

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 1, PP. 23-30

Manuscript received November 12, 2023; revised March, 2024. doi: 10.24425/ijet.2023.147710

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—This article analyzes the dynamic power losses

generated by various hardware implementations of the BLAKE3

hash function. Estimations of the parameters were based on the

results of post-route simulations of designs implemented in Xilinx

Spartan-7 FPGAs. The algorithm was tested in various hardware

organizations: based on a standard iterative architecture with one

round instance in the programmable array, various derived

versions with pipeline processing were elaborated, which

ultimately led to a set of 6 architectural variants of the cipher, from

the iterative case (without pipeline) to one with maximum of

6 pipeline stages. Moreover, the results obtained for the iterative

architecture were compared with analogous implementations of

the BLAKE2 (direct predecessor) and KECCAK (the foundation of

the current SHA-3 standard) algorithms. This case study illustrates

the differences (or lack thereof) in the power requirements of these

three hash functions when they are implemented on an FPGA

platform, and illustrate the significant savings that can be achieved

by introducing pipeline to the processing of the BLAKE round.

Keywords—cryptographic hash function; KECCAK; SHA-3;

dynamic dissipated power

I. INTRODUCTION

RYPTOGRAPHIC hash functions are frequently used in

today's IT security infrastructure for tasks as diverse as key

generation, digital signatures and authentication schemes, or the

construction of stream ciphers. In 2007, considering the latest

advances in cryptanalysis of that time, the National Institute of

Standards and Technology called for the development of a new

standard for SHA hash functions, with a completely fresh

approach to construction of the algorithm. In the announced

open competition, a total of 14 proposals were accepted for

analysis, and many currently used solutions (including all three

algorithms considered in this article) originated from this group.

During evaluation of the candidates, effective – i.e. fast or fast

relatively to the size – hardware implementation was an

important analysis aspect and was one of the main evaluation

criteria (see, e.g., [1]). However, the analysis of power

consumption, being a characteristic which depends on many

mutable and subjectively selected factors (hardware platform,

technology process of the implementation device, working

environment, etc.), was not easy in objective assessment and not

always was discussed in detail.

Jarosław Sugier is with Wrocław University of Science and Technology,

Poland, Faculty of Information and Telecommunication Technology,

This paper presents a case study in which various hardware

implementations of the BLAKE3 cipher – the latest variant of

one of the main finalists of the NIST competition – were

implemented in an FPGA device, optionally with different

pipelined organizations. The estimation of power losses was

carried out by implementation tools using the most accurate

method based on a precise analysis of the activity of internal

signals, obtained by simulating the final system, fully placed

and routed in the programmable array. For the case study

commercial devices from the Sprtan-7 family from Xilinx were

selected as the hardware platform. The test range consisted of

a total of 6 variants of the BLAKE3 algorithm – from standard

iterative organization to pipelined architectures with

a maximum of 6 pipeline stages – which were additionally

supplemented with iterative implementations of the BLAKE2

and Keccak algorithms. The final test set of 8 complete systems

was implemented on the same hardware platform and with the

same tools. The obtained results show the fundamental impact

that the application of pipelining has on power losses in the

BLAKE3 algorithm, and also compare its iterative version with

its direct predecessor (BLAKE2) and the core of the SHA-3

standard (KECCAK).

A similar set of algorithms and their hardware

implementations was presented in [2], where the subject of the

analysis was their processing speed and the maximum

throughput. In [3], these results were extended to include the

aspect of energy efficiency, and this paper is a follow-up of that

work with an elaborated discussion of the significant power

reductions that are achieved in the BLAKE algorithm by using

intra-round pipeline processing.

The text is organized as follows. The structures of the three

algorithms and specific challenges of their implementation in

hardware are the subject of Chapter 2. The next chapter – No. 3

– describes the research methodology and numerical results

obtained for all 8 projects under analysis, both in terms of

processing efficiency and – what is the main focus of this work

– power consumption. The analysis of the results is the subject

of Chapter 4 and includes a discussion of the effects of using the

pipeline in various variants of BLAKE3 architectures, as well

as a comparison of this algorithm with its predecessor and the

SHA-3 core.

Department of Computer Engineering, Poland (e-mail:

jaroslaw.sugier@pwr.edu.pl).

Comparison of power consumption in pipelined

implementations of the BLAKE3 cipher in

FPGA devices
Jarosław Sugier

C

https://creativecommons.org/licenses/by/4.0/

24 J. SUGIER

II. HARDWARE IMPLEMENTATIONS OF THE THREE

ALGORITHMS

A. The Ciphers

The BLAKE hash function [4] was submitted as one of the

candidates in the NIST competition and, after initial evaluation,

was qualified for the second round along with four other

proposals. Although it was not ultimately chosen as the basis for

the new SHA standard losing to the KECCAK algorithm, it was

highly rated during the evaluation due to its high cryptographic

strength with great potential for fast software implementations.

