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Evaluation of popular path planning algorithms
Mehmet Kara

Abstract—The navigation of mobile robots is a key element of
autonomous systems, which allows robots to move effectively and
securely in changing environments with greater autonomy and
precision. This study aims to provide researchers with a compre-
hensive guide for selecting the best path-planning methods for
their particular projects. We evaluate some popular algorithms
that are regularly used in mobile robot navigation, in order to
demonstrate their specifications and determine where they are
most effective. For example, one algorithm is used to model the
problem as a standard graph, and another algorithm is found to
be the most suitable for highly dynamic and highly dimensional
environments, due to its robust path-planning capabilities and
efficient route construction. We also filter high-performance
algorithms in terms of computational complexity, accuracy, and
robustness. In conclusion, this study provides valuable informa-
tion on its individual strengths and weaknesses, helping robotics
and engineers make informed decisions when selecting the most
appropriate algorithm for their specific applications.
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robotics

I. INTRODUCTION

MOBILE robot navigation is a rapidly expanding field
that has a wide range of uses, such as automation

in manufacturing and logistics, search and rescue operations,
and exploration of dangerous environments [1]. The goal is
to find the best way to help robots move around in new
environments and complete their tasks successfully [2]. To
achieve robot navigation, many different methods have been
developed over the years. Some of these methods are older and
more traditional, while others use new techniques like machine
learning.

Conventional approaches to mobile robot navigation encom-
pass fuzzy logic-based controllers and potential field methods
[3], [4]. While these methods find widespread application due
to their simplicity, they often have limitations. Challenges such
as grappling with intricate scenarios, as well as grappling with
susceptibility to sensor noise and uncertainty, have emerged as
recurring issues [5].

Recent advances in machine learning and artificial intelli-
gence have yielded elaborate and robust algorithms tailored for
mobile robot navigation. Among these innovations are method-
ologies such as neuroevolution, imitation learning, and deep
reinforcement learning [6]. These cutting-edge approaches
demonstrate promising capabilities in addressing intricate and
dynamic scenarios. Nevertheless, they often involve substantial
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prerequisites of extensive training data and computational
resources.

Central to the development and deployment of mobile robot
navigation algorithms is the critical evaluation phase [7].
The effectiveness of navigation algorithms is gauged through
various metrics that include success rate, navigation time, path
length, and collision frequency. These evaluative benchmarks
stand as recurrent benchmarks, used effectively to dissect the
efficacies and limitations of different algorithms [8].

Algorithms can exhibit varying superiority depending on
the context [9]. For example, while algorithm A might yield
enhanced solutions over algorithm B, the trade-off lies within
the temporal dimension, where algorithm A demands a longer
processing duration. Here, the system’s overarching priority
necessitates scrutiny to effectuate the optimal algorithmic
choice. Should time emerge as a critical factor, resulting in
swift outcomes, the discerning choice would favor algorithm
A.

This research seeks to identify the most effective algorithms,
exploring their advantages and drawbacks. To compare them,
the algorithms were tested under the same conditions, and their
performance was evaluated in terms of how close they got to
the optimal path and how efficient they were computationally.
The following section provides an in-depth review of the
literature on the most common path-planning algorithms. It
then goes on to discuss the selection of algorithms, the
methodology used, and the tests conducted, culminating in a
comprehensive assessment of the results.

II. BACKGROUND OF PATH PLANNING

The navigation of mobile robots is a key element in robotics
and autonomous systems [10]. It involves the planning and
control of the robot’s motion in order to reach a desired goal
in its environment. The aim of navigation is to allow the robot
to move safely, efficiently and autonomously, while avoiding
obstacles and reaching its destination.

The utilization of mobile robots has grown significantly in
recent years, with applications in a variety of domains. These
include autonomous vehicles, UAVs, warehouse robotics, agri-
cultural robots, and search and rescue operations [11]. The
development of algorithms, sensors, and computing power
has enabled robots to navigate complex and ever-changing
environments with greater autonomy and accuracy.

