

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 1, PP. 135-144

Manuscript received December 3, 2023; revised March, 2024. doi: 10.24425/ijet.2024.149523

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The article outlines a contemporary method for

creating software for multi-processor computers. It describes the

identification of parallelizable sequential code structures. Three

structures were found and then carefully examined. The

algorithms used to determine whether or not certain parts of code

may be parallelized result from static analysis. The techniques

demonstrate how, if possible, existing sequential structures might

be transformed into parallel-running programs. A dynamic

evaluation is also a part of our process, and it can be used to assess

the efficiency of the parallel programs that are developed. As a tool

for sequential programs, the algorithms have been implemented in

C#. All proposed methods were discussed using a common

benchmark.

Keywords—programming languages; algorithms; concurrency;

parallelism; parallel programming

I. INTRODUCTION

HE processor development is changing. Multi-core

architectures were developed instead of trying to

continuously increase clock speeds, which completely changed

the market for personal computers. However, many

programmers continue to create sequential solutions for single-

processor machines, ignoring the fact that a typical computer,

even a laptop, is equipped with multiple computing units. As an

effect, the application performance is similar regardless of the

number of processors running within a computer, leaving most

processors idle. Deep expertise is necessary to create parallel

solutions, and many businesses find it time-consuming to

deploy them. To help developers learn parallel processing,

identify potential dangers, and help address them, practical

assistance is required. While many existing application

development frameworks support easy multithreading

programming, there are neither integrated solutions that

concentrate on both methodology and tools nor services that

convert already-existing applications to new settings.

Furthermore, there is a need for educational tools that would

benefit both students and inexperienced cooperating engineers.

As a result, the main objective of this project was to provide

a methodology and tools to help programmers automatically

transform current sequential applications into parallel ones. The

provision of useful information for related academic and

professional activity was the other objective. We have

considered and tested two solutions: a Native Approach and

the.NET Framework (Parallel Extensions [1]). C# programs can

First and third Authors are with Warsaw University of Technology, Institute

of Computer Science, Warsaw, Poland (e-mail: wiktor.daszczuk@pw.edu.pl;

w.grzeskowiak@gmail.com).

use our technique and experimental tool [2]. The techniques,

however, can be used with a broad class of high-level languages

based on C syntax, such as C, C++, C#, and also VB. The

following is a list of the contributions made by this article:

1. Automated identification of sequential parts of a program

that can be subject to parallelization.

2. Algorithms for parallelization of sequential code.

3. A methodology for dynamic analysis of the performance of

parallelized programs to confirm their increased efficiency.

4. Creation of procedures for evaluating the proposed

parallelization dynamic analysis and recommending its

adoption.

5. Case study of mergesort C# code and various types of its

parallelization.

The literature overview, which covers the present situation

and prospects for code parallelization using ML models, is

found in Section II. The Parallel Extensions [1] tool for

parallelization is discussed in Section III. The methodology and

algorithms are described in Section IV. Common

synchronization factors for suggested solutions are covered in

Section V. Section VI covers a benchmark for applying all three

methods. The article is concluded in Section VII.

II. CURRENT WORK

It is usually necessary to divide an issue into smaller, as

independent of one another as possible subtasks in order to solve

them in parallel and speed up their execution. The significant

effort is required to synchronize dependent tasks. The literature

has long discussed both the theoretical and practical parallel

programming methods. Bernstein [3] provided one of the

earliest explorations of parallel processing programs. He

identified three key requirements for the independent and

simultaneous execution of two instruction sequences. Amdahl

investigated the theory of acceleration constraints in [4]. Later,

Gustafson extended the Amdahl law [5] to situations involving

significant parallelism. Numerous academics who were

interested in the precise construction and functionality of

massively parallel computers looked after this basic study [6].

Another significant advancement was the addition of Parallel

Extensions [1], a framework for a parallel runtime environment,

to the.NET Framework. It includes a number of useful syntactic

features, classes, and properties that aid in building highly

scalable parallel applications and enable academics and

practitioners to generate fresh solutions based on this

Second Author is with Fayetteville State University, Department of
Mathematics and Computer Science, Fayetteville, USA (e-mail:

bczejdo@uncfsu.edu).

Adding parallelism to sequential programs –

a combined method
Wiktor B. Daszczuk, Denny B. Czejdo, and Wojciech Grześkowiak

T

https://creativecommons.org/licenses/by/4.0/

136 W.DASZCZUK, D.B.CZEJDO, W.GRZEŚKOWIAK

environment. The alternative solution is OpenMP (Open Multi-

Processing [7]), which contains a set of libraries, and generates

compiler directives and environment variables that influence the

execution of a parallel program. This guarantees the portability

of the resulting application.

Building an "optimal" parallel program remains a difficulty

even with current frameworks. Programmers frequently have

trouble figuring out which parts of the code may be made to

execute simultaneously [8]. The requirement for tools to aid in

the development of parallel programs is well acknowledged [8].

