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Architecture optimization techniques for
Convolutional Neural Networks: further

experiments and insights
Artur Sobolewski and Kamil Szyc

Abstract—In this paper, we have researched implementing
convolutional neural network (CNN) models for devices with
limited resources, such as smartphones and embedded computers.
To optimize the number of parameters of these models, we
studied various popular methods that would allow them to
operate more efficiently. Specifically, our research focused on the
ResNet-101 and VGG-19 architectures, which we modified using
techniques specific to model optimization. We aimed to determine
which approach would work best for particular requirements
for a maximum accepted accuracy drop. Our contribution
lies in the comprehensive ablation study, which presents the
impact of different approaches on the final results, specifically in
terms of reducing model parameters, FLOPS, and the potential
decline in accuracy. We explored the feasibility of implementing
architecture compression methods that can influence the model’s
structure. Additionally, we delved into post-training methods,
such as pruning and quantization, at various model sparsity
levels. This study builds upon our prior research [1] to provide
a more comprehensive understanding of the subject matter at
hand. 1
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I. INTRODUCTION

ADAPTING computer vision to edge devices such as mo-
bile phones or small computing platforms is imperative

in today’s technological landscape [2]. However, once we have
a working computer vision model, adapting it to these edge
devices is a significant challenge. Given the constraints and
limited resources of these devices, it is critical to understand
the intricacies of efficiently achieving this adaptation.

Here, we discuss how to adapt convolutional neural net-
works (CNNs) [3] effectively to edge devices. Many different
solutions have been proposed in the literature. For example,
there are popular architectures that have introduced many
new approaches, such as MobileNet [4], ShuffleNet [5], or
GhostNet [6]. Each of them affects the final results, partic-
ularly in terms of reducing model parameters, FLOPS, and
the potential loss of accuracy. Our goal was to determine
which approaches work best for specific requirements on the
maximum acceptable loss of accuracy.
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1All results are fully reproducible, the source code is available at https:
//github.com/artur-sobolewski/CNN-compression

In this paper, we extend our previous study. In [1], we
tested how different approaches designed for architecture
optimization techniques affect the model. We started with
the classic ResNet [7] architecture trained on CIFAR-10 and
VGG [8] trained on CIFAR-100. Next, we added different
optimization techniques and monitored the assumptions tested
in our ablation study. Now, we extended our research by testing
different (than previous) model-dataset pairs with changed
training methodology and adding a new tested optimization
method, i.e., DiCE unit [9]. Both of our studies allowed us to
choose the right strategy for adapting computer vision models
to edge devices.

The paper is organized as follows. Section II delves into
related work, providing an overview of the approaches under
investigation. Section III delves into the details of our im-
plementation methodologies for these techniques and outlines
the results we obtained in our experiments. Section IV serves
as a summary, encapsulating the methods we implemented
and drawing conclusions about their suitability in light of our
research results.

II. RELATED WORKS

In the literature, ways to optimize computer vision models
often involve post-training methods [10]. Turning off some
model parameters or reducing their size effectively simplifies
the computations. The other solution consists of changes at
the architecture level [11]. These are usually invented along
with the proposal of a new model. This makes it difficult to
assess their overall capabilities, and we see the lack of ablation
studies that contribute to this knowledge, or they are focused
only on optimizing a particular model adjusting pre-selected
mechanism [12].

In this study, our primary focus has been on the CNN
architecture [13]. One of the most common approaches to
deploying these networks on edge devices is to modify
the architecture itself. The authors of GoogLeNet [14] first
discovered the potential of 1x1 kernel size convolution in
dimensionality reduction, which helped to reduce the com-
putational requirements and limit the size of a model. The
pioneer work on the topic of this paper is SqueezeNet [15],
which further developed this mechanism and proposed the
fundamental element of its architecture – the Fire module.
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This unit reduces (”squeezes”) the dimensions of the feature
map before performing more expensive operations such as 3x3
kernel size convolution, which results in reducing the number
of filters and thus computations. For this ”squeeze” part, they
utilized the mentioned low-cost 1x1 convolution. They also
used this type of convolution in the standard filtering CNN
pipeline to compute half of the module output in the ”expand”
part when the second half is obtained with a 3x3 convolution.

