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  Abstract—Multimedia networks utilize low-power scalar 

nodes to modify wakeup cycles of high-performance 

multimedia nodes, which assists in optimizing the power-to-

performance ratios. A wide variety of machine learning models 

are proposed by researchers to perform this task, and most of 

them are either highly complex, or showcase low-levels of 

efficiency when applied to large-scale networks. To overcome 

these issues, this text proposes design of a Q-learning based 

iterative sleep-scheduling and fuses these schedules with an 

efficient hybrid bioinspired multipath routing model for large-

scale multimedia network sets. The proposed model initially 

uses an iterative Q-Learning technique that analyzes energy 

consumption patterns of nodes, and incrementally modifies 

their sleep schedules. These sleep schedules are used by scalar 

nodes to efficiently wakeup multimedia nodes during adhoc 

communication requests. These communication requests are 

processed by a combination of Grey Wolf Optimizer (GWO) & 

Genetic Algorithm (GA) models, which assist in the 

identification of optimal paths. These paths are estimated via 

combined analysis of temporal throughput & packet delivery 

performance, with node-to-node distance & residual energy 

metrics. The GWO Model uses instantaneous node & network 

parameters, while the GA Model analyzes temporal metrics in 

order to identify optimal routing paths. Both these path sets are 

fused together via the Q-Learning mechanism, which assists in 

Iterative Adhoc Path Correction (IAPC), thereby improving the 

energy efficiency, while reducing communication delay via 

multipath analysis. Due to a fusion of these models, the 

proposed Q-Learning based Iterative sleep-scheduling & 

hybrid Bioinspired Multipath Routing model for Multimedia 

Networks (QIBMRMN) is able to reduce communication delay 

by 2.6%, reduce energy consumed during these 

communications by 14.0%, while improving throughput by 

19.6% & packet delivery performance by 8.3% when compared 

with standard multimedia routing techniques. 
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I. INTRODUCTION 

HE provision of services reliant on the connectivity of 

numerous intelligent devices, sensors, actuators, and the 

like is expected to have a substantial impact on people's 

everyday life (IoT). According to some projections, there will 

be more Internet-connected gadgets on the planet in 2021 than 

there are people. When completely implemented, the Internet 

of Things will allow a profusion of cutting-edge services, such 

as those pertaining to rich media streaming with Low-Energy-
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First Electoral Multipath Alternating Multihop Routing  

(LEMH) [1, 2], intelligent surveillance [3, 4], smart home 

applications with Cross Layer Optimizations [5, 6], etc. 

Wireless sensor networks (WSN) and more recently wireless 

multimedia sensor networks are essential for IoT applications 

to operate(WMSN). Figure 1 illustrates how multimedia sensor 

nodes (MSNs) are often scattered around an area to collect 

environmental data and send it to distant servers for analysis. 

After then, anybody who is interested may see or hear it. 

Multimedia techniques such as video conferencing, VoD, and 

real-time material dissemination are presently the most 

common ways of communication. According to research in [7, 

8, 9, 10], traffic from Multipath Routing will be highly 

effective for real-time use cases like satellite 

communications.Video surveillance becoming a more crucial 

use for WMSNs, it is anticipated that in comparison to [11, 12, 

13, 14], Internet traffic would grow by a factor of seven. We'll 

put this growth into action between 2017 and 2025. Before 

WMSN applications may be effectively deployed and function 

at their best, a few significant issues must be resolved. To 

begin, incorporating multimedia components into IoT systems 

[15, 16, 17, 18] is challenging as it entails redesigning present 

functionalities and adding new ones. More bandwidth is used 

for the transmission of multimedia via WSNs than for the 

exchange of straightforward data. WMSN traffic also includes 

burst mode and other time-sensitive delivery restrictions. The 

second issue is that multimedia sensing devices have limited 

memory, computing capacity, and, most significantly, energy 

resources. Even if the data contains multimedia, which often 

requires speedy transmission and robust processing, this still 

holds true. 

 

Fig. 1. A typical use case for Wireless Multimedia Sensor Node 

communications 
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Additionally, WMSN nodes with battery packs may 

sometimes function for very extended periods of time without 

the assistance of a human operator. Therefore, WMSN users 

and operators must give equal weight to two objectives: 

lowering energy consumption and increasing customer 

awareness of service quality. The difficulty of guaranteeing 

that the underlying applications have the required lifespan, 

throughput, latency, and dependability is also overcome by the 

WMSN network architecture. For instance, the sensor nodes 

used in these systems may be configured to indicate any 

anomalies while a target is being followed or watched. The 

quality of the video stream, which is the most crucial factor in 

this case, has a significant influence on the throughput 

requirements of the system and improves via Multipath 

Genetic Algorithm (MGA) [19, 20]. Applications that 

prioritize energy conservation include those that depend on 

sensor nodes to routinely monitor and send data. The 

development and operation of WMSN in a way that it satisfies 

the requirements of the diverse range of potential applications 

may be difficult. Parameter tuning, which involves modifying 

different network parameters to suit the requirements of the 

application, is one efficient way to address these problems. 

