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Abstract—This article analyzes the dynamic power losses 

generated by various hardware implementations of the BLAKE3 

hash function. Estimations of the parameters were based on the 

results of post-route simulations of designs implemented in Xilinx 

Spartan-7 FPGAs. The algorithm was tested in various hardware 

organizations: based on a standard iterative architecture with one 

round instance in the programmable array, various derived 

versions with pipeline processing were elaborated, which 

ultimately led to a set of 6 architectural variants of the cipher, from 

the iterative case (without pipeline) to one with maximum of 

6 pipeline stages. Moreover, the results obtained for the iterative 

architecture were compared with analogous implementations of 

the BLAKE2 (direct predecessor) and KECCAK (the foundation of 

the current SHA-3 standard) algorithms. This case study illustrates 

the differences (or lack thereof) in the power requirements of these 

three hash functions when they are implemented on an FPGA 

platform, and illustrate the significant savings that can be achieved 

by introducing pipeline to the processing of the BLAKE round. 

 

Keywords—cryptographic hash function; KECCAK; SHA-3; 

dynamic dissipated power 

I. INTRODUCTION 

RYPTOGRAPHIC hash functions are frequently used in 

today's IT security infrastructure for tasks as diverse as key 

generation, digital signatures and authentication schemes, or the 

construction of stream ciphers. In 2007, considering the latest 

advances in cryptanalysis of that time, the National Institute of 

Standards and Technology called for the development of a new 

standard for SHA hash functions, with a completely fresh 

approach to construction of the algorithm. In the announced 

open competition, a total of 14 proposals were accepted for 

analysis, and many currently used solutions (including all three 

algorithms considered in this article) originated from this group. 

During evaluation of the candidates, effective – i.e. fast or fast 

relatively to the size – hardware implementation was an 

important analysis aspect and was one of the main evaluation 

criteria (see, e.g., [1]). However, the analysis of power 

consumption, being a characteristic which depends on many 

mutable and subjectively selected factors (hardware platform, 

technology process of the implementation device, working 

environment, etc.), was not easy in objective assessment and not 

always was discussed in detail. 
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This paper presents a case study in which various hardware 

implementations of the BLAKE3 cipher – the latest variant of 

one of the main finalists of the NIST competition – were 

implemented in an FPGA device, optionally with different 

pipelined organizations. The estimation of power losses was 

carried out by implementation tools using the most accurate 

method based on a precise analysis of the activity of internal 

signals, obtained by simulating the final system, fully placed 

and routed in the programmable array. For the case study 

commercial devices from the Sprtan-7 family from Xilinx were 

selected as the hardware platform. The test range consisted of 

a total of 6 variants of the BLAKE3 algorithm – from standard 

iterative organization to pipelined architectures with 

a maximum of 6 pipeline stages – which were additionally 

supplemented with iterative implementations of the BLAKE2 

and Keccak algorithms. The final test set of 8 complete systems 

was implemented on the same hardware platform and with the 

same tools. The obtained results show the fundamental impact 

that the application of pipelining has on power losses in the 

BLAKE3 algorithm, and also compare its iterative version with 

its direct predecessor (BLAKE2) and the core of the SHA-3 

standard (KECCAK). 

A similar set of algorithms and their hardware 

implementations was presented in [2], where the subject of the 

analysis was their processing speed and the maximum 

throughput. In [3], these results were extended to include the 

aspect of energy efficiency, and this paper is a follow-up of that 

work with an elaborated discussion of the significant power 

reductions that are achieved in the BLAKE algorithm by using 

intra-round pipeline processing. 

The text is organized as follows. The structures of the three 

algorithms and specific challenges of their implementation in 

hardware are the subject of Chapter 2. The next chapter – No. 3 

– describes the research methodology and numerical results 

obtained for all 8 projects under analysis, both in terms of 

processing efficiency and – what is the main focus of this work 

– power consumption. The analysis of the results is the subject 

of Chapter 4 and includes a discussion of the effects of using the 

pipeline in various variants of BLAKE3 architectures, as well 

as a comparison of this algorithm with its predecessor and the 

SHA-3 core. 
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II. HARDWARE IMPLEMENTATIONS OF THE THREE 

ALGORITHMS 

A. The Ciphers 

The BLAKE hash function [4] was submitted as one of the 

candidates in the NIST competition and, after initial evaluation, 

was qualified for the second round along with four other 

proposals. Although it was not ultimately chosen as the basis for 

the new SHA standard losing to the KECCAK algorithm, it was 

highly rated during the evaluation due to its high cryptographic 

strength with great potential for fast software implementations. 