In particular, its design made very good use of the possibilities

offered by the dedicated assembly instructions of contemporary

microprocessors. Because of these advantages, and also because

of the relatively slow operation of the new SHA-3 standard in

software, it quickly attracted attention of the cryptographic

community which was always looking for a new, strong and fast

algorithm to implement in cryptographic libraries. Still during

the competition, in 2012 the authors amended their original

proposal by announcing the second revision of the algorithm in

[5] and this version – called BLAKE2 – found applications in

cryptographic data protection, e.g. in the RAR archive format,

in the Linux kernel, and in the specialized key derivation

systems. Due to its popularity, the authors did not lose their

interest in the algorithm and in 2020 announced the BLAKE3

specification in [6]. The latest modification further increased

hashing speed by simplifying the processing but without

reductions in its cryptographic efficiency. This version began to

be implemented quite quickly as one of the available hashing

methods, e.g. in blockchain transaction protocols ([7]) or in

automatic key generation ([8]).

Both versions of the BLAKE algorithm which are considered

in this article use a very similar internal round organization, as

illustrated in Fig. 1 which shows the complete data flow in

a standard iterative architecture taken as an example. In general,

the task of the round is to transform the 512-bit state V,

organized in 16 words v015, with the additional use of words of

the encoded message M, m0 15 (all words are 32-bit). The actual

computations are performed in 8 instances of the so-called

quarter rounds G0 ÷ G7, each calculating new values of four

words v using also two words m. The set of elementary

transformations applied to the words include arithmetic

addition, bitwise XOR and rotations. In each round, state V goes

through a two-stage cascade of 4 G instances, which, working

in parallel, process a complete set of 16 words v.

For the analysis of this article, the most important are two

differences that BLAKE3 introduced to its predecessor: (a) the

number of round repetitions NR was reduced from 10 to 7, and

(b) a new method was proposed to select words m which are

passed to individual G modules. The first of the above

modifications obviously reduced the calculation time and

increased the effective throughput of the hardware (thus also

decreased the total energy needed to complete the calculations),

but did not have a noticeable impact on the organization of the

implementation in the programmable array (apart from trivial

modifications to the control system which counts the execution

of rounds). The second modification, presented quite briefly by

the authors in the specification [6], had more far-reaching

consequences for the organization of the hardware.

Whereas in BLAKE2 a set of 10 permutations r decided

which m words were to be used by each G module (and

a different one had to be applied in subsequent iterations of the

round), in the third version of the algorithm the assignment of

m words to each G instance is fixed, while between rounds the

words are permuted among themselves according to one and the

same scheme. The consequences of this change in hardware are

significant: while in version 2 it was necessary to implement

expensive 16:1 multiplexers with a width of 32 bits (two for

each G instance) to execute a specific permutation depending on

the round number, in BLAKE3 only one constant permutation

of the words remained and, in order to implement it between the

rounds, it can be hard-coded in routing which reload m registers,

i.e. without involving any logical resources. The hardware

implementation of 16 multiplexers, each with 16 inputs and 32-

bit wide paths, created problems already discussed in [9] (where

it was considered to replace them with RAM blocks storing the

m words), and, as the results in [2] show, their elimination can

lead to over 40% reduction in the FPGA array occupancy.

Fig. 1. Datapaths in BLAKE3 (above) and BLAKE2 (below) iterative

processing

Compared to these nuances, the internal organization of the

KECCAK compression function ([10],[11]) is relatively simple:

its large, 1600-bit state is organized as a 5×5 array of words,

each 64-bit, and the operations of the round apply 5 specific

elementary transformations NR = 24 times. Because the

transformations transcode different fragments of the state

(columns, rows or planes inside a 5×5×64-bit cuboid), the data

flow cannot be illustrated with a diagram as simple as the ones

in Fig. 1. A detailed analysis of the proposed implementation of

the algorithm on the FPGA platform is described in [12], but it

is worth noting one difference: since in BLAKE the message

words m remain active as input parameters to the G modules in

3

5

3

5

COMPARISON OF POWER CONSUMPTION IN PIPELINED IMPLEMENTATIONS OF THE BLAKE3 CIPHER IN FPGA DEVICES 25

all rounds, it is necessary to store and distribute them through

a separate, 512-bit path running parallel to the state (compare

Fig. 1), while in the KECCAK the message bits are loaded only

as the initial value of the state before the first round, after which

their storage and distribution to the transformation logic are not

needed.

B. Hardware Implementations

The analysis in this paper includes a total of 6 different

hardware implementations of the BLAKE3 algorithm. The

starting point was the standard iterative organization typical to

any algorithm with repetitive round processing: the

programmable array contains logic that performs operations of

one round, and the state bits are passed through it NR times.

Derived variants were obtained by dividing the round logic into

pipeline stages which process multiple data in parallel. The

basic iterative architecture (without pipelining) will be denoted

as X1, and the pipelined variants will be denoted as Pk, where

k is the number of pipeline stages within the round, and

therefore also the number of parallel data streams that are

concurrently hashed. The set of pipelined variants consisted of

P2, P4, and three possible versions of P6. Next to them, the X1

implementations of all three algorithms (BLAKE versions 3 and

2 and KECCAK) were analyzed, which gave a total of 8 complete

projects.

