

on model accuracy. 

 

 
Fig.5. Different noise level 

F. Discussion 

Denoising pretraining methods are an effective approach for 

enhancing the feature learning capability of models, which can 

lead to improved performance in segmenting abnormal regions. 

By training a model to remove noise and restore signals, the 

model develops a better understanding of the underlying 

structure and important information within the data. In the 

denoising pretraining process, the model is exposed to various 

types and levels of noise intentionally added to the input data. 

This helps the model learn to distinguish between the noise and 

the essential signal, allowing it to focus on the relevant features 

and discard the irrelevant ones. This selective attention helps the 

model identify and emphasize the discriminative aspects of the 

data, which are crucial for accurately segmenting abnormal 

regions. As the model becomes proficient in noise removal and 

signal restoration, it becomes more adept at capturing subtle 

patterns and details in the data. This acquired skill enables the 

model to recognize important image structures, such as edges, 

textures, and shapes, even in the presence of noise or other types 

of interference. By extracting robust and discriminative 

features, the model gains a deeper understanding of the 

underlying characteristics of abnormal regions, leading to 

improved segmentation performance. Furthermore, the 

denoising pretraining process encourages the model to learn 

more generalizable representations. By exposing the model to 

diverse noise patterns, it becomes more robust against different 

types of variations and artifacts that can be present in real-world 

data. This robustness helps the model perform well on new and 

unseen data, enhancing its ability to accurately segment 

abnormal regions across different datasets and clinical 

scenarios. In summary, denoising pretraining methods 

significantly contribute to feature learning by enhancing a 

model's capacity to learn discriminative and robust 

representations. The acquired skill of noise removal and signal 

restoration enables the model to focus on crucial information 

and image structure, leading to improved performance in 

segmenting abnormal regions. By learning to extract 

discriminative features and developing robustness against 

various noise patterns, the model becomes more effective in 

accurately identifying and delineating abnormal regions in 

medical images. 

V. CONCLUSION 

This paper proposed a pretraining method called ADDP for 

anomaly detection in medical images. The method involves dual 

pretraining approaches: Denoising pretraining for encoder and 

decoder (DPED) and Denoising pretraining for only decoder 

(DPD). The parameters are initialized based on the denoising 

task. Simultaneously, the denoising task is optimized to enhance 

the model's ability to learn valuable feature representations 

during the pretraining process. Several experiments have 

 
TABLE IV 

CORRESPONDING RESULTS OF DIFFERENT LOSS FUNCTIONS. 

Method Predict 100% 50% 10% 5% 1% 

DPED 
x 0.82 0.8 0.76 0.73 0.68 

𝜀 0.87 0.84 0.79 0.75 0.74 

DPD 
x 0.84 0.81 0.71 0.66 0.6 

𝜀 0.88 0.84 0.8 0.73 0.72 
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demonstrated that denoising guided pretraining can effectively 

enhance model performance. Specifically, in scenarios with 

limited samples, the pretrained denoising model exhibits greater 

stability. Moreover, incorporating multiple enhancements to the 

denoising tasks significantly boosts model performance. The 

proposed denoising pretraining method presented in this paper 

is not only applicable to medical image anomaly detection but 

also readily transferable to other tasks. 
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