In particular, its design made very good use of the possibilities 

offered by the dedicated assembly instructions of contemporary 

microprocessors. Because of these advantages, and also because 

of the relatively slow operation of the new SHA-3 standard in 

software, it quickly attracted attention of the cryptographic 

community which was always looking for a new, strong and fast 

algorithm to implement in cryptographic libraries. Still during 

the competition, in 2012 the authors amended their original 

proposal by announcing the second revision of the algorithm in 

[5] and this version – called BLAKE2 – found applications in 

cryptographic data protection, e.g. in the RAR archive format, 

in the Linux kernel, and in the specialized key derivation 

systems. Due to its popularity, the authors did not lose their 

interest in the algorithm and in 2020 announced the BLAKE3 

specification in [6]. The latest modification further increased 

hashing speed by simplifying the processing but without 

reductions in its cryptographic efficiency. This version began to 

be implemented quite quickly as one of the available hashing 

methods, e.g. in blockchain transaction protocols ([7]) or in 

automatic key generation ([8]). 

Both versions of the BLAKE algorithm which are considered 

in this article use a very similar internal round organization, as 

illustrated in Fig. 1 which shows the complete data flow in 

a standard iterative architecture taken as an example. In general, 

the task of the round is to transform the 512-bit state V, 

organized in 16 words v015, with the additional use of words of 

the encoded message M, m0 15 (all words are 32-bit). The actual 

computations are performed in 8 instances of the so-called 

quarter rounds G0 ÷ G7, each calculating new values of four 

words v using also two words m. The set of elementary 

transformations applied to the words include arithmetic 

addition, bitwise XOR and rotations. In each round, state V goes 

through a two-stage cascade of 4 G instances, which, working 

in parallel, process a complete set of 16 words v. 

For the analysis of this article, the most important are two 

differences that BLAKE3 introduced to its predecessor: (a) the 

number of round repetitions NR was reduced from 10 to 7, and 

(b) a new method was proposed to select words m which are 

passed to individual G modules. The first of the above 

modifications obviously reduced the calculation time and 

increased the effective throughput of the hardware (thus also 

decreased the total energy needed to complete the calculations), 

but did not have a noticeable impact on the organization of the 

implementation in the programmable array (apart from trivial 

modifications to the control system which counts the execution 

of rounds). The second modification, presented quite briefly by 

the authors in the specification [6], had more far-reaching 

consequences for the organization of the hardware. 

Whereas in BLAKE2 a set of 10 permutations r decided 

which m words were to be used by each G module (and 

a different one had to be applied in subsequent iterations of the 

round), in the third version of the algorithm the assignment of 

m words to each G instance is fixed, while between rounds the 

words are permuted among themselves according to one and the 

same scheme. The consequences of this change in hardware are  

 

significant: while in version 2 it was necessary to implement  

expensive 16:1 multiplexers with a width of 32 bits (two for 

each G instance) to execute a specific permutation depending on 

the round number, in BLAKE3 only one constant permutation 

of the words remained and, in order to implement it between the 

rounds, it can be hard-coded in routing which reload m registers, 

i.e. without involving any logical resources. The hardware 

implementation of 16 multiplexers, each with 16 inputs and 32-

bit wide paths, created problems already discussed in [9] (where 

it was considered to replace them with RAM blocks storing the 

m words), and, as the results in [2] show, their elimination can 

lead to over 40% reduction in the FPGA array occupancy. 

 

 

  

Fig. 1. Datapaths in BLAKE3 (above) and BLAKE2 (below) iterative 

processing 

Compared to these nuances, the internal organization of the 

KECCAK compression function ([10],[11]) is relatively simple: 

its large, 1600-bit state is organized as a 5×5 array of words, 

each 64-bit, and the operations of the round apply 5 specific 

elementary transformations NR = 24 times. Because the 

transformations transcode different fragments of the state 

(columns, rows or planes inside a 5×5×64-bit cuboid), the data 

flow cannot be illustrated with a diagram as simple as the ones 

in Fig. 1. A detailed analysis of the proposed implementation of 

the algorithm on the FPGA platform is described in [12], but it 

is worth noting one difference: since in BLAKE the message 

words m remain active as input parameters to the G modules in 
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all rounds, it is necessary to store and distribute them through 

a separate, 512-bit path running parallel to the state (compare 

Fig. 1), while in the KECCAK the message bits are loaded only 

as the initial value of the state before the first round, after which 

their storage and distribution to the transformation logic are not 

needed. 