In particular, developing pipelined architectures for the

BLAKE algorithm required decisions about the location of the

pipeline stage boundaries within a round. It was natural to adapt

as such a boundary the signals connecting the two halves of the

4+4 cascade of G modules (Fig. 1), which was all needed to

create the P2 variant. Variants P4 and P6 required modifications

in the inner structure of the G function, i.e. divisions of its logic

into two or three stages. A discussion of possible options in this

regard is included in [2], and the selected choices are presented

in Fig. 2. While the division of G processing into two parts

(arch. P4) did not raise any major doubts, the division into

3 levels (arch. P6) was not so obvious if one wanted to maintain

an even distribution of elementary operations in the stages. In

particular, if the goal was to divide the 6 adders defining the

critical path in the proportions 2+2+2 (arch. P6a), it was

necessary to separate their two instances appearing immediately

one after another in the path of word va (see Fig. 2). This

separation could make optimization of the two adders (merging

their resources) impossible, so the test set included also variants

P6b and P6c, in which the 2+3+1 and 3+2+1 division was used

in order to keep adders within one pipeline stage.

III. CALCULATING THE POWER

A. Methodology

For each of the 8 projects, the evaluation of its power

consumption consisted of three steps: development of

a complete encryption unit and its implementation in the

selected FPGA device, post-route simulation of the resulting

system with a test vector forcing continuous operation of the

unit with maximum load, and the final calculation of power

parameters based on the results obtained in simulation from

tracking the internal signals of the systems.

1) Implementation

All hardware modules representing the considered ciphers are

defined as modules with wide parallel I/O ports whose total size

may exceed a thousand bits. For example, the BLAKE3 unit

requires reading 512 message bits plus 256 bits of chain hash

value along with 128 bits with other parameters, and outputs the

result as a 256-bit value – i.e. it requires transferring a total of

1152 bits through its ports. For power evaluation, it was crucial

to implement each unit as a complete design, fully distributed in

the FPGA array, with a reasonable number of I/O pins. To

reduce the necessary number of outputs, the cryptographic cores

were supplemented with a simple buffering system whose task

was to iteratively load the input data (Serial-In Parallel-Out

registers) and output the result (Parallel-In Serial-Out regs),

both in 32-bit chunks. These buffers reduced pin requirements

so that standard IC packages could be used, and although they

consumed some registers they had a negligible impact on the

Fig. 2. Boundaries of pipeline stages inside the G modules

P

P a

P b

P c

26 J. SUGIER

operation and power losses of the system, with cipher cores

being oriented primarily towards combinatorial logic.

Once the complete units were developed, their designs were

synthesized and implemented by Xilinx Vivado tools in devices

from the Spartan-7 family ([13]). All variants of the BLAKE3

cipher were fit in the smallest xc7s6cpga196-2 chip, while the

iterative BLAKE2 and KECCAK modules had to be implemented

in the second chip of the family, xc7s15cpga196-2, due to their

too large size. The budget family of 7 Series and the smallest

possible devices were chosen deliberately to get the results

typical for cost-oriented, mass projects. During implementation,

it was necessary to provide a target operating frequency for the

tools; the chosen values were close to the architectures’

maximums as determined in the analysis [2], with some safety

margin ensuring stable operation of the array.

2) Simulation

Since the power calculations performed by the Vivado tools

provide an average result for the entire simulation period

(transient analysis is unavailable), it was necessary to develop

special test runs that would correspond to the continuous

operation of the hashing engine with full load (i.e. subsequent

calculations would start immediately after the previous ones

ended). The method of ensuring continuous load was not

obvious for the prepared implementations, in which transferring

a new set of data in 32b fragments would require many clock

ticks, e.g. for BLAKE3 – 28 ticks for 896b of the input and 8 for

256b of the output. For this reason, a simplified approach was

adopted, based on two solutions. First, the initial test vector was

assigned as the initialization value of the input SIPO register, so

that the simulation could start immediately with hashing,

bypassing the data loading phase. Secondly, since each pipeline

unit Pk in the first k ticks must be loaded with a new set of data

for concurrent processing, subsequent vectors were generated

from the initial one by shifting a random pattern from the input

pins into the SIPO register, one per each clock cycle. Strictly

speaking, this did not ensure completely independent data for

each stage of the pipeline (which should be observed for

a correct simulation of signal switching, being the basis for

estimating the consumed power), but – thanks to the avalanche

effect of ciphers – state bits in neighboring stages after just a few

clocks became sufficiently different to assume their

approximately independent distribution.

Having such test vectors, post-route timing simulation of the

fully implemented system was performed with an extra request

to generate a SAIF file describing the switching activity of all

internal signals found in the array ([14]). Each of the

8 implementations was tested with a set of different operating

frequencies, which required preparing a distinct stimulus file for

each frequency and generating a separate SAIF file.

3) Calculation of Power Consumption

The SAIF file contains switching characteristics of every

signal in the FPGA array as they were traced during the

simulation, and this data was the basis for the power estimations

performed by the Vivado Power Analysis tool. The calculations

were carried out assuming standard values of supply voltages

but with maximum process settings, i.e. for the most

unfavorable parameters of power losses in the semiconductor

structures of the chip. The results analyzed in this article are

based on reports obtained this way which included, among

others, estimated total power losses in the device, their dynamic

and device static parts, junction operating temperature, etc.