Although these techniques have many advantages [21, 22, 23, 

24], they also have some serious drawbacks. Making 

modifications to the network's settings is challenging and time-

consuming due to the unpredictable nature of the WMSN 

environment. However, the tuning parameters that are 

frequently generated are poor. If a sensor node is highly 

adjustable, has several parameters, and has a wide range of 

possible values for each parameter, finding the best settings for 

it could be difficult. Finding the ideal settings to use has 

become more challenging due to the dynamic volatility of the 

sensor node's surroundings. The use of dynamic optimization-

based approaches [25, 26, 27, 28, 29, 30] may be put to use in 

making decisions about the best network parameters so that 

sensor networks may adapt their operations to the needs of the 

application and the environment. Due to the high level of 

environmental unpredictability, these methods guarantee that 

sensor networks operate well and that the sensor nodes within 

them retain their functioning. The Vehicular Ad-Hoc Reliable 

Routing (VARR) [31, 32, 33, 34] is a dynamic optimization 

method that should be taken into account for WMSNs. This is 

due to the fact that in a highly dynamic environment where 

variables like wireless channel conditions, traffic, and energy 

restrictions are always changing, effective decision-making is 

crucial. With WMSNs, the Software Defined Networks (SDN) 

[35, 36, 37, 38] is a dynamic optimization approach that is 

effective. Node radio transmission often uses the bulk of the 

network's power in a WMSN [39]. The Medium Access 

Control (MAC) layer controls radio network access in wireless 

communications. It is essential to prioritize the MAC layer's 

energy efficiency in order to provide the longest potential 

lifetime for WMSNs. Although there are several ways to 

regulate radio transmission, duty cycle management is one of 

the most effective. Duty cycle techniques include 

intermittently stopping the radio transmission of sensor nodes 

as a way to save power. Duty cycle techniques are widely used 

in WSNs, particularly in the two main operating systems Tiny 

OS and Contiki1, which were created specifically for WSNs 

with BigNum Network Coding (BNNC) [40] These operating 

systems are among the greenest options on the market right 

now. Under a Duty Cycle method, the QoS may deteriorate 

dramatically in terms of latency and throughput. [8] We must 

treat this issue seriously. For the purpose of energy-aware data 

transmission over WMSNs, several research methodologies 

[41] have been put forth to improve QoS performance when 

Duty Cycle approaches are implemented at the MAC layer. 

Part II goes into more depth about the numerous focuses and 

methods employed to produce these solutions. A thorough 

analysis of the numerous varieties of applications and 

associated traffic is one of the most crucial steps in designing 

any solution. For a specific application, data like temperature 

readings, node locations, and multimedia files can all be sent 

simultaneously in a stream format. It can be difficult to give 

systems that process a wide range of traffic types and 

associated requirements adequate support. Multimedia content 

distribution when combined with high-rate data transmission in 

real time creates a significant barrier for heterogeneous 

deployments. 

Thus, it can be observed that a wide variety of machine 

learning models are proposed by researchers to perform this 

task, and most of them are either highly complex, or showcase 

low-levels of efficiency when applied to large-scale networks. 

To overcome these issues, next section of this text proposes 

design of a Q-learning based iterative sleep-scheduling and 

fuses these schedules with an efficient hybrid bioinspired 

multipath routing model for large-scale multimedia network 

sets. The proposed model was evaluated on large-scale 

network scenarios in section 3, where its performance was 

estimated & compared in terms of communication delay, 

energy efficiency, packet delivery performance and throughput 

levels w.r.t. existing multimedia network models. Finally, this 

text is concluded with some interesting observations about the 

proposed model, and also recommends methods to further 

improve its performance under different scenarios. 