B. Hardware Implementations 

The analysis in this paper includes a total of 6 different 

hardware implementations of the BLAKE3 algorithm. The  

starting point was the standard iterative organization typical to 

any algorithm with repetitive round processing: the 

programmable array contains logic that performs operations of 

one round, and the state bits are passed through it NR times. 

Derived variants were obtained by dividing the round logic into 

pipeline stages which process multiple data in parallel. The 

basic iterative architecture (without pipelining) will be denoted 

as X1, and the pipelined variants will be denoted as Pk, where 

k is the number of pipeline stages within the round, and 

therefore also the number of parallel data streams that are 

concurrently hashed. The set of pipelined variants consisted of 

P2, P4, and three possible versions of P6. Next to them, the X1 

implementations of all three algorithms (BLAKE versions 3 and 

2 and KECCAK) were analyzed, which gave a total of 8 complete 

projects. 

In particular, developing pipelined architectures for the 

BLAKE algorithm required decisions about the location of the 

pipeline stage boundaries within a round. It was natural to adapt 

as such a boundary the signals connecting the two halves of the 

4+4 cascade of G modules (Fig. 1), which was all needed to 

create the P2 variant. Variants P4 and P6 required modifications 

in the inner structure of the G function, i.e. divisions of its logic 

into two or three stages. A discussion of possible options in this 

regard is included in [2], and the selected choices are presented 

in Fig. 2. While the division of G processing into two parts 

(arch. P4) did not raise any major doubts, the division into 

3 levels (arch. P6) was not so obvious if one wanted to maintain 

an even distribution of elementary operations in the stages. In 

particular, if the goal was to divide the 6 adders defining the 

critical path in the proportions 2+2+2 (arch. P6a), it was 

necessary to separate their two instances appearing immediately 

one after another in the path of word va (see Fig. 2). This 

separation could make optimization of the two adders (merging  

their resources) impossible, so the test set included also variants 

P6b and P6c, in which the 2+3+1 and 3+2+1 division was used 

in order to keep adders within one pipeline stage. 

III. CALCULATING THE POWER 

A. Methodology 

For each of the 8 projects, the evaluation of its power 

consumption consisted of three steps: development of 

a complete encryption unit and its implementation in the 

selected FPGA device, post-route simulation of the resulting 

system with a test vector forcing continuous operation of the 

unit with maximum load, and the final calculation of power 

parameters based on the results obtained in simulation from 

tracking the internal signals of the systems. 

1) Implementation  

All hardware modules representing the considered ciphers are 

defined as modules with wide parallel I/O ports whose total size 

may exceed a thousand bits. For example, the BLAKE3 unit 

requires reading 512 message bits plus 256 bits of chain hash 

value along with 128 bits with other parameters, and outputs the 

result as a 256-bit value – i.e. it requires transferring a total of 

1152 bits through its ports. For power evaluation, it was crucial 

to implement each unit as a complete design, fully distributed in 

the FPGA array, with a reasonable number of I/O pins. To 

reduce the necessary number of outputs, the cryptographic cores 

were supplemented with a simple buffering system whose task 

was to iteratively load the input data (Serial-In Parallel-Out 

registers) and output the result (Parallel-In Serial-Out regs), 

both in 32-bit chunks. These buffers reduced pin requirements 

so that standard IC packages could be used, and although they 

consumed some registers they had a negligible impact on the 

                                        

Fig. 2. Boundaries of pipeline stages inside the G modules 
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operation and power losses of the system, with cipher cores 

being oriented primarily towards combinatorial logic. 

Once the complete units were developed, their designs were 

synthesized and implemented by Xilinx Vivado tools in devices 

from the Spartan-7 family ([13]). All variants of the BLAKE3 

cipher were fit in the smallest xc7s6cpga196-2 chip, while the 

iterative BLAKE2 and KECCAK modules had to be implemented 

in the second chip of the family, xc7s15cpga196-2, due to their 

too large size. The budget family of 7 Series and the smallest 

possible devices were chosen deliberately to get the results 

typical for cost-oriented, mass projects. During implementation, 

it was necessary to provide a target operating frequency for the 

tools; the chosen values were close to the architectures’ 

maximums as determined in the analysis [2], with some safety 

margin ensuring stable operation of the array. 