([14]).

The analysis and conclusions presented in the rest of the

paper take into account only the reported dynamic power as the

sole parameter related to the operation of the implemented

project and determined by the nature of the cipher algorithm.

The static component has been omitted because it is connected

to losses caused by leakage currents and varies with, among

others, the size and construction of the FPGA array, ambient

temperature, power supply parameters, etc.. Being generally

dependent on conditions of heat transport (package thermal

resistivity, cooling efficiency, air flow, mounting on the board,

etc.), has no relation to the operation of the programmed

encryption core. Limiting the analysis only to the dynamic

power allows for an assessment of power efficiency for

particular cipher and eliminates factors unrelated to the

algorithm, but it presents only a part of the picture of general

power analysis (for example, the components ignored here

would be necessary to estimate the operating temperature of the

device working in any particular setup, etc.).

B. FPGA Implementations

Final parameters of the 8 encryption modules after

implementation in FPGA devices are summarized in Table 1,

which repeats the results published in [2]. The size of the

designs (occupancy of the programmable array) is described by

the first 4 lines which give the number of used LUT logic

generators, slices, registers and dedicated multiplexers. One can

note that the last type of element was needed in the BLAKE2

implementation only, where it was necessary for multiplexing

message words m between G modules.

The dynamic characteristics of the implementations are given

in the second part of the table. Listed are the requested (in

implementation) and actually obtained maximum operating

frequencies, as well as the parameters describing the longest

TABLE I

PARAMETERS OF THE CIPHERS AFTER IMPLEMENTATION

 X1 P2 P4 P6a P6b P6c
BLAKE2

(X1)
KECCAK

(X1)

Slices 761 892 1054 1150 1199 1207 1247 1397

LUTs 2541 2607 2779 3473 3458 3491 4362 4623

Registers 2184 3206 4743 5804 5774 5783 2437 4815
MUXes 0 0 0 0 0 0 1536 0

Target FCLK [MHz] 40.0 90.0 140.0 190.0 190.0 170.0 40.0 200.0

Actual FCLK [MHz] 44.4 91.9 146.6 194.2 197.2 172.0 40.6 215.5
Route delay 56% 49% 51% 42% 54% 52% 56% 88%

Logic levels 45 23 14 12 10 11 45 1
 (inlc. Carry) (33) (18) (10) (9) (7) (8) (30) (0)

COMPARISON OF POWER CONSUMPTION IN PIPELINED IMPLEMENTATIONS OF THE BLAKE3 CIPHER IN FPGA DEVICES 27

propagation path that determined minimum clock period: the

percentage of delay coming from routing (and not from logic)

and the number of logic levels, including dedicated carry

propagation primitives.

The evaluation of the implementation efficiency of these

configurations was the subject of publication [2]. For the

purposes of the power analysis which will follow, the

conclusions can be summarized in the next points. 1) The

change in the BLAKE3 algorithm processing scheme, which

eliminated the multiplexing of m words at the G module inputs,

resulted in a very significant reduction in array occupancy (up

to 61% in the number of slices and 58% of LUT generators), but

contributed little to speeding up the operation; this size

reduction is diminished to some extent by pipelining, in which

the size increases with the number of stages. 2) The very large

size of the KECCAK implementation should be attributed to its

much larger state; even if we consider path M as the state

extension in BLAKEx algorithms, their combined width of

1024b is still less than 1600b. 3) The implementation efficiency

of KECCAK transformations is much better than all other

variants: in its critical path, the whole processing was fit in only

1 level of logic, while in the two iterative implementations of

BLAKEx – in 45. The modifications introduced in the third

version of the algorithm did not change anything in this regard,

and the improvement can come only after dividing the round

logic into pipeline stages in Pk architectures. 4) The 32-bit

adders present in both versions of BLAKEx, due to the method

of their implementation in FPGA, do not allow to exploit the full

capabilities of the wide, 6-input LUT generators available in the

Spartan-7 family, as effectively as the KECCAK implementation

does.

C. Power Estimation

The dynamic power parameters calculated by the tools are

summarized in Table 2. The values were determined for the

operation with the target (requested during implementation),

maximal clock frequency. The total losses are additionally

broken down into components generated by various resources

of the FPGA array: clock distribution networks, slice logic

(LUT generators, elements of carry propagation, registers and

dedicated multiplexers), routing and I/O blocks.

The calculations were repeated for each system also with

reduced frequencies and the estimated total power as functions

of FCLK are presented in Fig. 3. The graph allows for a collective

comparison of the operating conditions of all systems in

different frequency ranges and, additionally, confirms the

general rule for estimating power losses in a digital system,

showing the linear relationship between them and the system’s

frequency.