The standard of modern CNNs uses the Global Average
Pooling (GAP) [16] layer. In the earlier CNN development
approaches the final activation map was processed directly
by fully connected (FC) layers of the classifiers, which sig-
nificantly increased the number of parameters. This type of
pooling takes the average of each channel in the feature map
to create a vector. Applying GAP layers with a final linear
layer typically replaces several. This simple change signifi-
cantly improves model optimization and reduces the risk of
overfitting, to which the classifier’s FC layers are particularly
prone. In the original Network in Network paper [16], the
authors proposed an architecture that feeds the resulting vector
directly into the softmax layer without fully connected layers
at all. This solution, in addition to parameter reduction, is
intended to make the feature extraction part of the network
better suited to the task than when the FC layer is largely
responsible for classification.

For further optimization, some papers suggest solutions that
focus on low-level modifications. The proposed Inception v3
[17] model uses a factorization of the standard convolution,
replacing a single nxn filter with two successive nx1 and 1xn
filters. Despite a single 3x3 kernel, containing 9 parameters,
the model stores 3x1 and 1x3 for a total of 6 parameters. This
modification reduces the number of parameters by 33% for
the convolution layer with 3x3 filters, and the savings increase
drastically with the size of n. This asymmetric factorization of
the convolution maintains the same feature map size, receptive
fields, and similar efficiency, with a noticeable optimization
effect.

Another technique for optimizing individual layers is depth-
wise separable convolution (we sometimes refer to it as
DWconv). The first model to popularize the use of this solution
was Xception [18]. This solution assembles two successive
convolutions: depthwise and pointwise. The authors proved
that it is possible to map cross-channel correlations (by
pointwise convolution) and extract spatial features separately.
Furthermore, it is possible to perform this filtering on non-
overlapping channel-wise segments of an input, which is called
depthwise convolution. This solution is a significant step to-
wards reducing the number of operations. The main incentives
for this approach are the lower computational complexity of
the feature filtering and the cheap control over the size of the
feature maps.

The authors of ShuffleNet [5] further developed the depth-
wise separable convolution. Despite the already good effi-
ciency of the previous version, the fact that each filter of the
pointwise convolution layer operates on all channels of the
feature map is the main reason for the high resource consump-
tion. The implemented idea was to use a convolution grouping
mechanism. They used pointwise convolutions performed only

on a subset (group) of channels. Depthwise convolutions were
also performed in groups, but first, the channels of the resulting
pointwise grouped convolution feature map were shuffled by
a separate layer. This mechanism ensures that potentially
important channel-wise feature correlations are not restricted
to a particular segment but are accessible in all groups. This
approach significantly reduced the number of parameters and
computations. We will refer to it later as grouped pointwise
convolution.

One of the most popular deep neural network architec-
tures designed specifically for efficient resource utilization
is MobileNet [19]. The primary goal of the authors in this
paper was to develop a complete class of configurable network
architectures that take into account latency optimization and
potentially high accuracy. A small size of a model was
achieved by using the already mentioned DWconv. A more
effective modification was proposed in the second version of
this architecture – MobileNetV2 [20]. In terms of our research,
it uses residual bottleneck blocks, what ResNet [7] proposed.
However, unlike the original, the authors evolved this mecha-
nism by modifying its connections. They called them ”inverted
residual bottlenecks”, which now maintain narrow connections
between bottlenecks and expand the channels of a feature map
to inner filtering with a 3x3 kernel.

Some approaches look for ways to optimize a model by
making minor structural changes in certain structural elements
of the network. In the MobileNetV3 paper [4], the researchers
found that spatial filtering could be omitted in the last bot-
tleneck block. Because the feature map had already been
expanded by its pointwise convolution, they decided to use the
output close to its final form and feed it directly into the Global
Average Pooling layer. This obviates the necessity for costly
channel expansion for output generation. The first layer is also
one of the slowest layers due to the massive computations
required to perform the convolution at the highest resolution
of the image. It has been experimentally proven that there
is no need for a high number of filters in the first stage of
processing, and it has a marginal impact on the final result.