2) Simulation 

Since the power calculations performed by the Vivado tools 

provide an average result for the entire simulation period 

(transient analysis is unavailable), it was necessary to develop 

special test runs that would correspond to the continuous 

operation of the hashing engine with full load (i.e. subsequent 

calculations would start immediately after the previous ones 

ended). The method of ensuring continuous load was not 

obvious for the prepared implementations, in which transferring 

a new set of data in 32b fragments would require many clock 

ticks, e.g. for BLAKE3 – 28 ticks for 896b of the input and 8 for 

256b of the output. For this reason, a simplified approach was 

adopted, based on two solutions. First, the initial test vector was 

assigned as the initialization value of the input SIPO register, so 

that the simulation could start immediately with hashing, 

bypassing the data loading phase. Secondly, since each pipeline 

unit Pk in the first k ticks must be loaded with a new set of data 

for concurrent processing, subsequent vectors were generated 

from the initial one by shifting a random pattern from the input 

pins into the SIPO register, one per each clock cycle. Strictly 

speaking, this did not ensure completely independent data for 

each stage of the pipeline (which should be observed for 

a correct simulation of signal switching, being the basis for 

estimating the consumed power), but – thanks to the avalanche 

effect of ciphers – state bits in neighboring stages after just a few 

clocks became sufficiently different to assume their 

approximately independent distribution. 

Having such test vectors, post-route timing simulation of the 

fully implemented system was performed with an extra request 

to generate a SAIF file describing the switching activity of all 

internal signals found in the array ([14]). Each of the 

8 implementations was tested with a set of different operating 

frequencies, which required preparing a distinct stimulus file for 

each frequency and generating a separate SAIF file. 

3) Calculation of Power Consumption 

The SAIF file contains switching characteristics of every 

signal in the FPGA array as they were traced during the 

simulation, and this data was the basis for the power estimations 

performed by the Vivado Power Analysis tool. The calculations 

were carried out assuming standard values of supply voltages 

but with maximum process settings, i.e. for the most 

unfavorable parameters of power losses in the semiconductor 

structures of the chip. The results analyzed in this article are 

based on reports obtained this way which included, among 

others, estimated total power losses in the device, their dynamic 

and device static parts, junction operating temperature, etc. 

([14]). 

The analysis and conclusions presented in the rest of the 

paper take into account only the reported dynamic power as the 

sole parameter related to the operation of the implemented 

project and determined by the nature of the cipher algorithm. 

The static component has been omitted because it is connected 

to losses caused by leakage currents and varies with, among 

others, the size and construction of the FPGA array, ambient 

temperature, power supply parameters, etc.. Being generally 

dependent on conditions of heat transport (package thermal 

resistivity, cooling efficiency, air flow, mounting on the board, 

etc.), has no relation to the operation of the programmed 

encryption core. Limiting the analysis only to the dynamic 

power allows for an assessment of power efficiency for 

particular cipher and eliminates factors unrelated to the 

algorithm, but it presents only a part of the picture of general 

power analysis (for example, the components ignored here 

would be necessary to estimate the operating temperature of the 

device working in any particular setup, etc.). 

B. FPGA Implementations 

Final parameters of the 8 encryption modules after 

implementation in FPGA devices are summarized in Table 1, 

which repeats the results published in [2]. The size of the 

designs (occupancy of the programmable array) is described by 

the first 4 lines which give the number of used LUT logic 

generators, slices, registers and dedicated multiplexers. One can 

note that the last type of element was needed in the BLAKE2 

implementation only, where it was necessary for multiplexing 

message words m between G modules. 

The dynamic characteristics of the implementations are given 

in the second part of the table. Listed are the requested (in 

implementation) and actually obtained maximum operating 

frequencies, as well as the parameters describing the longest 

TABLE I  

PARAMETERS OF THE CIPHERS AFTER IMPLEMENTATION 

 X1 P2 P4 P6a P6b P6c  
BLAKE2 

(X1) 
KECCAK 

(X1) 

Slices 761 892 1054 1150 1199 1207  1247 1397 

LUTs 2541 2607 2779 3473 3458 3491  4362 4623 

Registers 2184 3206 4743 5804 5774 5783  2437 4815 
MUXes 0 0 0 0 0 0  1536 0 

Target FCLK [MHz] 40.0 90.0 140.0 190.0 190.0 170.0  40.0 200.0 

Actual FCLK [MHz] 44.4 91.9 146.6 194.2 197.2 172.0  40.6 215.5 
Route delay 56% 49% 51% 42% 54% 52%  56% 88% 

Logic levels 45 23 14 12 10 11  45 1 
      (inlc. Carry) (33) (18) (10) (9) (7) (8)  (30) (0) 
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propagation path that determined minimum clock period: the 

percentage of delay coming from routing (and not from logic) 

and the number of logic levels, including dedicated carry 

propagation primitives. 