The last two rows of Table 2 contain additional metrics which

characterize the power efficiency; it was possible to define them

thanks to the linear dependency between the losses and the clock

frequency. The first one – PMHz – expresses the ratio between the

dissipated power and FCLK (in mW/MHz units). The second

metric – Eh – is the average energy needed to calculate one hash

value (in μJ/hash). Alternatively, its value is equivalent to the

dynamic power required to achieve a specific hashing rate

(number of hashes per second, hps); a value in μJ/hash

corresponds to W/Mhps. From definitions of the metrics, Eh =

PMHz  NR, hence their values have identical relative distribution

among all 6 implementations of the BLAKE3 algorithm and the

differences in BLAKE2 and Keccak come only from different

number of rounds.

Fig. 3. Dynamic power losses of the implementations as functions of FCLK

(note the logarithmic scales)

IV. EVALUATION OF POWER EFFICIENCY

A. Components of the Losses

Evaluation of the results should be started by examining the

structure of losses in individual projects, i.e. by analyzing power

consumption by various resources in the FPGA array. Figure 5

presents the data from Table 2 as percentages. For readability,

the two smallest components – I/O blocks and dedicated

multiplexers – have been merged as the "Other" component.

P

P

TABLE II

DYNAMIC POWER LOSSES IN IMPLEMENTATIONS RUNNING WITH MAXIMAL FREQUENCIES, IN WATTS

X1

40MHz
P2

90MHz
P4

140MHz
P6a

190MHz
P6b

190MHz
P6c

170MHz

BLAKE2
40MHz

KECCAK
200MHz

Total 9.219 0.931 0.401 0.413 0.373 0.326 9.214 1.801

Clocks 0.002 0.010 0.020 0.033 0.034 0.031 0.003 0.030

Slice Logic 3.330 0.357 0.144 0.146 0.137 0.121 3.394 0.674
 LUT 2.969 0.303 0.118 0.112 0.107 0.091 3.029 0.671

 Carry 0.361 0.051 0.022 0.026 0.023 0.022 0.366 0.000

 Register 0.001 0.001 0.004 0.008 0.008 0.007 0.001 0.003

 MUXes 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Routing 5.884 0.560 0.231 0.228 0.194 0.168 5.816 1.092
I/O 0.001 0.003 0.007 0.007 0.007 0.007 0.001 0.004

Efficiency metrics:

PMHz (mW/MHz) 230 10.3 2.87 2.18 1.96 1.92 230 9.01
Eh (μJ/hash) 1.61 0.072 0.020 0.015 0.014 0.013 2.30 0.216

28 J. SUGIER

While the low values in I/O blocks are completely expected and

only validate correctness of the prepared simulation scenarios

(where operation of I/O shift registers was deliberately reduced

to the necessary minimum), very low losses in MUX elements

in BLAKE2 is the first factor indicating that their massive

impact on the size of the project (see comments in section III.B)

does not result in an equally significant effect on power

consumption.

Fig. 4. Power consumption by different components of the array

Clock networks can also be omitted as a factor of little

importance in this analysis because only in the P6x

architectures, where they serve over 5,000 flip-flops with

a clock frequency close to 200MHz, their share varies around

9%. Another negligible component are losses generated by

registers, which become noticeable only in cases P4 and P6x,

but even then their part reaches a maximum of 2%. Despite of

high frequencies in these designs, operation of registers turns

out to be very power-efficient.

One of the characteristics which distinguishes the BLAKEx

elementary transformations from the KECCAK ones is the use of

numerous adders in the operations of the G function.

Nevertheless, the calculated results do not imply their high

power requirements since carry propagation resources

contribute to 47% of overall losses in both versions of the

cipher. Thus, it indicates that the 32b adders, implemented –

similarly to the multiplexers of the m words – with dedicated

elements and connections within the slices, keep the energy

demand relatively low.

This brings the attention to the last two resources that actually

determine the level of dissipated power, generating together

from 80% (P6x) up to 96% (X1) of the losses: the LUT

generators and the connection resources,. It is understandable

that in any hardware realization of a cryptographic algorithm the

overwhelming majority of processing consists in combinatorial

transformations, hence the high load on LUT elements is not

surprising, but it is worth emphasizing that the power losses are

even two times higher in the routing resources. Analogous to the

contribution to critical path delays in the performance

parameters (Table 1), configurable interconnects with their

buffering consume the most power and with a share of 51 to

64% dominate over other components.

B. Pipelining in BLAKE3

When comparing the absolute values presented in Table 2,

the most significant observation is the very large reduction in

power demands achieved in BLAKE3 implementations thanks

to the pipelining. Already dividing the X1 round logic into two

pipeline stages resulted in a reduction of the Eh value by as much

as 95% (from 1.61 to 0.072 μJ/hash), and further divisions with

increasing number of stages brought a reduction of,

respectively, 62% (transition from P2 to P4) and approx. 30%

(P4 vs. P6x). This effect leads to an unusual situation clearly

visible in Fig. 3, when the pipelined cases not only are able to

achieve much higher operating frequencies than a purely

iterative one, but also at these frequencies they consume

significantly less power. The PMHz factor, which reaches as

much as 230 mW/MHz in the X1 organization, drops to 10.3

(P2), 2.87 (P4) and 1.92 2.18 in P6x cases.