Path planning related to mobile robot navigation is the
process of finding an optimal or feasible path for a mobile
robot to move from its initial position to a desired goal posi-
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tion while avoiding obstacles or navigating through complex
environments [12].

The increasing number of path-planning algorithms requires
a systematic evaluation [13]. The performance of these algo-
rithms can vary greatly depending on the complexity of the
environment, the task at hand, and other contextual elements.
Therefore, it is essential to evaluate algorithms in a variety
of scenarios to determine their adaptability and effectiveness.
This evaluation helps researchers, engineers, and practitioners
make informed decisions when selecting algorithms for real-
world applications.

Choosing an algorithm is not a one-size-fits-all situation.
Depending on the robotic task, different priorities must be
taken into account, such as reducing the path length, opti-
mizing the computation time, or making sure the algorithm
is reliable under uncertain conditions [14]. An algorithm that
works well in one area may not be as successful in another.
Therefore, it is essential to match the algorithm to the task
objectives. This highlights the importance of having a thorough
understanding of the advantages and disadvantages of each
algorithm, making the evaluation of algorithms a key factor in
making informed decisions.

The path planning journey for mobile robots convention-
ally involves two fundamental steps: creating an environment
representation and devising a path that either optimizes a
cost function or fulfills specific constraints. This intricate
process is navigated through the application of a diverse
array of algorithms. In pursuit of understanding this dynamic
landscape, this study focuses on six prominent algorithms that
have garnered substantial utilization and recognition. The six
algorithms chosen encompass:

1) A Star Algorithm
2) Genetic Algorithm (GA)
3) Fuzzy Logic-Based Algorithm
4) Artificial Potential Field (APF)
5) Probabilistic Road Map (PRM)
6) Rapidly Discovering Random Trees (RRT)
The following section of the article explains the reasons for

choosing these algorithms.

III. SELECTION OF ALGORITHMS

The navigation of mobile robots is a key element of au-
tonomous systems, which allows robots to move effectively
and securely in changing environments. To ensure optimal
performance and successful path planning, it is essential to
select the right algorithm. In this article, we will evaluate some
popular algorithms that are regularly used in mobile robot
navigation. Our aim is to objectively compare their advantages
and disadvantages, aiding robotics and engineers in making
informed decisions when selecting the most suitable algorithm
for their particular applications.

We looked at the performance of path-planning algorithms
in terms of computational complexity, precision, and robust-
ness. We employed a methodical approach when selecting
the path-planning algorithms for our paper. We began by
specifying the requirements of the path planning problem,
including the complexity of the environment, the presence

of obstacles, and the dimensionality of the configuration
space. We then evaluated the suitability of each algorithm to
meet these requirements. Finally, we filter high-performance
algorithms in terms of computational complexity, accuracy,
and robustness.

We objectively evaluated the performance of the algorithms
by selecting relevant performance metrics such as path length,
computation time, success rate, and scalability. These metrics
were essential to quantify the efficiency and effectiveness of
each algorithm in our particular situation.

The efficiency and speed of our application were of the
utmost importance, so we carefully studied the computational
complexity of each algorithm, taking into account our need for
real-time operations and the computational resources available.
To guarantee reliability, we tested the algorithms in difficult
situations, such as narrow passages, complex obstacles, and
static environments. This assessment allowed us to determine
how well each algorithm adapted and worked under difficult
conditions.

We also looked at the learning curve associated with the
use and adjustment of each algorithm. To facilitate quick
development and deployment, we favored algorithms with
extensive libraries and simpler implementations. By taking
into account these restrictions, we ensured that the algorithms
chosen would be effective within the boundaries of our robotic
system.