The evaluation of the implementation efficiency of these 

configurations was the subject of publication [2]. For the 

purposes of the power analysis which will follow, the 

conclusions can be summarized in the next points. 1) The 

change in the BLAKE3 algorithm processing scheme, which 

eliminated the multiplexing of m words at the G module inputs, 

resulted in a very significant reduction in array occupancy (up 

to 61% in the number of slices and 58% of LUT generators), but 

contributed little to speeding up the operation; this size 

reduction is diminished to some extent by pipelining, in which 

the size increases with the number of stages. 2) The very large 

size of the KECCAK implementation should be attributed to its 

much larger state; even if we consider path M as the state 

extension in BLAKEx algorithms, their combined width of 

1024b is still less than 1600b. 3) The implementation efficiency 

of KECCAK transformations is much better than all other 

variants: in its critical path, the whole processing was fit in only 

1 level of logic, while in the two iterative implementations of 

BLAKEx – in 45. The modifications introduced in the third 

version of the algorithm did not change anything in this regard, 

and the improvement can come only after dividing the round 

logic into pipeline stages in Pk architectures. 4) The 32-bit 

adders present in both versions of BLAKEx, due to the method 

of their implementation in FPGA, do not allow to exploit the full 

capabilities of the wide, 6-input LUT generators available in the 

Spartan-7 family, as effectively as the KECCAK implementation 

does. 

C. Power Estimation 

The dynamic power parameters calculated by the tools are 

summarized in Table 2. The values were determined for the 

operation with the target (requested during implementation), 

maximal clock frequency. The total losses are additionally 

broken down into components generated by various resources 

of the FPGA array: clock distribution networks, slice logic 

(LUT generators, elements of carry propagation, registers and 

dedicated multiplexers), routing and I/O blocks. 

The calculations were repeated for each system also with 

reduced frequencies and the estimated total power as functions 

of FCLK are presented in Fig. 3. The graph allows for a collective 

comparison of the operating conditions of all systems in 

different frequency ranges and, additionally, confirms the 

general rule for estimating power losses in a digital system, 

showing the linear relationship between them and the system’s 

frequency. 

The last two rows of Table 2 contain additional metrics which 

characterize the power efficiency; it was possible to define them 

thanks to the linear dependency between the losses and the clock 

frequency. The first one – PMHz – expresses the ratio between the 

dissipated power and FCLK (in mW/MHz units). The second 

metric – Eh – is the average energy needed to calculate one hash 

value (in μJ/hash). Alternatively, its value is equivalent to the 

dynamic power required to achieve a specific hashing rate 

(number of hashes per second, hps); a value in μJ/hash 

corresponds to W/Mhps. From definitions of the metrics, Eh = 

PMHz  NR, hence their values have identical relative distribution 

among all 6 implementations of the BLAKE3 algorithm and the 

differences in BLAKE2 and Keccak come only from different 

number of rounds. 

 

 
Fig. 3. Dynamic power losses of the implementations as functions of FCLK 

(note the logarithmic scales) 

IV. EVALUATION OF POWER EFFICIENCY 

A.  Components of the Losses 

Evaluation of the results should be started by examining the 

structure of losses in individual projects, i.e. by analyzing power 

consumption by various resources in the FPGA array. Figure 5 

presents the data from Table 2 as percentages. For readability, 

the two smallest components – I/O blocks and dedicated 

multiplexers – have been merged as the "Other" component. 