It turns out that the hardware implementation of BLAKEx

core is a profound example of the effect known and described

in the literature ([15]-[17]) when reductions in power

consumption are caused by reorganization of the digital system

with pipeline processing. The mechanism standing behind this

effect is rooted in elimination of transient signal disturbances,

so called glitches – short-lived intermediate states which the

signal temporarily assumes before reaching a stable and correct

new value, which can occur after changes at the inputs of

a combinatorial circuit. In the general case, such disturbances

can occur when two or more inputs of a logic gate generating

the signal change non-simultaneously due to (a) different delays

in their propagation paths or (b) different numbers of logic

levels through which they pass. The first factor is unavoidable

in FPGA implementations, where transmission paths are

constructed with different segments of configurable connections

and ensuring their balanced delays is difficult and expensive in

practice; the second factor often occurs in complex

combinatorial logic designs. In this case, both factors converge

and intensify each other: the BLAKE round, as

the combinatorial module with 1024 input bits and

a deliberately complex and irregular internal structure, is

particularly susceptible to the glitch generation, and the

resulting parasitic switching of signals on long transmission

lines with capacitive loads generate large power losses.

Pipelining eliminates these problems by introducing two

changes: (a) after dividing long propagation paths into pipeline

sections, the number of logical levels is reduced – as it can be

seen in Table 1, from the initial 45 in the X1 architecture to

1012 in the P6x – which decreases probability that any two

signals reaching the same LUT element would traverse different

number of logic levels, (b) the flip-flops which latch the signals

at the pipeline boundaries eliminate the avalanche reproduction

of glitches by pausing their propagation until the signal reaches

a stable state.

The improvement in signal stability introduced in the

pipelined architectures becomes evident after examination of

the SAIF files. This format records, among others, the number

of value changes (including transient glitches) for each internal

signal in the system. Figure 5 shows this number averaged per

one clock cycle; to restrict the examination only to signals that

actually belong to the encryption core, the averages are limited

to the 5% most frequently switching signals in each design. The

COMPARISON OF POWER CONSUMPTION IN PIPELINED IMPLEMENTATIONS OF THE BLAKE3 CIPHER IN FPGA DEVICES 29

data was read from the same SAIF files as the ones used for

power calculations. The results illustrate the huge differences

between the X1 and the pipelined BLAKEx architectures,

providing also the KECCAK behavior for comparison. The

relationship between the cases in this graph is essentially

a repetition of the one seen in the power comparison: if in the

P6x cores the most active signals switched on average 5 times

in each clock cycle (i.e. they went through 4 transient states

before reaching the final value), in iterative architectures this

number was as high as 1380 or 1268. It is assumed that in

a cryptographic transformation ideally a half of the state bits,

randomly selected, should change after each round, hence 0.5

would be the desired, ideal value of this parameter.

Fig. 5. Average number of value changes per one clock cycle for 5% most

active signals (log scale)

We can also see that this problem is particularly intensive in

the BLAKE algorithm: even in the iterative architecture of

KECCAK the number of switches was 10, which is approximately

what BLAKE achieves only after introducing 4-stages pipeline.

This weakness of the algorithm can be attributed to the presence

of six 32-bit adders in the combinatorial paths of each G module.

In FPGA, the adders are implemented in a (simplest) ripple-

carry propagation configuration which does not require complex

logic, but its sequential nature is very susceptible to the

generation of intermittent transient states on the outputs (being

a reflection of carry values propagated sequentially across the

bits). This organization is fast enough and itself does not

dissipate much power thanks to the use of dedicated connections

inside the slices, but the additional glitches it generates are

replicated by the complex combinatorial logic and cause very

large power losses in the propagation paths.

Leaving for the moment the absolute values of power losses,

the results presented here allow also for a better comparison of

the three variants of the six-stage pipeline architectures of the

BLAKE3 algorithm. In [2] this comparison was based on

performance metrics and did not clearly indicate the best option.

Better differentiation now comes from the power analysis: the

Eh parameter for the P6c variant reaches the best value, being

lower by a moderate 3% than in the P6b case but by a significant

14% than in the P6a. Thus, the most natural division of the G

processing paths, which maintained an even division of 6 adders

into three pipeline stages in the P6a variant, turned out to be the

least energy-efficient solution, and the problem of separating

two adjacent adders indeed creates noticeable implementation

problems but they manifest themselves in the power parameters

rather than in the performance. Optimizing the two adjacent

adders in the cases P6b and P6c led to such a reduction in the

glitch generation that it outweighed the problems resulting from

unbalanced logic within the stages. The P6c case was the least

efficient in the performance analysis (9% lower operation speed

compared to the fastest P6a), but it proved to be the most energy

efficient.

C. Comparison of the Three Ciphers

Particular attention should be paid to the fact that the power

losses in both variants of the BLAKE cipher turned out to be

practically identical: the difference in Eh metrics is a purely

arithmetic effect resulting from the reduction in the number of

rounds, and the proportionality factor of power consumption as

a function of the frequency PMHz is identical. It is significant that

this parity is observed in two projects of such different sizes,

with the BLAKE3 implementation being as much as approx.