In conclusion, after a thorough evaluation and examination,
we made informed decisions about our path-planning algo-
rithms. For the situation where the shortest route was essential,
we chose the A star algorithm because of its effectiveness and
capacity to guarantee the best outcome with an appropriate
heuristic. For optimization tasks with multiple objectives, the
GA provided superior performance in finding near-optimal
solutions and was thus selected. In uncertain and imprecise
environments, we opted for the Fuzzy Logic-Based Algo-
rithm, taking advantage of its decision-making abilities based
on linguistic rules and membership functions. For real-time
navigation in static environments, the APF algorithm was our
preference due to its straightforwardness and computational
efficiency. The PRM algorithm was found to be the most suit-
able for highly dynamic and highly dimensional environments,
due to its robust path planning capabilities and efficient route
construction. The RRT algorithm was also chosen for its ability
to rapidly explore and adapt in real time to high-dimensional
spaces, making it ideal for scenarios that require quick re-
sponses. Using this comprehensive methodology, we were able
to select the best path-planning algorithms for our robotic
navigation application, guaranteeing efficient and intelligent
autonomous motion in a variety of complex environments.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

We evaluated each algorithm against established criteria in
order to better understand its individual benefits and draw-
backs for the navigation of mobile robots. Every navigation
algorithm has its own set of features and strengths. Although
we looked at many criteria when we filter mentioned six
algorithms among others, when it comes to evaluating and
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Fig. 1. Test Environments.

comparing, two key factors stand out as universally applicable
metrics: path length and process time. Path length is essential
as it determines the optimality of the route, while process time
is critical to making real-time decisions during navigation. By
basing our evaluation criteria around these two fundamental
aspects, we can effectively compare algorithms on an equal
footing, gaining valuable insights into their efficiency and
performance in various real-world scenarios. This standardized
approach will help us make informed decisions and select
the most suitable algorithm for particular robotic tasks and
optimization problems.

The success of an approach is largely dependent on the
performance of its algorithm. This algorithm is the main
source of the solution’s value, as well as the amount of time
it takes to complete, the number of parameters it requires,
and its suitability for the problem. Path planning is a crucial
issue for mobile robots and there are many solutions available.
However, each is suitable for different scenarios, depending on
the complexity of the environment, the time it takes to com-
plete, and the length of the path. This paper seeks to compare
popular path-planning algorithms in order to demonstrate their
specifications and determine where they are most effective.

The methodology consists of some basic steps. First, we
have selected popular algorithms, as we explained in the
previous section. Second, five different static environments are
created, which can be seen in Fig. 1. Those environments are
created randomly with different levels of complexity. Because
the comparison would be made in a certain environment, it is
focused on how different the outputs of algorithms are in the
same environment. Each algorithm runs in these environments
separately by considering start point is top-left corner and
end point is bottom-right corner. The results are stated as
Processing Time and Path Length. In the final step, the results
are compared according to the same criteria for the same
environment, and the results are analyzed in the conclusion
section.

The creation of these environments allowed researchers to
conduct controlled experiments, conferring on them complete
dominion over the attributes that characterize each scenario.
This meticulous control ensured a harmonious and replicable
framework for their investigations, affording the luxury of
isolating and scrutinizing algorithmic performance without the
convolutions of the real-world intricacies.

Our aim was to scrutinize the adaptability and flexibility of
the algorithms through exposure to diverse environments. Each
of these environments was meticulously tailored to embody a
distinct navigation challenge, thereby facilitating a compar-
ative analysis of algorithmic prowess across a spectrum of
complexities. This systematic evaluation unveiled the relative
efficiency of the algorithms within specific environmental
contexts, enabling the identification of optimal performers for
particular scenarios. Ultimately, this endeavor provided us with
a holistic understanding of the intrinsic merits and limitations
that characterize each methodology.