  

P 

P 

TABLE II  

DYNAMIC POWER LOSSES IN IMPLEMENTATIONS RUNNING WITH MAXIMAL FREQUENCIES, IN WATTS 

 
X1 

40MHz 
P2 

90MHz 
P4 

140MHz 
P6a 

190MHz 
P6b 

190MHz 
P6c 

170MHz 
 

BLAKE2 
40MHz 

KECCAK 
200MHz 

Total 9.219 0.931 0.401 0.413 0.373 0.326  9.214 1.801 

Clocks 0.002 0.010 0.020 0.033 0.034 0.031  0.003 0.030 

Slice Logic 3.330 0.357 0.144 0.146 0.137 0.121  3.394 0.674 
    LUT 2.969 0.303 0.118 0.112 0.107 0.091  3.029 0.671 

    Carry  0.361 0.051 0.022 0.026 0.023 0.022  0.366 0.000 

    Register 0.001 0.001 0.004 0.008 0.008 0.007  0.001 0.003 

    MUXes 0.000 0.000 0.000 0.000 0.000 0.000  0.001 0.000 

Routing 5.884 0.560 0.231 0.228 0.194 0.168  5.816 1.092 
I/O 0.001 0.003 0.007 0.007 0.007 0.007  0.001 0.004 

Efficiency metrics:          

PMHz (mW/MHz) 230 10.3 2.87 2.18 1.96 1.92  230 9.01 
Eh    (μJ/hash) 1.61 0.072 0.020 0.015 0.014 0.013  2.30 0.216 
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While the low values in I/O blocks are completely expected and 

only validate correctness of the prepared simulation scenarios 

(where operation of I/O shift registers was deliberately reduced 

to the necessary minimum), very low losses in MUX elements 

in BLAKE2 is the first factor indicating that their massive 

impact on the size of the project (see comments in section III.B) 

does not result in an equally significant effect on power 

consumption. 

 

 

Fig. 4. Power consumption by different components of the array 

Clock networks can also be omitted as a factor of little 

importance in this analysis because only in the P6x 

architectures, where they serve over 5,000 flip-flops with 

a clock frequency close to 200MHz, their share varies around 

9%. Another negligible component are losses generated by 

registers, which become noticeable only in cases P4 and P6x, 

but even then their part reaches a maximum of 2%. Despite of 

high frequencies in these designs, operation of registers turns 

out to be very power-efficient. 

One of the characteristics which distinguishes the BLAKEx 

elementary transformations from the KECCAK ones is the use of 

numerous adders in the operations of the G function. 

Nevertheless, the calculated results do not imply their high 

power requirements since carry propagation resources 

contribute to 47% of overall losses in both versions of the 

cipher. Thus, it indicates that the 32b adders, implemented – 

similarly to the multiplexers of the m words – with dedicated 

elements and connections within the slices, keep the energy 

demand relatively low. 

This brings the attention to the last two resources that actually 

determine the level of dissipated power, generating together 

from 80% (P6x) up to 96% (X1) of the losses: the LUT 

generators and the connection resources,. It is understandable 

that in any hardware realization of a cryptographic algorithm the 

overwhelming majority of processing consists in combinatorial 

transformations, hence the high load on LUT elements is not 

surprising, but it is worth emphasizing that the power losses are 

even two times higher in the routing resources. Analogous to the 

contribution to critical path delays in the performance 

parameters (Table 1), configurable interconnects with their 

buffering consume the most power and with a share of 51 to 

64% dominate over other components. 

B. Pipelining in BLAKE3 

When comparing the absolute values presented in Table 2, 

the most significant observation is the very large reduction in 

power demands achieved in BLAKE3 implementations thanks 

to the pipelining. Already dividing the X1 round logic into two 

pipeline stages resulted in a reduction of the Eh value by as much 

as 95% (from 1.61 to 0.072 μJ/hash), and further divisions with 

increasing number of stages brought a reduction of, 

respectively, 62% (transition from P2 to P4) and approx. 30% 

(P4 vs. P6x). This effect leads to an unusual situation clearly 

visible in Fig. 3, when the pipelined cases not only are able to 

achieve much higher operating frequencies than a purely 

iterative one, but also at these frequencies they consume 

significantly less power. The PMHz factor, which reaches as 

much as 230 mW/MHz in the X1 organization, drops to 10.3 

(P2), 2.87 (P4) and 1.92 2.18 in P6x cases. 