40% smaller both in the number of occupied slices and LUT

generators. In the performance analysis of [2] such a reduction

in resource consumption was considered to be an obvious

benefit, but now it has not translated into an advantage in power

consumption.

The size difference, as noted in Chapter 2, comes from the

elimination of the 16:1 multiplexers that switch 32-bit words m

in the message path. The obtained results indicate that such

a large amount of logic did not dissipate significant power,

which can be related to the following two factors. (a) Thanks to

the use of internal routing and dedicated MUX primitives, in the

Spartan 7 architecture 16-input multiplexers can be created

without LUTs and general-purpose connections, leading to

a construction with predictable and repeatable timing

parameters. (b) In general, any multiplexer is a combinatorial

circuit with a perfectly regular structure of a balanced binary

tree, so it does not suffer from the problem of different numbers

of logic levels on the paths from input to output. As long as this

regularity (including propagation times in the transmission

lines) can be preserved in the FPGA realization – which in this

case was possible by meeting criterion (a), even for a 16:1 mux

size – a glitch-free combinatorial circuit can be created. As

a result, both versions of the BLAKEx algorithm showed

a virtually identical value of the total dynamic power, and its

individual components in Table 2 differ by no more than 2%.

The lack of improvement in the power parameters of

BLAKE3 confirms its inferiority to the KECCAK algorithm,

which is not so exposed to power losses caused by glitches. Its

transformations do not contain arithmetic adders and, despite

their complicated structure extending down to the single bit

level, are very well implemented with 6-input LUT generators.

As a result, the critical path in the iterative implementation of

this algorithm contains only a single LUT element and the

signals are not so burdened with noise. With the measured

average number of switches of the 5% most active signals equal

to 10, the total power consumption of the complete module was

much lower: 7 times lower energy per hash and even 25 times

lower power per megahertz – all achieved in an implementation

with about 80% higher resource occupancy.

CONCLUSIONS

This work analyzed the power consumption of BLAKE3,

BLAKE2 and KECCAK hash functions implemented in various

1 380

48

7,2
5,0 4,7 4,4

1 268

10

1

2

4

8

16

32

64

128

256

512

1024

X1 P2 P4 P6a P6b P6c B2(X1) Kec.(X1)

30 J. SUGIER

hardware architectures in an FPGA device. The same design and

implementation methodology ensured uniform test conditions

and comparability of the results received for 8 projects, allowing

to show the impact of pipelining the BLAKE3 core in the FPGA

array and, additionally, to compare the power efficiency of the

three ciphers. The results indicated the primary impact that

signal stability has on the level of power consumption, being

a factor as important as the size and amount of occupied logic

resources.

The study indicated an exceptionally high level of glitches in

the (non-pipelined) round of the BLAKEx algorithms. This fact

increased power requirements to levels so high that the standard

iterative organization of these ciphers becomes prohibitively

expensive in operation, at least in applications requiring high

clock frequencies. In such cases, even if the associated

improvement in throughput is not required, pipelining may be

considered as a way to reduce power losses, if the increased

latency remains acceptable. It is worth noting, however, that the

presented analysis focused on the extreme case of continuous

operation of the hashing module under full load, i.e. with the

pipeline filled in 100% and generating a new output on average

every NR clock ticks. The decision criteria may be different if

the working environment does not provide enough data for

continuous hashing and the power budget of the entire project is

able to accommodate the increased losses. Nevertheless, the

discussed problems add another aspect (apart from speed

efficiency) that confirms the advantage of the KECCAK

algorithm over BLAKE in FPGA implementations.

A separate issue is the trustworthiness of power estimations

at such high levels of signal glitches. The most accurate method

used by the tools is based on SAIF data generated by the

simulator, which evaluates activity of each signal by giving only

the total number of its switches, without distinguishing between

transient disturbances and stable states. In the case of the

BLAKEx algorithms, these numbers reached over a thousand in

a single clock cycle, which translates to frequencies too high for

even fastest logic gates to switch; in such conditions standard

models that estimate current pulses from charging capacitive

loads may need to be amended.

REFERENCES

[1] K. Gaj, J.P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, B.Y.
Brewster, “ATHENa – Automated Tool for Hardware EvaluatioN:

Toward Fair and Comprehensive Benchmarking of Cryptographic

Hardware Using FPGAs”, in Proc. 20th International Conference on Field
Programmable Logic and Applications, Milano, pp. 414-421, 2010.
doi:10.1109/FPL.2010.86

[2] J Sugier, “FPGA Implementations of BLAKE3 Compression Function

with Intra-Round Pipelining”, in W Zamojski et al (eds) New Advances

in Dependability of Networks and Systems, Lecture Notes in Networks

and Systems, vol. 484, pp. 319-330, Springer, Cham, 2022.

doi:10.1007/978-3-031-06746-4_31

[3] J Sugier, “Power Analysis of BLAKE3 Pipelined Implementations in
FPGA Devices”, in W Zamojski et al (eds) Dependable Computer

Systems and Networks, Lecture Notes in Networks and Systems, vol. 737,
pp. 295-308, Springer, Cham, 2023. doi:10.1007/978-3-031-37720-4_27

[4] J.P. Aumasson, L. Henzen, W. Meier, R.C.-W. Phan “SHA-3 proposal

BLAKE, version 1.3”, https://www.aumasson.jp/blake/blake.pdf, 2010,
last accessed Sept. 2023.