II. DESIGN OF THE PROPOSED Q-LEARNING BASED 

ITERATIVE SLEEP-SCHEDULING & HYBRID 

BIOINSPIRED MULTIPATH ROUTING MODEL FOR 

MULTIMEDIA NETWORKS 

The review of existing multipath routing models for 

multimedia networks reveals that researchers have proposed a 

wide variety of machine learning models to perform this task, 

the majority of which are either highly complex or inefficient 

when applied to large-scale networks. This section discusses 

the design of a Q-learning based iterative sleep-scheduling and 

fuses these schedules with an efficient hybrid bioinspired 

multipath routing model for large-scale multimedia network 

sets in order to address these issues. Design of the model is 

depicted in figure 2, where it can be observed that the 

proposed model employs an iterative Q-Learning technique 

that analyzes the energy consumption patterns of nodes and 

modifies their sleep schedules incrementally. Scalar nodes use 

these sleep schedules to efficiently awaken multimedia nodes 

during ad hoc communication requests. These communication 

requests are handled by a combination of Grey Wolf Optimizer 

(GWO) and Genetic Algorithm (GA) models, which aid in the 

determination of optimal paths. These paths are estimated by 

analysing temporal throughput and packet delivery 

performance in conjunction with node-to-node distance and 

residual energy metrics. The GWO Model uses instantaneous 
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node and network parameters to identify optimal routing paths, 

whereas the GA Model analyzes temporal metrics. These two 

path sets are merged using the Q-Learning mechanism, which 

aids in Iterative Adhoc Path Correction (IAPC), thereby 

enhancing energy efficiency and minimizing communication 

delay via multipath analysis.  

 

Fig. 2. Design of the proposed dual bioinspired model with Q Learning for 

iterative optimizations of routing process 

To perform these tasks, the model initially collects large scale 

data sets that consist of node locations, energy levels, temporal 

throughput, temporal packet delivery ratio (PDR), link quality, 

network bandwidth, and other parameter sets. The collected 

information sets are given to a Q-Learning based model, which 

initially estimates a Q-Level for every node via equation 1, 

𝑄 = ∑
𝑃𝐷𝑅𝑖

100
+

𝑇𝐻𝑅𝑖

𝑀𝑎𝑥(𝑇𝐻𝑅𝑖)
+

𝑀𝑎𝑥(𝐸)

𝐸𝑖

𝑁𝑐

𝑖=1

       (1) 

Where, 𝑁𝑐 represents total number of temporal 

communications for each of the nodes, while 𝑃𝐷𝑅, 𝑇𝐻𝑅 & 𝐸 

represents their temporal PDR, throughput and energy 

consumption levels. Based on these Q values, a correlative 

mapping is done between scalar and multimedia nodes. To 

perform this mapping, a correlative Q-Level (QC) is estimated 

for each scalar node-to-multimedia node pair via equation 2, 

                      𝑄𝐶𝑖,𝑗 =
𝑄𝑖

𝑑𝑖,𝑗

                                    (2) 

Where, 𝑑𝑖,𝑗  represents distance between the multimedia and 

scalar nodes. The 𝑄𝐶 vector is sorted in descending order, and 

nodes are mapped starting from top of this sorted vector, 

thereby assisting in selection of node pairs with minimum 

distance and maximum temporal performance levels. The duty 

cycles of these node pairs are used in order to update duty 

cycle of the multimedia node via equation 3, 

𝐷𝑖(𝑁𝑒𝑤) = 𝐷𝑖(𝑂𝑙𝑑) +
𝑄𝑖

𝑄𝐶𝑖,𝑗

∗ (𝑄𝑖 − 𝑄𝑗) +
𝑄𝑖 + 𝑄𝑗

𝑄𝐶𝑖,𝑗

∗ 𝑀𝑎𝑥(𝑄) − 𝐷𝑗                           (3) 

Where, 𝐷 represents duty cycle of individual nodes. Based on 

this updated cycle value, multimedia nodes are put to sleep, 

while scalar nodes are mostly in wakeup phase, waiting for 

new packet requests. These packet requests are initially 

processed by a Grey Wolf Optimization (GWO) Model, which 

works as per the following process, 

• To initialize the optimizer, setup the following constants, 

o Total iterations for which the GWO will reconfigure its 

Wolves (𝑁𝑖) 

o Total Wolves that will take part in the optimization 

process (𝑁𝑤) 

o Individual social learning rates the Wolves (𝐿𝑟) 

o Source (𝑠𝑟𝑐) and Destination (𝑑𝑒𝑠𝑡) node IPs 

• Initially, generate 𝑁𝑤 Wolves via the following process, 

o Stochastically select a 1-hop neighbour for current 

source node via equation 4, 

 

𝑁𝑠𝑒𝑙 = 𝑆𝑇𝑂𝐶𝐻(1, 𝑁1ℎ𝑜𝑝), 𝑤ℎ𝑒𝑟𝑒 𝑑𝑠𝑒𝑙,𝑠𝑟𝑐 < 𝑑𝑟𝑒𝑓  & 𝑑𝑠𝑒𝑙,𝑑𝑒𝑠𝑡

< 𝑑𝑟𝑒𝑓                                               (4) 