Computer-based environments are increasingly popular for
testing mobile robot navigation algorithms. One of the main
advantages of using a simulated environment is the ability
to control and replicate various scenarios that are difficult to
achieve in real-world environments. It allows people to test and
validate their algorithms in a safe and controlled environment
without the risk of damaging expensive equipment or causing
harm to individuals. Another advantage of using such an
environment is the ability to manipulate various environmental
factors, such as obstacles, to create different scenarios for
testing. So, algorithms could be tested under a range of
different conditions, which is difficult to achieve in real-world
environments. Computer-based environments will be used to
perform path planning.

A. A Star Algorithm
The A star algorithm, commonly referred to as A star, is a

widely-utilized path-finding technique used in graph traversal
and search problems. This algorithm, which was first published
in 1968 [15], is favored for its ability to quickly identify the
shortest route between two nodes on a weighted graph. A star
is a search algorithm that combines the benefits of Dijkstra’s
algorithm and the Greedy Best-First Search. It does this using
a heuristic to calculate the cost from the current node to the
target [16]. The algorithm keeps track of two values for each
node: the actual cost of getting to the node from the starting
point and the estimated cost from the node to the goal, which
is determined by the heuristic. When considering both of these
costs, A star is able to explore the most promising paths first,
thus reducing the search space and making it more efficient
than other search algorithms.

It is a highly effective and commonly used pathfinding
technique to find the shortest route in a graph [17]. It
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Fig. 2. A Star path for each environment

Fig. 3. Fuzzy Logic-Based Algorithm paths for each environment

Fig. 4. Genetic Algorithm paths for each environment
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guarantees the best possible outcome if the heuristic used is
accurate. A star is suitable for search problems with a clearly
defined goal and can quickly explore the most promising
paths first, significantly reducing the search area. Balances
the completeness of Dijkstra’s algorithm and the speed of
Greedy Best-First Search, making it suitable for a variety
of applications, such as route planning, robotics, and video
games.

Despite its effectiveness, A star can traverse a large area
of the search space in certain situations, particularly when the
heuristic is not precise or the graph is highly interconnected
[18]. In some scenarios, the algorithm could be hindered by its
reliance on exact heuristics. Furthermore, A star may not be
the most suitable option when dealing with rapidly changing
environments, as it does not manage dynamic obstacles effi-
ciently and regular changes to the path may be computationally
costly.

The A star algorithm is used to model the problem as a
standard graph for the navigation of mobile robots. It seeks to
find the shortest path by exploring each part of the graph one
by one, with the input being the graph of the given image.
The algorithm begins by scanning for nearby regions and then
gradually converging on further points. To apply this algorithm
to discrete spaces, it is essential to create the discrete space
of the map, which is done by circulating the pixels of each
received image separately. However, the downside of the A
Star algorithm is that it takes a long time to compute high-
resolution images. To reduce this time, pixels can be clustered,
or the resolution can be decreased. It is necessary to find a
balance between better results and computational time. The
A Star algorithm produces better results in high-resolution
images, but requires more work time.

As shown in Fig. 2, the A Star algorithm successfully
navigated five different environments, following the path ex-
plained. However, the long run-time of this algorithm is a
disadvantage which can be mitigated by clustering pixels
or reducing the resolution. Although this may compromise
the quality of the results, a balance between better results
and computation time can be achieved. Nevertheless, the A
Star algorithm produces smooth and short paths, making it a
promising option for mobile robot navigation.

B. Fuzzy Logic-Based Algorithm

Fuzzy logic, which attempts to concrete future cases and
was introduced by Lotfi Zadeh in 1965 with a proposal for
fuzzy set theory [19]. Fuzzy logic-based algorithms use fuzzy
logic, a mathematical system that deals with uncertainty and
imprecision, to make decisions and control systems when there
are incomplete or unclear data [20]. This concept allows for
the representation of vague or nonbinary concepts by using
membership functions that determine the degree of belonging
to a set. What should be noted here is that there is no all-or-
nothing logic, like a situation is right or wrong [21].