[5] J.P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, C. Winnerlein “BLAKE2:
Simpler, Smaller, Fast as MD5”, in M. Jacobson, M. Locasto,

P. Mohassel, R. Safavi-Naini (eds) Applied Cryptography and Network
Security 2013, Lecture Notes in Computer Science, vol. 7954, pp. 119-

135, Springer, Berlin-Heidelberg, 2013. doi:10.1007/978-3-642-38980-
1_8

[6] J. O’Connor, J.P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, “BLAKE3:

one function, fast everywhere”, Real World Crypto 2020 (lightning talk),

available at https://github.com/BLAKE3-team/BLAKE3-specs/blob/
master/blake3.pdf, last accessed Sept. 2023.

[7] S. Sinha, S. Anand, K.P. K, “Improving Smart Contract Transaction

Performance in Hyperledger Fabric”, in Proc. 2021 Emerging Trends in

Industry 4.0 (ETI 4.0), pp. 1-6, IEEE Xplore, 2021.
doi:10.1109/ETI4.051663.2021.9619202

[8] I.T. Ciocan, E.A. Kelesidis, D. Maimuţ, L. Morogan, “A Modified
Argon2i Using a Tweaked Variant of Blake3”, in Proc. 2021 26th IEEE

Asia-Pacific Conference on Communications (APCC), Kuala Lumpur, pp.
271-274, IEEE Xplore, 2021. doi:10.1109/APCC49754.2021. 9609933

[9] J Sugier, “Simplifying FPGA Implementations of BLAKE Hash

Algorithm with Block Memory Resources”, Procedia Engineering, vol
178, pp. 33–41, 2017. doi:10.1016/j.proeng.2017.01.057

[10] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, “The Keccak
reference”, SHA-3 competition (round 3), available at https://keccak.team
/papers.html, 2011, last accessed Sept. 2023.

[11] National Institute of Standards and Technology, “SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions”, FIPS pub.

202, https://csrc.nist.gov/publications/detail/fips/202/final, last accessed
Sept. 2023. doi:10.6028/NIST.FIPS.202

[12] J Sugier, “Low cost FPGA devices in high speed implementations of
Keccak-f hash algorithm”, in W. Zamojski et al. (eds) Proc. Ninth

International Conference on Dependability and Complex Systems,

Advances in Intelligent Systems and Computing, vol. 286, pp. 319-330,
Springer, Cham, 2014. doi:10.1007/978-3-319-07013-1_42

[13] Xilinx, Inc., “7 Series FPGAs Data Sheet: Overview”, DS180.PDF
available at www.xilinx.com, last accessed Sept. 2023.

[14] Xilinx, Inc., “Vivado Design Suite User Guide: Power Analysis and
Optimization”, UG907.PDF available at www.xilinx.com, last accessed
Sept. 2023.

[15] E. Boemo, J. Oliver, G. Caffarena, “Tracking the pipelining-power rule

along the FPGA technical literature”, in Proc. 10th FPGAworld

Conference, FPGAworld, 2013. doi:10.1145/2513683. 2513692

[16] N. Grover, M.K. Soni, “Reduction of Power Consumption in FPGAs - An

Overview”, International Journal of Information Engineering and
Electronic Business, vol. 4, no. 5, pp. 50-69, 2012. doi:
10.5815/ijieeb.2012.05.07

[17] S.J.E. Wilton, S.S. Ang, W. Luk, “The Impact of Pipelining on Energy per

Operation in Field-Programmable Gate Arrays”, in J. Becker, M. Platzner,

S. Vernalde (eds) Field Programmable Logic and Application 2004,
Lecture Notes in Computer Science, vol 3203. Springer, Berlin-
Heidelberg, 2004. doi:10.1007/978-3-540-30117-2_73

https://doi.org/10.1109/FPL.2010.86
https://doi.org/10.1007/978-3-031-06746-4_31
https://doi.org/10.1007/978-3-031-37720-4_27
https://www.aumasson.jp/blake/blake.pdf
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-642-38980-1_8
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://doi.org/10.1109/ETI4.051663.2021.9619202
https://doi.org/10.1109/APCC49754.2021.9609933
https://doi.org/10.1016/j.proeng.2017.01.057
https://keccak.team/papers.html
https://keccak.team/papers.html
https://csrc.nist.gov/publications/detail/fips/202/final
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/978-3-319-07013-1_42
http://www.xilinx.com/
http://www.xilinx.com/
https://doi.org/10.1145/2513683.2513692
https://doi.org/10.5815/ijieeb.2012.05.07
https://doi.org/10.5815/ijieeb.2012.05.07
https://doi.org/10.1007/978-3-540-30117-2_73