Where, 𝑆𝑇𝑂𝐶𝐻 represents a Markovian process used for 

generation of stochastic numbers, while 𝑑𝑖,𝑗 represents 

Euclidean distance between the 𝑖 & 𝑗 nodes, 𝑁1ℎ𝑜𝑝 are the 1-

hop neighbours of current source node, and 𝑑𝑟𝑒𝑓  is the 

reference distance between source & destination node pairs. 

o Repeat this process for all nodes till destination node is 

reached, and then estimate Spatial Wolf fitness via 

equation 5, 
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        𝑓𝑠𝑤 = ∑
𝑑𝑖,𝑖+1

𝐸𝑖 ∗ 𝑁𝑝𝑎𝑡ℎ

𝑁𝑝𝑎𝑡ℎ−1

𝑖=0 (𝑠𝑟𝑐)

                              (5) 

Where, 𝑁𝑝𝑎𝑡ℎ represents number of nodes present in the 

current path sets. 

• Once all Wolves are generated, then a Wolf level fitness 

threshold is estimated via equation 6, 

       𝑓𝑡ℎ = ∑ 𝑓𝑠𝑤𝑖
∗

𝐿𝑟𝑖

𝑁𝑤

𝑁𝑤

𝑖=1

                                      (6) 

• Initially all 𝐿𝑤 are equated to a constant, and are later 

modified via Wolf Marking operations, that works as per 

the following process, 

Mark the Wolf as ‘Alpha’, if 𝑓𝑠𝑤 > 2 ∗ 𝑓𝑡ℎ         (7) 

     Else,  

Mark the Wolf as ‘Beta’, if 𝑓𝑠𝑤 > 𝑓𝑡ℎ                    (8),  

     and change its learning rate via equation 11, 

𝐿𝑟(𝑁𝑒𝑤) = 𝐿𝑟(𝑂𝑙𝑑) + ∑
𝐿𝑟

𝑁(𝐴𝑙𝑝ℎ𝑎)

𝑁(𝐴𝑙𝑝ℎ𝑎)

𝑖=1

        (9) 

Where, 𝑁(𝐴𝑙𝑝ℎ𝑎) represents the Alpha Wolf particles. 

Mark the Wolf as ‘Gamma’, if 𝑓𝑠𝑤 > 𝐿𝑤 ∗ 𝑓𝑡ℎ  (10),  

and change its learning rate via equation 11, 

𝐿𝑟(𝑁𝑒𝑤) = 𝐿𝑟(𝑂𝑙𝑑) + ∑
𝐿𝑟

𝑁(𝐵𝑒𝑡𝑎)

𝑁(𝐵𝑒𝑡𝑎)

𝑖=1

         (11) 

Where, 𝑁(𝐵𝑒𝑡𝑎) represents the Beta Wolf particles. 

o Otherwise, Mark the Wolf as ‘Delta’, and change its 

learning rate via equation 12, 

𝐿𝑟(𝑁𝑒𝑤) = 𝐿𝑟(𝑂𝑙𝑑) + ∑
𝐿𝑟

𝑁(𝐺𝑎𝑚𝑚𝑎)

𝑁(𝐺𝑎𝑚𝑚𝑎)

𝑖=1

 (12) 

Where, 𝑁(𝐺𝑎𝑚𝑚𝑎) represents the Gamma Wolf particles. 

• This process is repeated for 𝑁𝑖 iterations, and Wolf fitness 

& learning rates are modified for continuous iterative 

optimizations. 

All the Wolves Marked as ‘Alpha’ Wolves are reiterated via 

Genetic Algorithm (GA), which assists in incorporating 

temporal performance metrics into the selected routes. This 

GA Model works as per the following process, 

• Setup the Number of Solutions for GA via equation 13, 

           𝑁𝑠 = 𝑁(𝐴𝑙𝑝ℎ𝑎)                                (13) 

 

• Setup the learning rate of GA via equation 14, 

𝐿𝑟 = ∑
𝐿𝑟𝑖

𝑁(𝐴𝑙𝑝ℎ𝑎)

𝑁(𝐴𝑙𝑝ℎ𝑎)

𝑖=1

                              (14) 

• Now, scan through each of the solutions for 𝑁𝑖 iterations, 

and perform the following operations, 

o For each solution, estimate its temporal fitness via 

equation 15, 

𝑓 =
1

𝑁𝑝𝑎𝑡ℎ ∗ 𝑁𝑐

∑ ∑
𝐷𝑖,𝑗

𝑀𝑎𝑥(𝐷)
+

𝐸𝑖,𝑗

𝑀𝑎𝑥(𝐸)
+

100

𝑃𝐷𝑅𝑖,𝑗

𝑁𝑐

𝑗=1

𝑁𝑝𝑎𝑡ℎ

𝑖=1

+
𝑀𝑎𝑥(𝑇𝐻𝑅)