The idea of splitting the map of internal features and
performing calculations on them simultaneously was further
taken up by the authors of DiCENet [9]. Like the well-known
depthwise separable convolution, the basis of the proposed
mechanism was to apply this lightweight feature extraction
but in a more efficient way to overcome the computational
bottleneck that this block still contains. This is due to the linear
fusion of channel-wise features by point-wise convolution.
The proposed DiCE unit consists of two parts: DimConv and
DimFuse. For DimConv, the output is a concatenation of three
simultaneous convolution layers. In each layer, the filters work
dimension-wise in separate groups. Thus, the input tensor
is locally filtered channel-wise, width-wise, and height-wise,
respectively. In the DimFuse part, the dimension-wise features
are first integrated using a shuffle mechanism and grouped
point-wise convolution. This ensures local correlation of the
features. Finally, global fusion is performed by depthwise con-
volution, which integrates spatial information. Additionally,
the authors used the Squeeze-and-Excitation (SE connection)
[21] block to weight channels according to their importance.
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DimFusion is expected to be a much more efficient alternative
to the popular pointwise convolution for computing channel-
wise relationships.

Expansive Convolutional Neural Networks typically provide
a better understanding of the problem thanks to a complex
hierarchy of extracted feature maps. However, the authors
of GhostNet [6] found that there is often redundancy in the
feature maps obtained at different stages of image processing.
This fact creates the possibility of obtaining a single channel
by performing an inexpensive operation on another channel.
Capitalizing on this observation, they decided to increase the
efficiency of the network by using simple affine operations
to create potentially redundant channels. The proposed ghost
module allows to replace of standard filtering layers. The first
step is to obtain the internal feature map with a small number
of channels. This is usually done by pointwise convolution.
Then, depthwise convolution is used to create new ”ghost”
feature channels. The module output is a tensor formed
by concatenating both the ghost features and the preceding
unmodified features. We used complete components (ghost
bottlenecks) or separate ghost modules.

Research on convolutional networks often focuses on de-
veloping solutions that lead to better model performance in
various tasks. One of the proposed solutions is the atten-
tion mechanism, which implements the previously mentioned
Squeeze-and-Excitation block. This approach has been used in
modern and efficient architectures such as MobileNetV3 and
DiCENet or EfficientNet [22], which optimize computational
complexity. Drastic model reduction usually leads to an un-
wanted loss of accuracy. Therefore, we look for a possible
model improvement with the SE connection. This mechanism
consists of GAP and other linear layers and activation func-
tions. The resulting vector is expected to learn the relevance of
a given channel of the input feature map and adjust its relevant
parts. In this way, the model is guided to construct meaningful
representations of an image and overall accuracy.

After the model has been trained, it is possible to apply
methods for model optimization. Among the most commonly
used approaches are pruning and additional quantization [10].
Pruning consists of discarding components that contribute the
least to the final prediction result by setting their value to
0. This makes the network sparse, which does not actually
reduce the model size but speeds up computation. Quantization
involves reducing the precision of the parameters, which
are typically represented as 32-bit floating-point integers, by
changing them to 8-bit integers.

III. RESEARCH ON COMPRESSION METHODS

This section describes experiments that extend our study
of architecture optimization techniques, which we presented
in paper [1]. We have included the necessary implementation
details of selected methods presented in Section II, indicating
a possible way to perform the optimization.

In this article, we evaluate how the selected methods affect
the final performance of models based on CNN architectures
well-known in the literature. For this purpose, we chose
ResNet-101 and VGG-19. We trained them on popular image

classification benchmarks. To extend previous experiments, we
trained ResNet-101 on CIFAR-100 and VGG-19 on CIFAR-10
in this research. Both datasets contain 50,000 images in the
training subset and 10,000 images in the test subset. Each
image has a resolution of 32x32 pixels in the RGB color
model, and they are equally distributed in 100 and 10 classes,
respectively. These different scenarios, with previous results,
were intended to provide a more comprehensive view of the ef-
fectiveness of the methods, taking into account different cases
of data. As before, the choice of models was motivated by their
well-studied architecture in the literature, which primarily does
not include components that reduce computational complexity.

The main part of the experiments deals with model archi-
tecture changes, which results were presented in tables I and
II. Each approach was tested for changes in the following:

– the number of parameters expressed in millions and as a
percentage of the baseline;

– the number of FLOPS expressed in millions and as a
percentage of the baseline;

– the total size of the model after saving, expressed in
megabytes;

– the final accuracy achieved by the model.

In the second part, we have chosen three models on different
levels of optimization, on which we tested iterative pruning
with fine-tuning. Additionally, we performed quantization on
those 3 unpruned and pruned models (Table III).

To investigate the application of the described methods,
we assumed that we want to keep the significant network
properties the same when optimizing the model. The general
evaluation of selected approaches was possible by replacing
the primary computational units, e.g., standard 3x3 convo-
lutions or bottleneck blocks, but not the high-level CNN
processing pipeline. Thus, the depth (number of filter layers),
the resolution (width and height) of each feature map of the
model, and the number of channels in the activation tensor are
preserved if not required by the applied solution. Considering
this, choosing a specific compression method depends on the
unique characteristics of individual CNN architectures.