Fuzzy logic algorithms are often used in a variety of fields,
including control systems, pattern recognition, and decision
making. These algorithms are advantageous in dealing with
real-world issues where exact logic may not be suitable, as

they take into account uncertain data and linguistic variables.
It has also been applied to many fields, from control theory to
artificial intelligence. For example, it is used with Ant Colony
Optimization (ACO), as a cost function for obstacles [22]. That
hybrid approach is 10% better than ACO in terms of speed
and route of the found road.

Fuzzy logic algorithms are adept at handling data that are
imprecise, uncertain, or not clearly defined [23]. They are
suitable for decision-making and control systems in cases
where exact binary logic may not be applicable. These algo-
rithms enable the integration of human expertise and domain
knowledge in the form of linguistic variables and membership
functions. They can model complex relationships between
input and output variables, allowing the system to make
informed decisions even when there are incomplete data.

Fuzzy Logic-Based Algorithms can be complex to imple-
ment and tune due to the requirement of defining membership
functions and linguistic rules. Furthermore, these algorithms
can be hard to interpret, as it can be challenging to comprehend
and explain the rationale behind certain decisions. Addition-
ally, they may not be as effective as other approaches in tasks
with clearly defined and precise data, where classical control
systems or crisp logic are sufficient.

The algorithm outputs two things: instantaneous return
speed and direction, allowing the robot to approach the target
while avoiding obstacles. To achieve this, a Fuzzy System
is created by manually setting rules for different scenarios.
Although this approach is effective in finding a way in some
environments, it cannot guarantee success in all scenarios, as
seen in Fig. 3.

C. Genetic Algorithm
The GA is a search and optimization technique that was

inspired by the principles of natural selection and genetics.
GA is designed to replicate the evolution process in living or-
ganisms to solve complex problems [24]. The algorithm works
by creating a population of potential solutions, representing
them as chromosomes, and evaluating their fitness based on a
given objective function. Individuals with the highest fitness
have a greater chance of reproducing and passing on their
genetic information to the next generation through cross-
replication and mutation operations. This cycle of selection,
crossover, and mutation is repeated until satisfactory solutions
are found. GA is especially useful for optimization problems
with large solution spaces, as they can effectively explore
different regions of the search space to find globally optimal
or near-optimal solutions.

GA has been shown to be very successful in tackling
complex optimization issues that involve a vast search area
and multiple, possibly conflicting, objectives [25]. Through
crossover and mutation operations, they are able to explore
different parts of the solution space, thus allowing them
to discover global or near-optimal solutions in a relatively
short period of time. GA can be applied to both continuous
and discrete parameter spaces, making them suitable for a
wide range of problems. Additionally, they are well-suited for
parallel processing, which allows for quicker convergence in
large-scale optimization tasks.
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Fig. 5. APF paths for each environment

Fig. 6. Probabilistic Roadmap paths for each environment

GA is capable of effectively exploring the solution space,
but it does not guarantee the discovery of the most optimal
solution [26]. The quality of the result is highly dependent
on the initial population and the parameters set. For complex
issues, GA may require a lot of computing power and a
long time to arrive at a satisfactory solution. Furthermore,
the way the problem is represented and the design of the
genetic operators can have a major effect on the algorithm’s
performance.

The GA seeks to find the optimal result rather than the
best one [27]. The problem is first modeled, and the GA’s
parameters and working logic are determined accordingly. To
do this, an objective function and the necessary variables
for the GA should be defined. For example, if the distance

between the target and the exit point consists of multiple stops,
the distance between each stop can be calculated using the
Euclidean distance and the objective function can be defined
as the sum of these distances. In cases where some of the
paths may pass through obstacles, these parts can be accepted
as negative distances.

As seen in Fig. 4, GA cannot find a path in environments 3
and 5. In this case, it is necessary to make some changes to the
GA parameters because it cannot keep up with the complexity
of the environment.