𝑇𝐻𝑅𝑖,𝑗

                        (15) 

Where, 𝐷, 𝐸, 𝑃𝐷𝑅 & 𝑇𝐻𝑅 represents the temporal delay levels, 

temporal energy levels, temporal PDR levels, and temporal 

throughput levels for each of the 𝑁𝑐 communications. 

o Once these values are estimated for all solutions, then 

identify fitness threshold via equation 16, 

      𝑓𝑡ℎ = ∑ 𝑓𝑖 ∗
𝐿𝑟

𝑁𝑠

𝑁𝑠

𝑖=1

                                      (16) 

o For all solutions with 𝑓 ≥ 𝑓𝑡ℎ, modify their 

configurations via the following process, 

▪ Stochastically select a solution with 𝑓 < 𝑓𝑡ℎ 

▪ Replace a in-path node from this solution with the in-

path node of the solution that is being modified, as per 

equation 17, 

𝑁(𝑁𝑒𝑤) = 𝑆𝑇𝑂𝐶𝐻 (𝑁1ℎ𝑜𝑝(𝐶𝑢𝑟𝑟𝑒𝑛𝑡))      (17) 

Where, 𝑁(𝑁𝑒𝑤) represents the new node for solution that is 

being modified, while 𝑁1ℎ𝑜𝑝(𝐶𝑢𝑟𝑟𝑒𝑛𝑡) is the solution that is 

elected for replacement of nodes. 

▪ Based on this process, evaluate solution fitness via 

equation 17, and update route configurations. 

• This process is repeated for 𝑁𝑖 iterations, which assists in 

identification of solution sets with minimum fitness levels. 

Once all iterations are completed, then select the solution with 

minimum fitness levels, and use it for routing operations. After 

completion of one routing operation, the fitness threshold of 

GA is updated via equation 18, 

𝐿𝑟(𝑁𝑒𝑤) = 𝐿𝑟(𝑂𝑙𝑑) +
𝑀𝑖𝑛(𝑓)

𝑀𝑎𝑥(𝑓)
∗ (𝑀𝑎𝑥(𝑓) − 𝑀𝑖𝑛(𝑓))

+
𝑀𝑖𝑛(𝑓)

𝑀𝑖𝑛(𝑓) + 𝑀𝑎𝑥(𝑓)
∗ 𝑀𝑎𝑥(𝑓)    (18) 

This Q-Learning based update assists in incrementally 

optimizing the learning rate, which improves node selection 

efficiency during the routing process. This efficiency is 

evaluated in terms of different routing parameters and 

compared with existing models in the next section of this text. 
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III. PERFORMANCE COMPARISON AND EVALUATION 

The proposed model uses a combination of Q-Learning with 

Grey Wolf Optimizer (GWO) & Genetic Algorithm (GA) in 

order to identify optimal routes with sleep scheduling for 

multimedia network scenarios. The Q-Learning model enables 

optimization of duty cycles for scalar & multimedia nodes. 

These updated duty cycles are used by Grey Wolf Optimizer in 

order to identify spatially optimized routes, which are 

temporally optimized by the Genetic Algorithm based route 

selection process. The route optimization process is further 

tuned by a Q-Leaning-based operation, which assists in 

iterative updation of learning rates for future routing requests. 

In order to validate performance of this model, it is evaluated 

in terms of communication delay (D), energy needed during 

communications (E), packet delivery ratio (PDR), and 

throughput (T) for different communication requests. This 

performance is evaluated on Network Simulator (NS2), with 

the following network configurations as depicted in table I, 

TABLE I 
CONFIGURATIONS USED DURING SIMULATIONS 

 

Network Simulation Parameter Configuration Value Set 

Propagation of nodes Using 2 Ray Ground 

Protocol for MAC operations 802.11 

Queue used for interfaces Queue with priority & drop 

tailing operations 

Model used for Antennas Omnidirectional 

Total Multimedia Nodes 100 to 1000 

Total Scalar Nodes 100 to 5000 

Routing done via base protocol AOMDV Wireless 

Total dimensions of the 

network 

1km x 1km 

Energy Model M – Multimedia, S – Scalar 

Energy consumed while in idle 

mode 

2 mW (M), 0.1 mW (S) 

Energy consumed while in 

reception mode 

3 mW (M), 0.2 mW (S) 

Energy consumed while in 

transmission mode 

5 mW (M), 1 mW (S) 

Energy consumed while in 

sleep mode 

0.0001 mW (Both) 

Energy consumed while in 

transitioning between modes 

0.01 mW (Both) 

Delay needed for these 

transitions 

0.005 s (Both) 

Total energy levels of nodes 

during network initializations 

2000 mW (M) 