When reworking the ResNet-101 model, we took into
account its layers, which assemble convolution units with
the same hyperparameters, i.e., the number of filters and the
shape of the processed feature map. The high-level structure
and its bottleneck blocks with residual skip connections were
preserved as much as possible. In the case of the VGG
modification, as in the previous research, its main features
were not changed. It does not contain skip connections or
advanced block structures such as residual bottlenecks, so we
decided not to change the main pipeline.

Since the last experiments, we changed the training proce-
dure. Again, we utilized the SGD optimizer, but this time, we
used the ”1cycle” learning rate policy [23] with a maximum
number of epochs equal to 150. In short, it allows to obtain
representative results with a fast model convergence. This
would allow for a broader view of the multi-level optimiza-
tion problem overview. Previously, we used Reduce-LR-On-
Plateau [24] and an early stopping mechanism.
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TABLE I
OPTIMIZATION TECHNIQUES FOR RESNET-101 TRAINED ON CIFAR-100

Approach

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fire modules - ✓ - - - - - - - - - - - - -

No FC classifier - - - - - - ✓ ✓ ✓ - ✓ ✓ ✓ ✓ -

Nx1 - 1xN Conv. - - ✓ - - - - - - - - - - - -

DWconv - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Grouped
pointwise conv. - - - - ✓ - - - - - - - ✓ ✓ ✓

Inv. bottlenecks - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Optimization be-
fore GAP - - - - - - - ✓ ✓ - ✓ ✓ ✓ ✓ -

Less channels on
the early stage - - - - - - - - ✓ - ✓ ✓ ✓ ✓ -

Ghost bottleneck - - - - - - - - - ✓ ✓ ✓ ✓ ✓ -

SE connections - - - - - - - - - - - ✓ - ✓ ✓

DiCE unit - - - - - - - - - - - - - - ✓

Parameters [M] 42.697 59.245 35.582 21.425 7.721 2.439 1.233 0.919 0.915 0.458 0.408 1.432 0.159 1.182 3.007

Parameters [%] 100.00 138.76 83.34 50.18 18.08 5.71 2.89 2.15 2.14 1.07 0.96 3.35 0.37 2.77 7.04

FLOPS [M] 2520.41 3480.20 2141.77 1279.72 420.93 79.39 63.14 58.11 53.75 32.83 29.89 31.61 12.93 14.65 160.40

FLOPS [%] 100.00 138.08 84.98 50.77 16.70 3.15 2.51 2.31 2.13 1.30 1.19 1.25 0.51 0.58 6.36

Size [MB] 163.47 226.12 136.34 82.33 30.06 9.66 5.04 3.83 3.81 1.99 1.79 5.73 0.85 4.78 12.15

Accuracy [%] 67.51 70.81 71.19 62.80 67.32 67.86 67.18 66.52 66.41 65.65 65.49 66.35 59.92 61.45 63.58

A. ResNet-101 on CIFAR-100

In our experiments, we tested 14 cases of modifications
to the ResNet-101 architecture, shown in Table I. Column 1
shows the results obtained for the baseline. The remaining
columns show individual experiments, the approaches used in
them, and their measured performance. In this subsection, we
provide essential information about the application of selected
methods in the ResNet-101 architecture and comment on their
impact on this model, also in light of our previous research.

a) Fire Module: As in the SqueezeNet paper, we re-
placed all spatial filtering units (in this case, full bottleneck
blocks) with Fire modules, except for the first convolution. We
extend the original Fire module by adding a skip connection
to preserve the main properties of this model. The ”squeeze”
part reduces the number of dimensions of the input tensor. This
causes the 3x3 convolution layer to operate on a feature map
that is 4 times smaller than in the baseline bottleneck blocks.
The total number of 1x1 and 3x3 convolution filters of the ”ex-
pand” part was the same as that of the inner 3x3 convolution in
the ResNet-101 bottleneck. This implementation significantly
increased the complexity of the model. The improvement in
model accuracy may be due to its increased capacity. This
solution may be outdated and unsuitable for optimizing newer
architectures such as ResNet. Therefore, we have discontinued
further use of the Fire module on this model.