D. Artifical Potential Fields

The robot then follows the gradient of the potential field,
moving towards the goal while avoiding obstacles. The APF
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Fig. 7. Rapidly Exploring Random Trees paths for each environment

algorithm is a path-planning approach used in robotics and
autonomous systems. It is designed to guide a robot or agent
from a starting point to a goal while avoiding any obstacles
on its way [28]. The algorithm assigns an artificial potential
to both the goal and any obstacles, with attractive potentials
around the goal and repulsive potentials around the obstacles.
The robot then follows the gradient of the potential field, mov-
ing towards the goal while avoiding any obstacles. The robot
then follows the gradient of the potential field, progressing
from regions of high potential, namely obstacles, to areas of
low potential, goal. This approach is relatively straightforward
to execute and can effectively manage dynamic environments.
Nevertheless, APF algorithms may be prone to local minima
and may not always discover the most optimal path.

The APF algorithm is a simple, yet effective way to guide
a robot or agent through a complex environment. It requires
only local information to make decisions, making it compu-
tationally efficient [29]. Additionally, it is capable of real-
time planning and is effective in static environments, making
it suitable for a variety of robotic applications, such as path
planning, autonomous navigation, and robotic swarm control.
Implementing APF algorithms is relatively straightforward.

APF algorithms have a major flaw in that they can become
trapped in local minima, resulting in the robot getting stuck or
taking a suboptimal route [30]. When faced with narrow pas-
sages or complex surroundings, APF algorithms may struggle
to identify a viable path. Additionally, APF algorithms are
not able to effectively manage dynamic environments, as they
lack the ability to plan for changes in real time, and constantly
refreshing the potential field can lead to computational ineffi-
ciencies [31].

The efficacy of the APF algorithm was evaluated on five
distinct forces, including left, right, forward, left, and right
crossing over the boundaries and the front side of the point.
However, as demonstrated in Fig. 5, the Potential Field al-

gorithm is not successful in intricate regions, particularly in
mazes where there are no paths.

E. Probabilistic Road Map

PRM algorithm is a popular motion planning technique used
in robotics and computer graphics. PRM algorithm operates in
two stages. First, it generates an off-line road plan and then
queries this plan during runtime. The aim of the first stage
is to create a random path and generate input for the second
stage [32]. PRM selects points on a random plane that are
not on obstacles. The number of selected vertices affects the
execution time of the algorithm, where more vertices result in
a better result but a longer execution time [33].

The second stage of the algorithm aims to use the path
created in the first stage. The resulting graph from the first
stage is suitable for any search algorithm and is formed by
connecting the vertices. An A Star algorithm can be used in
this stage, where each edge length is considered as edge weight
and the shortest distance between the source and the target is
found. As shown in Fig. 6, the algorithm was unsuccessful
in finding a way in the third environment, but it showed
successful results in other environments.

PRM algorithm is a reliable approach for motion planning
in complex and high-dimensional configuration spaces [34].
It can generate a roadmap of valid configurations and paths
that can be used for multiple planning queries. PRM is
especially advantageous for scenarios with dynamic obstacles,
as the roadmap is precalculated and only the start and goal
configurations need to be checked for collisions. Furthermore,
PRM is reliable and can handle non-holonomic constraints and
complex robot geometries.

The performance of PRM is highly dependent on the quality
and amount of randomly chosen configurations [35]. In areas
of the configuration space that are not densely populated or
well-explored, PRM may not be able to discover feasible paths.
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Furthermore, the generation of the initial roadmap can be
computationally costly, especially in high-dimensional spaces.
The success of the algorithm is contingent upon the correct
selection of parameters, such as the number of samples and
the radius of connection, which may need to be adjusted.