500 mW (S) 

Using these network and node configurations, the number of 

node-to-node communications between were varied between 

linearly 100 to 1000; and same nodes were selected for routing 

across each route selection process. Average QoS values for 

energy consumption (E) was estimated via equation 19, end-to-

end communication delay (D) was estimated via equation 20, 

packet delivery ratio (PDR) was estimated via equation 21, 

throughput (T) was estimated via equation 22 and delay jitter 

(JD) was estimated via equation 23 and evaluated for different 

Number of Network Communications (NNC), 

𝐸 =
1

𝑁𝑁𝐶
∑ 𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 − 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑁𝑁𝐶

𝑖=1

                  (19) 

Where, 𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  & 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  represents the completion & initial 

energy of nodes during the communication operations. 

𝐷 =
1

𝑁𝑁𝐶
∑ 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

𝑁𝑁𝐶

𝑖=1

               (20) 

Where, 𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  & 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙  represents the completion & initial 

timestamps during the communication operations. 

      𝑃𝐷𝑅 =
1

𝑁𝑁𝐶
∑

𝑃𝑟𝑥

𝑃𝑡𝑥

𝑁𝑁𝐶

𝑖=1

                                (21) 

Where, 𝑃𝑟𝑥 & 𝑃𝑡𝑥  represents the reception & transmission 

energy levels of nodes during these communications.  

     𝑇𝐻𝑅 =
1

𝑁𝑁𝐶
∑

𝑃𝑟𝑥

𝐷𝑗

𝑁𝑁𝐶

𝑗=1

                              (22) 

𝐽 =
1

𝑁𝑁𝐶
∑ 𝐷𝑖 − 𝑀𝑒𝑎𝑛(𝐷)

𝑁𝑁𝐶

𝑖=1

                   (23) 

Based on these evaluations, the average delay for different 

communications with 1000 Scalar & 500 Multimedia Nodes 

were compared with LEMH [2], MGA [19], & BNNC [40], 

and can be observed from table II as follows, 
TABLE II 

 AVERAGE COMMUNICATION DELAY NEEDED DURING ROUTING FOR DIFFERENT 

SCENARIOS 

 

NNC 
D (ms) 

LEMH 

[2] 

D (ms) 

MGA 

[19] 

D (ms) 

BNNC 

[40] 

D (ms) 

QIBMRMN 

100 1.05 1.20 1.34 0.99 

120 1.13 1.32 1.48 1.10 

140 1.26 1.50 1.68 1.26 

160 1.45 1.74 1.96 1.47 

180 1.70 2.05 2.31 1.73 

200 2.01 2.41 2.71 2.02 

250 2.36 2.80 3.12 2.32 

300 2.70 3.18 3.55 2.64 

400 3.05 3.59 4.00 2.95 

450 3.38 3.98 4.43 3.25 

500 3.66 4.34 4.83 3.53 

550 3.92 4.69 5.21 3.78 

600 4.14 4.97 5.52 4.00 

700 4.36 5.24 5.83 4.22 

800 4.59 5.52 6.14 4.45 

1000 4.84 5.82 6.47 4.69 
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Fig. 3. Average communication delay needed during routing for different 

scenarios 

Based on this evaluation and figure 3, it can be observed 

that the proposed model is capable of reducing the 

communication delay by 2.6% when compared with LEMH 

[2], 18.3% when compared with MGA [19], and 26.7% when 

compared with BNNC [40] under different simulation 

conditions. The reason for this reduction in delay is use of 

sleep scheduling along with distance measures in GWO & 

temporal delay levels in GA, which assists in selection of 

optimal routing paths. Similarly, the energy consumed during 

these communications can be observed from table III as 

follows, 

TABLE III  

AVERAGE COMMUNICATION ENERGY NEEDED DURING ROUTING FOR 

DIFFERENT SCENARIOS 

 

NNC 
E (mJ) 

LEMH 

[2] 

E (mJ) 

MGA 

[19] 

E (mJ) 

BNNC 

[40] 

E (mJ) 

QIBMRMN 

100 2.63 3.99 3.57 2.61 

120 2.80 4.22 3.77 2.84 

140 2.94 4.43 3.95 2.97 

160 3.08 4.64 4.14 3.11 

180 3.22 4.86 4.34 3.26 

200 3.39 5.10 4.55 3.42 

250 3.55 5.35 4.77 3.58 

300 3.72 5.60 4.94 3.68 

400 3.88 5.66 4.90 3.62 

450 4.03 5.65 4.78 3.49 

500 4.16 5.60 4.60 3.31 

550 4.31 5.50 4.41 3.13 

600 4.46 5.52 4.38 3.09 

700 4.61 5.69 4.51 3.18 

800 4.78 5.89 4.67 3.29 

1000 4.94 6.11 4.86 3.43 

 