b) Nx1 – 1xN Convolution: Replacing the 3x3 convolu-
tion with two successive 3x1 and 1x3 convolution reduces the
size and FLOPS of ResNet-101 by ≈15%. Experiment no. 2

in Table I also shows a noticeable increase in accuracy, which
contradicts previous results of our study. We believe that this
is due to the fact that limiting the number of training iterations
with other hyperparameters of this process was not sufficient
to obtain optimal classification accuracy in the case of the
baseline model.

c) Depthwise Separable Convolution: Splitting the filters
into all 3x3 convolution layers to filter on each channel of the
input tensor separately effectively halved the model parameters
and FLOPS. This method proved to be effective in terms of
model reduction but significantly reduced its accuracy. This
degradation is much more significant than we observed for
this version of the model trained with the previous strategy on
CIFAR-10 and for the other, even more compressed models.
A possible reason for such discrepancies is the different
requirements for the learning process. To keep the research
consistent with our previous work, we used this type of
convolution with other methods that gave us better model
effectiveness than in this case.

d) Grouped pointwise convolution: We used grouped
pointwise convolution with channel shuffling to replace each
1x1 convolution present in the ResNet-101 architecture and
the ghost bottleneck experiments. We set the group parameter
to 4, based on the value we observed in the ShuffleNet paper
and the number of channels. The combination of this method
and DWconv reduced the computational complexity of the
model to 16.7% of the baseline FLOPS and 18.08% of the
parameters. With this solution, we were able to reduce the
parameters by a factor of 3, even when they were already
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small, as shown in experiments no. 11 and 13 (Table I). We can
highlight the second one as the highest achieved optimization
of the ResNet-101 model with ≈ 269-fold parameter reduction.
Unfortunately, such a high degree of compression is associated
with a significant drop in classification efficiency, the largest
of all obtained. We speculate that this may be due to the
inefficiency of this mechanism in generating intermediate rep-
resentations and the negligible number of trainable parameters.
These conclusions are supported by experiment 14, in which
the use of the attention mechanism did not lead to a sufficient
improvement in accuracy for the increased model capacity.
These observations are consistent with those of a previous
study.

e) Inverted Bottlenecks: This relatively simple approach,
changing the number of 1x1 projection convolution filters – the
last in the bottleneck block – in addition to a large reduction
in size, allowed to maintain a fairly high efficiency. From the
original number of channels of feature maps in the links of
these blocks (256, 512, 1024, 2048), we changed to 10, 22,
42, and 86. We adjusted this ratio based on the structure of the
MobileNetV3 model [4]. Based on experiments 6, 7, and 8,
we can see that most of the remaining parameters come from
the FC layer and the final expansion of channels to 2048 (this
was added in experiment 6 to preserve the original structure
of the ResNet-101 classifier). We can see a slight increase in
accuracy compared to the unoptimized model. In the paper [1]
we achieved only 1.24 pp (percentage points) accuracy loss on
CIFAR-10.

f) Optimization at early and late model stages: Contrary
to the results obtained in the previous study, optimizations in
the last part of the CNN architecture led to larger decreases
in accuracy. We suggest that the complete removal of the
fully connected layers of the classifier and the optimization
before the GAP layer may not be appropriate for more
complex problems. Both resulted in a decrease in accuracy
of 1.34 pp, while the corresponding models in our previous
research decreased by only 0.08 pp. We find that this is only
worth considering in the case of strong compression. These
modifications resulted in much smaller efficiency losses when
the model was already optimized to about 1% of the baseline
(losses in the range of 0.16-0.27 pp in the case of ResNet-101).
But in a shallow network like VGG-19 and a more demanding
task like CIFAR-100, the loss reached almost 2 pp. Reducing
the number of filters in the first convolution usually reduces
the effectiveness slightly.

g) Ghost Bottlenecks: We replaced the original ResNet
bottleneck blocks with ghost bottlenecks consisting of 2
previously mentioned ghost modules (the first expands the
channels; the second reduces them) and a skip connection.
For downsampling, we used extra DWconv with stride = 2 in
between. We conducted this and subsequent experiments using
the inverted bottleneck approach because of its high effective-
ness and compatibility with other solutions. For the ResNet-
101, this solution allowed for the highest reduction to 0.37% of
baseline parameters and 0.51% of FLOPS (Experiment no. 13
from Table I – the ghost bottlenecks with shuffle mechanism),
which significantly reduces the accuracy. Besides, the ghost

bottlenecks are the most suitable for the ResNet architecture
in terms of optimization objectives.