F. Rapidly Exploring Random Trees

The RRT algorithm connects the random samples to the tree,
and the tree grows until it reaches the target configuration.
The algorithm is especially suitable for problems with high-
dimensional configuration spaces and non-holonomic con-
straints. RRT algorithm produces solutions that look like a
tree, with each solution point being a node and the branches
resembling the branches of a tree. This algorithm is designed
to explore the area, with the branches leaving the nodal point
to explore the region they are heading towards. Each branch
is randomly chosen and moves randomly towards the target
through that branch [36]. As such, RRT is a heuristic algorithm
that improves the random results it produces. The key factor
here is the length of the randomly generated branch. Longer
branches reduce the algorithm’s running time, but result in a
longer path length, whereas shorter branches provide better
results, but take longer to execute. Fig. 7 displays the results
of this algorithm in five different environments.

The tree structure of RRT is extended to sampled con-
figurations, enabling a quick exploration of the space [37].
This algorithm is designed to cover the configuration space
in an efficient manner while favoring unexplored regions. Its
probabilistic nature makes it suitable for complex and dynamic
environments, and it has been successfully used in various
robotic applications, such as path planning for autonomous
vehicles and robotic manipulators.

RRT is a widely used and successful algorithm for motion
planning in high-dimensional configuration spaces [7]. It is
capable of quickly exploring the space and has a good chance
of finding a solution if one exists, given enough time. This
algorithm is especially suitable for robotic systems with non-
holonomic constraints and complex geometries. Furthermore,
it is effective in dynamic environments since it focuses on
discovering feasible paths rather than constructing a roadmap
for the entire configuration space [38].

RRT is not always able to identify the most efficient route,
as it is not guaranteed to discover the most advantageous over-
all solution [33]. The success of the algorithm is largely de-
pendent on the sampling technique and may not be successful
in areas with limited or confined space. For certain problems,
RRT can be computationally expensive, and modifications of
the algorithm, such as RRT* and RRTConnect, have been
developed to address some of these issues.

V. RESULTS AND ANALYSIS

The assessment of algorithms for the guidance of mobile
robots has yielded useful data on their effectiveness and suit-
ability in different situations. Each algorithm showed distinct
advantages and disadvantages depending on the established
criteria and performance measurements.

Table I displays the results obtained by evaluating six
different algorithms in five different environments. Generally,
these algorithms perform better when the solution space is
very large. In this study, we compared the algorithm results
based on two criteria: path length and processing time. In
route planning, these criteria are inversely proportional to the
algorithm parameters. Therefore, we adjusted the parameters
of each algorithm based on the suitability of the environment,
the desired results, and the computation time.

TABLE I
RESULTS OF 6 DIFFERENT ALGORITHMS FOR 5 DIFFERENT

ENVIRONMENTS

Environments

Algorithms Criteria 1 2 3 4 5

A Time 5.3 7.7 10.6 12.0 12.3
Star Length 749 854 899 702 869

GA Time 5.7 2.4 X 4.0 X
Length 931 1710 X 913 X

Fuzzy Logic Time X X X 1.9 X
B.A. Length X X X 903 X

APF Time 3.9 X X 1.4 X
Length 784 X X 780 X

PRM Time 3.4 3.7 X 3.3 4.2
Length 711 902 X 682 980

RRT Time 2.6 2.9 6.4 2.4 2.9
Length 881 1000 1057 758 982

X means that Path is not Found.

Upon meticulous analysis of the outcomes, a conspicuous
observation emerges: the A Star algorithm emerges as remark-
ably versatile, exhibiting adeptness across diverse environ-
ments. Although its runtime is extended due to its preemptive
scanning of the entire field before path planning, the resultant
performance is notably commendable. The efficacy of this
algorithm is particularly pronounced in expansive terrains,
where its coverage prowess becomes evident. Notably, as en-
visaged, the runtime escalates in proportion to environmental
complexity, a consequence of the algorithm’s comprehensive
area scanning.