It turns out that the hardware implementation of BLAKEx 

core is a profound example of the effect known and described 

in the literature ([15]-[17]) when reductions in power 

consumption are caused by reorganization of the digital system 

with pipeline processing. The mechanism standing behind this 

effect is rooted in elimination of transient signal disturbances, 

so called glitches – short-lived intermediate states which the 

signal temporarily assumes before reaching a stable and correct 

new value, which can occur after changes at the inputs of 

a combinatorial circuit. In the general case, such disturbances 

can occur when two or more inputs of a logic gate generating 

the signal change non-simultaneously due to (a) different delays 

in their propagation paths or (b) different numbers of logic 

levels through which they pass. The first factor is unavoidable 

in FPGA implementations, where transmission paths are 

constructed with different segments of configurable connections 

and ensuring their balanced delays is difficult and expensive in 

practice; the second factor often occurs in complex 

combinatorial logic designs. In this case, both factors converge 

and intensify each other: the BLAKE round, as 

the combinatorial module with 1024 input bits and 

a deliberately complex and irregular internal structure, is 

particularly susceptible to the glitch generation, and the 

resulting parasitic switching of signals on long transmission 

lines with capacitive loads generate large power losses. 

Pipelining eliminates these problems by introducing two 

changes: (a) after dividing long propagation paths into pipeline 

sections, the number of logical levels is reduced – as it can be 

seen in Table 1, from the initial 45 in the X1 architecture to 

1012 in the P6x – which decreases probability that any two 

signals reaching the same LUT element would traverse different 

number of logic levels, (b) the flip-flops which latch the signals 

at the pipeline boundaries eliminate the avalanche reproduction 

of glitches by pausing their propagation until the signal reaches 

a stable state. 

The improvement in signal stability introduced in the 

pipelined architectures becomes evident after examination of 

the SAIF files. This format records, among others, the number 

of value changes (including transient glitches) for each internal 

signal in the system. Figure 5 shows this number averaged per 

one clock cycle; to restrict the examination only to signals that 

actually belong to the encryption core, the averages are limited 

to the 5% most frequently switching signals in each design. The  
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data was read from the same SAIF files as the ones used for 

power calculations. The results illustrate the huge differences 

between the X1 and the pipelined BLAKEx architectures, 

providing also the KECCAK behavior for comparison. The 

relationship between the cases in this graph is essentially 

a repetition of the one seen in the power comparison: if in the 

P6x cores the most active signals switched on average 5 times 

in each clock cycle (i.e. they went through 4 transient states 

before reaching the final value), in iterative architectures this 

number was as high as 1380 or 1268. It is assumed that in 

a cryptographic transformation ideally a half of the state bits, 

randomly selected, should change after each round, hence 0.5 

would be the desired, ideal value of this parameter. 

 

 
Fig. 5. Average number of value changes per one clock cycle for 5% most 

active signals (log scale) 

We can also see that this problem is particularly intensive in 

the BLAKE algorithm: even in the iterative architecture of 

KECCAK the number of switches was 10, which is approximately 

what BLAKE achieves only after introducing 4-stages pipeline. 

This weakness of the algorithm can be attributed to the presence 

of six 32-bit adders in the combinatorial paths of each G module. 

In FPGA, the adders are implemented in a (simplest) ripple-

carry propagation configuration which does not require complex 

logic, but its sequential nature is very susceptible to the 

generation of intermittent transient states on the outputs (being 

a reflection of carry values propagated sequentially across the 

bits). This organization is fast enough and itself does not 

dissipate much power thanks to the use of dedicated connections 

inside the slices, but the additional glitches it generates are 

replicated by the complex combinatorial logic and cause very 

large power losses in the propagation paths. 

Leaving for the moment the absolute values of power losses, 

the results presented here allow also for a better comparison of 

the three variants of the six-stage pipeline architectures of the 

BLAKE3 algorithm. In [2] this comparison was based on 

performance metrics and did not clearly indicate the best option. 

Better differentiation now comes from the power analysis: the 

Eh parameter for the P6c variant reaches the best value, being 

lower by a moderate 3% than in the P6b case but by a significant 

14% than in the P6a. Thus, the most natural division of the G 

processing paths, which maintained an even division of 6 adders 

into three pipeline stages in the P6a variant, turned out to be the 

least energy-efficient solution, and the problem of separating 

two adjacent adders indeed creates noticeable implementation 

problems but they manifest themselves in the power parameters 

rather than in the performance. Optimizing the two adjacent 

adders in the cases P6b and P6c led to such a reduction in the 

glitch generation that it outweighed the problems resulting from 

unbalanced logic within the stages. The P6c case was the least 

efficient in the performance analysis (9% lower operation speed 

compared to the fastest P6a), but it proved to be the most energy 

efficient. 