h) Squeeze-and-Excitation: We used this channel-wise
attention mechanism in experiments where the architectures
were highly compressed – for no. 11 and no. 13 (Table I).
Our implementation of this unit consists of two linear layers,
the ReLu activation function and the sigmoid on its output.
Our goal was to improve the filtering of the second ghost
module by adjusting the channels of the extended feature map
at its input. Both (experiments no. 12 and no. 14) resulted
in higher model capacity, which we expected. SE connections
increased the parameters by about 1M, but with a small impact
on the number of computations (FLOPS) – only 0.06-0.07 pp.
In order to our previous work, it improved accuracy by still
that gains are not commensurate with the increased parameters
of a model.

i) DiCE unit: In this research, a new mechanism of
dimension-wise separable convolution and cheap spatial and
channel-wise feature integration implemented in the DiCE unit
was investigated. In the ResNet model, we replaced the pre-
vious 3x3 convolution layers and subsequent 1x1 convolution
layers of all bottleneck blocks with this unit. This module
contains grouped depthwise and pointwise convolutions with
channel shuffling and SE connection, which we showed in
the table I in experiment no. 15. Note that the degree of opti-
mization (7.04% of baseline parameters and 6.36% of baseline
FLOPS) was lower than in experiment no. 6 (5.71% and
3.15%, respectively), which also used narrow block connec-
tions, but with the standard depthwise separable convolution. It
also caused higher accuracy losses. In our opinion, the reason
for this could be that our learning algorithm is inadequate, as
we observed in Experiment 4.

Under the same learning conditions, we observed a much
more stable learning process for models no. 7, 8, 9, 11, 12, 13,
and 14, based on the loss function on the validation subset.

B. VGG-19 on CIFAR-10

In accordance with our previous studies [1], we trained
12 versions of the VGG model on the CIFAR-10 dataset, as
well as the implementation case for the new solution – DiCE
unit. Differences in the research strategy of selected methods
on the VGG model are due to the assumptions made and
the characteristics of its architecture. Their effectiveness was
evaluated using the same measures as in the case of ResNet-
101. All of them are presented in Table II.

a) Global Average Pooling: The VGG is an older type
of model that relies heavily on fully connected layers in the
final stages of processing in various prediction tasks. As a first
step in our research, we enhanced the underlying architecture
by replacing two of the original fully connected layers with
a global average pooling layer while retaining a single layer
dedicated to classification. This change reduced the parameters
to 51.44% of the baseline with a decrease in accuracy of
only 0.14 pp. Previously, on CIFAR-100, the decrease was
also marginal (0.18 pp). We retained this change in further
experiments.
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TABLE II
OPTIMIZATION TECHNIQUES FOR VGG-19 TRAINED ON CIFAR-10

Approach

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

GAP - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nx1 - 1xN Conv. - - ✓ - - - - - - - - - -

DWconv - - - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fire modules - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No FC classifier - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ -

Grouped
pointwise conv. - - - - - - - ✓ - ✓ ✓ ✓ ✓

Ghost modules - - - - - - - - ✓ ✓ ✓ - -

SE connections - - - - - - - - - - ✓ ✓ ✓

DiCE unit - - - - - - - - - - - - ✓

Parameters [M] 38.959 20.040 13.103 2.285 1.801 0.474 0.474 0.151 0.397 0.342 1.542 1.351 0.261

Parameters [%] 100.00 51.44 33.63 5.87 4.62 1.22 1.22 0.39 1.02 0.88 3.96 3.47 0.67

FLOPS [M] 417.65 398.74 256.03 46.76 40.22 10.99 11.00 4.80 9.43 8.55 10.05 6.31 7.33

FLOPS [%] 100.00 95.47 61.30 11.20 9.63 2.63 2.63 1.15 2.26 2.05 2.41 1.51 1.76

Size [MB] 148.70 76.53 50.07 8.80 7.03 1.96 1.96 0.73 1.67 1.46 6.06 5.32 1.26

Accuracy [%] 92.83 92.69 92.72 89.13 90.81 87.91 87.74 81.71 87.09 86.66 87.22 83.65 66.93

b) Replacement of convolutions: In experiments 3 and
4 (Table II), we replaced all 3x3 convolutions with two
successive 3x1 and 1x3 convolutions, while in the second, we
replaced the depthwise convolution with a successive project-
ing 1x1 pointwise convolution. Both reduced the complexity of
the baseline with GAP, but as before, the 3x1 - 1x3 convolution
underperformed the depthwise separable convolution in terms
of compression. However, this resulted in a much larger loss of
efficiency (by 3.56 pp of the accuracy of model 2), while the
3x1 - 1x3 convolution actually increased the accuracy of its
previous version. The effectiveness of these methods is similar
to that found in our previous study.