In sharp contrast, the GA takes a divergent route. Operating
with a roster of 10 random solutions as individual parameters,
GA yields promising results in simpler settings. However, it
falters in complex environments, necessitating a substantial in-
crease in the number of random solutions to navigate intricate
spaces effectively. This predicament is exemplified in the third
environment, which resembles a maze, where GA was unable
to chart a viable path. To enhance the algorithm’s success rate
in such demanding settings, a surge in the count of random
solutions becomes imperative, albeit at the cost of protracted
processing times.

The comparative assessment underscores the relatively mod-
est performance of the Fuzzy Logic-Based Algorithm in
relation to its algorithmic counterparts. Evidently, it faltered
in yielding valid paths across four of the five examined
environments, suggestive of its limitations in grappling with
intricate settings. However, a glimmer of promise emerged in
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the case of Environment 4, where notable achievements were
showcased by efficiently finding a viable path within a concise
timeframe.

Conversely, the APF algorithm, while encountering
pathfinding impasses in environments 2, 3, and 5, exhibited a
conspicuous superiority over the Fuzzy Logic algorithm within
the confines of environment 4. In particular, in this setting, the
path charted by the APF algorithm was not only shorter, but
also boasted smoother turns, as visually depicted in Fig. 5.
These findings conclusively illustrate the pronounced efficacy
of the APF algorithm in domains of increased complexity, as
exemplified by environment 4.

Despite boasting a runtime more expedient than that of
A Star, the PRM algorithm generates paths of relatively
abbreviated length. Notably, in the 4th environment, the APF
algorithm surpassed the Fuzzy Logic approach; however, jux-
taposing APF against PRM highlights the latter’s need for
a longer processing interval to ascertain shorter paths. It is
worthy of mention that, across all environments, PRM consis-
tently yields paths briefer than those generated by APF. This
distinctive characteristic positions PRM as an apt selection for
endeavors that prioritize path length over computational speed.

The final algorithm within this discourse is the RRT, con-
trasting the PRM in both runtime and path length. According
to the chosen parameters, RRT expeditiously uncovers paths,
albeit at the expense of their elongated lengths. This trade-off
between runtime and path length echoes a recurrent theme
observed across myriad algorithms. While augmenting the
iteration count in RRT could potentially yield improved paths,
this enhancement comes at the trade-off of extended pro-
cessing duration. Consequently, RRT emerges as a judicious
choice for applications where expedited computational times
and acceptance of moderately optimal paths align with the
requisite criteria.

VI. CONCLUSION

In conclusion, the evaluation of algorithms for mobile robot
navigation has provided valuable information on their individ-
ual strengths and weaknesses. Selecting the most appropriate
algorithm depends on the specific requirements and constraints
of the navigation problem.

For scenarios where finding the optimal path is essential,
the A star algorithm offers a robust solution. When dealing
with complex optimization tasks, the GA can provide high-
quality solutions, although its convergence speed should be
considered.

The fuzzy logic-based algorithm has the potential to manage
uncertain and inexact data, especially when domain expertise
is included. For navigating in static settings in real-time, the
APF algorithm is a straightforward and effective option.

In complex and changing environments, the PRM algorithm
is particularly useful, offering potential solutions to multiple
queries. For rapid exploration and adaptation on the fly in
high-dimensional spaces, the RRT algorithm is advantageous.

Further studies could explore the possibility of combining
the A star with other search algorithms to benefit from their
respective strengths and reduce their weaknesses. Refinement

of the heuristics of A star could also be beneficial in more
intricate situations. Additionally, the integration of fuzzy logic
into other algorithms may improve decision-making under
uncertain conditions.

In addition, creating more sophisticated versions of existing
algorithms, such as the RRT and GA variants, could lead
to faster convergence and better results. To address concerns
about the use of fuzzy logic systems in essential applications,
it is important to focus on making them more understandable
and interpretable.

Robotics navigation is becoming increasingly important in
many areas, and the further development and improvement
of these algorithms will lead to more reliable and intelligent
mobile robot systems, which will improve their performance
and safety in actual use.
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