 

 

 

 

Fig. 4. Average communication energy needed during routing for different 

scenarios 

Based on this evaluation and figure 4, it can be observed 

that the proposed model is capable of reducing the energy 

consumed during communication by 14.03% when compared 

with LEMH [2], 37.94% when compared with MGA [19], and 

26.89% when compared with BNNC [40] under different 

simulation conditions. The reason for this reduction in energy 

is use of sleep scheduling along with use of energy levels in 

GWO & temporal energy levels in GA, which assists in 

selection of lifetime aware routing paths. Similarly, the 

communication throughput achieved during these 

communications can be observed from table IV as follows, 

TABLE IV 

 AVERAGE COMMUNICATION THROUGHPUT ACHIEVED DURING ROUTING FOR 

DIFFERENT SCENARIOS 

 

NNC 

T (kbps) 

LEMH 

[2] 

T (kbps) 

MGA 

[19] 

T (kbps) 

BNNC [40] 

T (kbps) 

QIBMRMN 

100 294.55 276.53 373.58 476.02 

120 297.07 278.86 376.72 480.02 

140 299.52 281.19 379.90 484.06 

160 302.07 283.56 383.13 488.14 

180 304.62 285.92 386.34 492.19 

200 307.14 288.27 389.52 496.22 

250 309.66 290.62 392.69 500.26 

300 312.18 292.98 395.86 504.29 

400 314.69 295.35 399.03 503.71 

450 317.21 297.71 402.19 501.98 

500 319.73 300.06 405.35 498.99 

550 322.25 302.40 408.50 494.63 

600 324.77 304.73 411.65 493.42 

700 327.28 307.07 414.82 495.76 

800 329.80 309.42 417.99 498.75 

1000 332.31 311.77 421.17 502.49 
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Based on this evaluation and figure 5, it can be observed 

that the proposed model is capable of improving the 

throughput achieved during communication by 36.60% when 

compared with LEMH [2], 40.50% when compared with MGA 

[19], and 19.62% when compared with BNNC [40] under 

different simulation conditions. The reason for this 

improvement in throughput is use of temporal throughput 

levels in GA, which assists in selection of throughput aware 

routing paths. This makes the model useful for high date rate 

applications. 

 

Fig. 5. Average communication throughput achieved during routing for 

different scenarios 

Similarly, the PDR achieved during these communications can 

be observed from table V as follows. 

TABLE V  
AVERAGE PDR ACHIEVED DURING ROUTING FOR DIFFERENT SCENARIOS 

 

NNC 

PDR (%) 

LEMH 

[2] 

PDR (%) 

MGA 

[19] 

PDR (%) 

BNNC [40] 

PDR (%) 

QIBMRMN 

100 81.75 81.38 82.30 89.28 

120 82.44 82.06 82.99 90.03 

140 83.12 82.75 83.69 90.79 

160 83.83 83.45 84.39 91.55 

180 84.54 84.15 85.10 92.31 

200 85.24 84.84 85.80 93.07 

250 85.94 85.53 86.49 93.83 

300 86.63 86.22 87.20 94.59 

400 87.33 86.92 87.89 95.34 

450 88.03 87.61 88.59 96.10 

500 88.73 88.30 89.29 96.86 

550 89.43 88.99 89.98 97.61 

600 90.13 89.67 90.68 98.37 

700 90.83 90.36 91.37 99.12 

800 91.53 91.05 92.07 99.88 

1000 92.22 91.74 92.77 99.95 

 

Fig. 6. Average PDR achieved during routing for different scenarios 

Based on this evaluation and figure 6, it can be observed 

that the proposed model is capable of improving the PDR 

achieved during communication by 8.3% when compared with 

LEMH [2], 8.8% when compared with MGA [19], and 7.7% 

when compared with BNNC [40] under different simulation 

conditions. The reason for this improvement in PDR is use of 

temporal PDR levels in GA, which assists in selection of PDR 

aware routing paths. This makes the model useful for high date 

dissemination rate applications. Similarly, the delay jitter 

during these communications can be observed from table VI as 

follows. 