c) Fire Modules: The Fire module proved to be an
efficient solution for optimizing the VGG architecture. We
preserved the original width of the model in the connections
of these units, and the internal filtering by 3x3 and 1x1
convolutions was performed on a tensor with 8-fold reduced
channels. These modules produced a model more than 11
times smaller than model no. 2 with a loss in accuracy of about
2 pp relative to the baseline. After applying DWconv instead of
the standard 3x3 convolution in the ”expand” part (experiment
no. 6 in table II), in addition to a stronger reduction of the
model, the effectiveness of the model decreased by 4.91 pp,
showing a similar trend as we obtained in the paper [1]. The
Fire modules provide opportunities for further optimization
with other techniques, so they were used in all other cases.

d) No FC classifier: Experiment no. 7, where we com-
pletely discarded the fully connected layer of the classifier,
showed that the accuracy losses are highly related to the dif-
ficulty of the problem to be solved. It decreased the accuracy
by 0.17 pp, while on the CIFAR-100 this version of VGG
worsened the effectiveness by 1.97 pp. It also shows that for
a small number of classes in a dataset, such a change may

not provide a significant benefit in terms of optimization and
accuracy. Effective optimization occurs only by reducing the
size of the final feature map before the GAP layer, which was
necessary in the case of the ResNet-101 model.

e) Grouped pointwise convolution: The highest opti-
mization we achieved was after applying the grouped point-
wise convolution with channel shuffling mechanism to the
previous version of the model. We replaced all 1x1 convolution
with this unit. To ensure that the information is not limited
in separate groups, we performed channel shuffling on the
concatenated tensor computed by an ”expand” part. This
resulted in a model with 0.151 M parameters and 1.15 M
FLOPS, but with the lowest accuracy (experiment no. 8 in
Table II), as in the case of our previous study.

f) Ghost modules: We used the ghost modules proposed
in the GhostNet paper to replace the 1x1 convolution of the
”squeeze” part and the further 3x3 convolution. The other
version (no. 10) performs this first projection step using the
cheap pointwise convolution with shuffling. In both cases, the
optimization effect is similar to our first research, but for the
second model with the grouped pointwise convolution, this
time we do not observe the accuracy improvement.

g) Squeeze-and-Excitation: By applying the SE connec-
tion after each Fire module, we were able to improve the
performance of the model and thus its accuracy. It is worth
noting that despite the increased number of parameters, the
number of FLOPS was at a much lower level. However, the
other solutions with a similar reduction of parameters achieved
higher accuracy.

h) DiCE unit: In the configuration no. 13, a ”squeeze”
convolution layer with filter grouping and shuffle mechanism
was implemented, while the 3x3 ”expand” convolution was
replaced by a DiCE unit. These changes resulted in a signif-
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TABLE III
PRUNING TECHNIQUE FOR RESNET-101 TRAINED ON CIFAR-100

Sparsity [%]
no. 1 - baseline no. 11 no. 13

Non-zeroed Acc [%] Non-zeroed Acc [%] Non-zeroed Acc [%]

0.0 42 697 380 67.51 408 035 65.49 158 815 59.92

20.0 34 114 509 67.44 310 870 65.10 111 609 59.37

35.9 27 332 567 66.76 248 696 64.35 89 287 57.60

48.7 21 907 014 65.73 198 957 63.31 71 430 54.12

58.9 17 566 571 65.52 159 166 61.95 57 144 48.56

67.1 14 094 217 64.53 127 333 59.15 45 715 41.86

73.7 11 316 334 63.37 101 866 56.14 36 572 35.88

78.9 9 094 027 61.34 81 493 52.13 29 258 29.64

83.1 7 316 182 59.69 65 194 47.47 23 406 24.25

86.5 5 893 906 56.39 52 155 43.93 18 725 18.39

89.1 4 756 085 53.46 41 724 39.21 14 980 13.14

icant reduction in model complexity, but the loss of accuracy
was extremely high. After observing the loss function and
the changes in model efficiency during learning, we noticed
a much slower convergence to the optimal solution. Based on
our results and the training conditions studied by the authors of
the DiCENet paper, we considered that this architecture might
need to be trained much longer or with a higher learning rate.