C. Comparison of the Three Ciphers 

Particular attention should be paid to the fact that the power 

losses in both variants of the BLAKE cipher turned out to be 

practically identical: the difference in Eh metrics is a purely 

arithmetic effect resulting from the reduction in the number of 

rounds, and the proportionality factor of power consumption as 

a function of the frequency PMHz is identical. It is significant that 

this parity is observed in two projects of such different sizes, 

with the BLAKE3 implementation being as much as approx. 

40% smaller both in the number of occupied slices and LUT 

generators. In the performance analysis of [2] such a reduction 

in resource consumption was considered to be an obvious 

benefit, but now it has not translated into an advantage in power 

consumption. 

The size difference, as noted in Chapter 2, comes from the 

elimination of the 16:1 multiplexers that switch 32-bit words m 

in the message path. The obtained results indicate that such 

a large amount of logic did not dissipate significant power, 

which can be related to the following two factors. (a) Thanks to 

the use of internal routing and dedicated MUX primitives, in the 

Spartan 7 architecture 16-input multiplexers can be created 

without LUTs and general-purpose connections, leading to 

a construction with predictable and repeatable timing 

parameters. (b) In general, any multiplexer is a combinatorial 

circuit with a perfectly regular structure of a balanced binary 

tree, so it does not suffer from the problem of different numbers 

of logic levels on the paths from input to output. As long as this 

regularity (including propagation times in the transmission 

lines) can be preserved in the FPGA realization – which in this 

case was possible by meeting criterion (a), even for a 16:1 mux 

size – a glitch-free combinatorial circuit can be created. As 

a result, both versions of the BLAKEx algorithm showed 

a virtually identical value of the total dynamic power, and its 

individual components in Table 2 differ by no more than 2%. 

The lack of improvement in the power parameters of 

BLAKE3 confirms its inferiority to the KECCAK algorithm, 

which is not so exposed to power losses caused by glitches. Its 

transformations do not contain arithmetic adders and, despite 

their complicated structure extending down to the single bit 

level, are very well implemented with 6-input LUT generators. 

As a result, the critical path in the iterative implementation of 

this algorithm contains only a single LUT element and the 

signals are not so burdened with noise. With the measured 

average number of switches of the 5% most active signals equal 

to 10, the total power consumption of the complete module was 

much lower: 7 times lower energy per hash and even 25 times 

lower power per megahertz – all achieved in an implementation 

with about 80% higher resource occupancy. 

CONCLUSIONS 

This work analyzed the power consumption of BLAKE3, 

BLAKE2 and KECCAK hash functions implemented in various 
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hardware architectures in an FPGA device. The same design and 

implementation methodology ensured uniform test conditions 

and comparability of the results received for 8 projects, allowing 

to show the impact of pipelining the BLAKE3 core in the FPGA 

array and, additionally, to compare the power efficiency of the 

three ciphers. The results indicated the primary impact that  

 

signal stability has on the level of power consumption, being 

a factor as important as the size and amount of occupied logic 

resources. 

The study indicated an exceptionally high level of glitches in 

the (non-pipelined) round of the BLAKEx algorithms. This fact 

increased power requirements to levels so high that the standard 

iterative organization of these ciphers becomes prohibitively 

expensive in operation, at least in applications requiring high 

clock frequencies. In such cases, even if the associated 

improvement in throughput is not required, pipelining may be 

considered as a way to reduce power losses, if the increased 

latency remains acceptable. It is worth noting, however, that the 

presented analysis focused on the extreme case of continuous 

operation of the hashing module under full load, i.e. with the 

pipeline filled in 100% and generating a new output on average 

every NR clock ticks. The decision criteria may be different if 

the working environment does not provide enough data for 

continuous hashing and the power budget of the entire project is 

able to accommodate the increased losses. Nevertheless, the 

discussed problems add another aspect (apart from speed 

efficiency) that confirms the advantage of the KECCAK 

algorithm over BLAKE in FPGA implementations. 

A separate issue is the trustworthiness of power estimations 

at such high levels of signal glitches. The most accurate method 

used by the tools is based on SAIF data generated by the 

simulator, which evaluates activity of each signal by giving only 

the total number of its switches, without distinguishing between 

transient disturbances and stable states. In the case of the 

BLAKEx algorithms, these numbers reached over a thousand in 

a single clock cycle, which translates to frequencies too high for 

even fastest logic gates to switch; in such conditions standard 

models that estimate current pulses from charging capacitive 

loads may need to be amended. 
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