TABLE VI 

 AVERAGE DELAY JITTER DURING ROUTING FOR DIFFERENT SCENARIOS 

 

NNC 

J (ms) 

LEMH 

[2] 

J (ms) 

MGA 

[19] 

J (ms) 

BNNC [40] 

J (ms) 

QIBMRMN 

100 1.08 1.21 1.34 0.98 

120 1.16 1.33 1.48 1.09 

140 1.29 1.51 1.68 1.24 

160 1.48 1.76 1.96 1.45 

180 1.74 2.08 2.31 1.71 

200 2.06 2.44 2.71 2.00 

250 2.41 2.83 3.12 2.30 

300 2.77 3.22 3.55 2.60 

400 3.13 3.63 4.00 2.92 

450 3.46 4.03 4.43 3.21 

500 3.75 4.40 4.83 3.49 

550 4.01 4.74 5.21 3.74 

600 4.24 5.03 5.52 3.95 

700 4.47 5.31 5.83 4.17 

800 4.70 5.59 6.14 4.39 

1000 4.96 5.89 6.47 4.63 
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Fig. 7. Average delay jitter during routing for different scenarios 

Based on this evaluation and figure 7, it can be observed 

that the proposed model is capable of reducing the jitter of 

communication by 6.08% when compared with LEMH [2], 

20.23% when compared with MGA [19], and 27.58% when 

compared with BNNC [40] under different simulation 

conditions. The reason for this reduction is use of temporal 

delay & throughput levels in GA, which assists in selection of 

low jitter routing paths. This makes the model useful for 

applications that need high data consistency during 

communications. Due to these optimizations, the proposed 

model is useful for a wide variety of deployments that require 

low delay, low energy consumption, high throughput, high 

PDR and low communication jitter, under real-time scenarios. 

IV. CONCLUSION AND FUTURE SCOPE 

Combining Q-Learning with Grey Wolf Optimizer (GWO) 

and Genetic Algorithm (GA), the proposed model QIBMRMN 

identifies optimal routes with sleep scheduling for multimedia 

network scenarios. The Q-Learning model enables duty cycle 

optimization for scalar and multimedia nodes. Grey Wolf 

Optimizer uses these updated duty cycles to identify spatially 

optimized routes, which are temporally optimized by a Genetic 

Algorithm-based route selection procedure. A Q-Learning-

based operation is used to fine-tune the route optimization 

process by assisting with the iterative increase of learning rates 

for future routing requests. On the basis of delay evaluation, 

the proposed model is capable of reducing communication 

delay by 2.6% compared to LEMH [2], 18.3% compared to 

MGA [19], and 26.6% compared to BNNC [40] under various 

simulation conditions. This reduction in delay is due to the 

utilization of sleep scheduling in conjunction with distance 

measurements in GWO and temporal delay levels in GA, 

which aids in the selection of optimal routing paths. On the 

basis of energy evaluation, it can be seen that the proposed 

model is capable of reducing the energy consumed during 

communication by 14.03% compared to LEMH [2], 37.94% 

compared to MGA [19], and 26.89% compared to BNNC [40] 

under various simulation conditions. This decrease in energy is 

due to the use of sleep scheduling in conjunction with the 

utilization of energy levels in GWO and temporal energy 

levels in GA, which aids in the selection of lifetime-aware 

routing paths. On the basis of throughput evaluation, it can be 

seen that the proposed model is capable of increasing 

communication throughput by 36.60% when compared to 

LEMH [2], 40.5% when compared to MGA [19], and 19.62% 

when compared to BNNC [40] under various simulation 

conditions. This improvement in throughput is a result of the 

utilization of temporal throughput levels in GA, which 

facilitates the selection of throughput-aware routing paths. 

This makes the model useful for applications with a high data 

rate. 

On the basis of PDR estimation, it can be seen that the 

proposed model is capable of improving the PDR achieved 

during communication by 8.35% compared to LEMH [2], 

8.80% compared to MGA [19], and 7.70% compared to BNNC 

[40] under various simulation conditions. This improvement in 

PDR is due to the utilization of temporal PDR levels in GA, 

which aids in the selection of PDR-aware routing paths. This 

makes the model applicable for applications with a high data 

dissemination rate. On the basis of these jitter estimations, it 

can be seen that the proposed model is capable of reducing 

communication jitter by 6.08% when compared to LEMH [2], 

20.23% when compared to MGA [19], and 27.58% when 

compared to BNNC [40] under various simulation conditions. 

This reduction is due to the utilization of temporal delay and 

throughput levels in GA, which facilitates the selection of low-

jitter routing paths. This makes the model applicable to 

applications that require a high level of data consistency during 

communications. Due to these optimizations, the proposed 

model is useful for a wide range of real-time deployments that 

require low delay, low energy consumption, high throughput, 

high PDR, and low communication jitter. 

In the future, the performance of the proposed model must be 

evaluated on larger network scenarios, and can be enhanced 

through the application of transformer-based optimizers such 

as Generative Adversarial Networks (GANs), Auto Encoders 

(AEs), etc. This performance can also be improved by 

employing low-complexity linear optimization techniques that 

employ regressive models for traffic pre-emption in real-time 

use cases. 
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