Related to our previous study, the further investigation of
architecture-based optimization techniques has led to consis-
tent conclusions about their effects. Moreover, the different
training conditions allowed to observe their requirements on
this process. Approaches such as dimension-wise separation of
convolution or strong reduction of model capacity (e.g., ghost
modules/bottlenecks) require more attention to the training
strategy.

C. Post-Training Compression

We performed an iterative, post-training, unstructured prun-
ing with L1 norm and amount equal to 0.2. After each
subsequent pruning of the remaining parameters, we fine-
tuned the model with SGD and constant LR = 1e − 4, and
early stopping (we limited the maximum learning time to
50 epochs). Table III shows the results obtained by pruning
the ResNet-101 baseline and 2 other versions with 0.408
M trainable parameters (no. 11) and 0.159 M (no. 13). As
in the previous research, we see an increasing decrease in
accuracy with increasing model sparsity. In the more complex
classification problem – CIFAR-100 – the losses grow faster.

Post-training static quantization was applied to the same 3
models without pruning and with a sparsity rate of 58.9%. In
PyTorch’s implementation of this mechanism, it was necessary
to modify the model code by adding an extra quantization
and dequantization layer to encode the input and decode the
output of the model, and the same for other operations such as
concatenation or addition. The unedited version of the models
reduced their accuracies to 58.53%, 64.42%, and 58.57% for
the baseline, no. 11, and no. 13, respectively. Quantization of
these pruned models resulted in a decrease to 54.83%, 60.66%,
and 46.53%, respectively.

The losses caused by the amount of pruning are highly de-
pendent on the number of parameters on which the prediction
is based. The relationship between the quantization and the
resulting loss of accuracy remains unclear. We obtained similar
decreases for models with significantly different numbers
of parameters. The use of an 8-bit data representation is
commonly supported by hardware vendors to accelerate com-
putations. In the context of deploying a Convolutional Neural
Network (CNN) model on edge devices, optimizing memory
utilization and power consumption becomes imperative. As a
result, reducing the size of the model becomes critical.

IV. SUMMARY

The goal of our study was to evaluate the impact of the com-
pression techniques used in the architecture on CNN models,
as explained in section II. We investigated the applicability of
these techniques to a variety of models, including ResNet-101
and VGG-19. These approaches can lead to more optimized
models with fewer parameters, resulting in faster computations
and lower FLOPS.

Considering both our results from this paper and the pre-
vious one [1], we came to the following conclusions. We can
observe different degrees of the highest possible optimization,
assuming a maximum loss of accuracy of 5 pp compared
to the baseline. For ResNet-101 trained on CIFAR-10, we
were able to reduce the number of parameters and FLOPS by
281 and 196 times, respectively, and for CIFAR-100 by 104
and 84 times. For VGG-19 fitted on CIFAR-10, we reduced
the number of parameters by 82 times, the FLOPS by 38
times, and CIFAR-100 by 21 and 10 times, respectively. All
results were calculated before the post-training compression.
This clarifies the interplay between the architectural backbone,
the task complexity, and the potential scope for optimization.
It has come to our attention that the selected solution may
necessitate a tailored approach to the learning process.

After conducting our research, we have taken into consider-
ation the findings and more general conclusions. Both of our
studies have significant overlap in results despite changes in
model-dataset pairs and modifications in learning. Although it
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is difficult to point to a universal solution to this optimization
problem, we recommend the following. First, we suggest using
methods commonly used in modern CNN architectures, such
as GAP and Depthwise Separable Convolution, and combining
them with more generic approaches, for example, inverted
bottlenecks. This approach can effectively reduce the number
of parameters while maintaining a similar level of accuracy.
Our research suggests that both high-level building blocks,
especially ghost bottlenecks, and low-level modifications, such
as the shuffle mechanism, can also yield positive results. The
DiCE unit was not suitable for our strict training process. We
also recommend carefully optimizing critical parts of architec-
tures, such as the classifier. For more complex problems, the
complete removal of the last fully connected layers results in
a more noticeable model reduction at the expense of a higher
loss of accuracy. Pruning proved to be effective even for highly
optimized models, while quantization may only be suitable for
less compressed models - otherwise, the losses may be too
high.
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