The development of methods to identify fragments of sequential

programs subject to parallelization has been the subject of

extensive research. Described methods concern static analysis

[9], dynamic evaluation [10], or a combination of them [9]. The

maximum amount of task parallelism can be captured by static

analysis using a control dependence graph [11][12], and

dynamic analysis can be used to assess the efficiency of

parallelized programs [10]. Zhong et al. focuses on simply

tackling particular sides of the issue, such as description of how

to find loops that can be parallelized in sequential programs

[13]. More specific results concern identification of loops

subject to parallelization by finding the optimal affine partitions

[14]. Some methods focus on the numerous sequential code

segments that can be parallelized [15], while others stress task-

based, fine-grained parallelism [16]. Most tools depend on the

language, frequently C++ [12]. Since most tools cannot

automatically introduce parallelism to programs with

complicated control and data flows, some methods focus on

profiling information, to help the user in finding fragments

susceptible to parallelization [17].

A different strategy is to create a new compiler based on the

generated dependency network. It rewrites a program in a

parallel task manner [18]. Another approach falls under the

category of speculative strategies. This research is founded on

the idea that we can execute consecutive iterations of a

sequential loop concurrently, and it is unlikely that multiple data

dependencies will arise during runtime [19]. If this assumption

holds, it leads to achieving runtime parallelism [19]. In [20],

which employs a similar approach, the state of speculative

parallel threads is kept separate from the state of non-

speculative computation.

III. FRAMEWORK USED FOR PARALLELIZATION

A. Parallel Extensions

Selecting the translation destination, whether a framework

designed for parallel applications or a native approach,

represents a pivotal choice when transforming sequential

programs into parallel ones. We have contemplated and

experimented with two options: Parallel Extensions for the.NET

Framework and a Native Approach.

The Microsoft-developed and promoted.NET Framework

runtime environment includes Parallel Extensions [1].

Numerous useful syntactic elements, classes, and properties are

added by the extension to aid in the development of parallel

applications. The environment itself is also quite scalable,

enabling full utilization of various multi-core machine types.

Languages that support the .NET Framework 4.0 (or later), such

as C++, C#, and VB.NET, can use Parallel Extensions.

A task, an independent functional component of the program

that can run in parallel with other tasks, is the main element of

the program. Correct and efficient job allocation is managed by

the environment, which controls resources (processors). To

achieve this, a unique planner (scheduler) was created to balance

the load distribution throughout the running computing units

and optimize job allocation. The task-stealing method makes

sure that tasks are carried out by all available processors.

Every processor in the environment has a thread that is started

with its own task queue. Requests distribute jobs from the

application-filled thread queues in the global queue. Subsequent

tasks that are created by a task are added to the top of the thread

queue. Data caching is connected to this approach. When other

threads (processors) have no jobs to complete, contained in their

local queues or the global queue, they may run the tasks

contained at the end of an appointed queue.

A number of unique instructions, including parallel loops like

Parallel.For. are introduced by Parallel Extensions. The

portability of Parallel Extensions is another benefit; for

example, code generated on a 4-core system can utilize all of the

8, 16, or 24 cores on the machine on which it will be executed.

This is not advantageous in programs where the number of

threads is expressly stated. To illustrate, imagine a

computational program designed with four threads hardcoded

into the program. This program would function on computers

with 1, 4, and 8 processor cores, but on the last one, it would

only partially harness the capabilities of some of the available

cores.

B. OpenMP

Another framework, OpenMP (Open Multi-Processing [7]),

provides an alternative for languages like C++ and Fortran, the

latter not integrated into the.NET framework. OpenMP

comprises a collection of libraries, compiler directives, and

environment settings that impact how programs run and ensure

the adaptability of applications. This versatile system can be

employed on both personal computers and supercomputers. The

compiler includes parallel constructs, which can be invoked

through compiler directives, making it easier to implement

parallelism in the code. OpenMP does not offer language

extensions. More control over parallelism is given to the

programmer than with Parallel Extensions.

Threading, work separation, data environment management,

thread synchronization, and runtime measurement are the

fundamental building blocks of OpenMP. Despite the fact that

OpenMP uses shared memory, users can define private

variables. Different data sharing attributes, such as private,

shared, and default, are utilized for this purpose. Additional

synchronization clauses introduced by OpenMP include crucial

sections, atomic blocks, and the capacity to preserve the order

of loop iterations. The scheduling of concurrent jobs is another

option. There are several scheduling options: guided

(dynamically, batches of iterations run simultaneously), static

scheduling (each iteration has a thread assigned before the start),

dynamic scheduling (assigning iterations to the thread, follows

the progress of previous iterations), and auto (the system

decides the scheduling).

The #pragma compiler directive is used by OpenMP to

identify the software fragments that should be parallelized. To

spread loop iterations among the available processing units, the

Parallel.For command should be used.

Simplicity, transparency for a sequential compiler, and

adaptability to both fine- and coarse-grained parallelism are

ADDING PARALLELISM TO SEQUENTIAL PROGRAMS – A COMBINED METHOD 137

characteristics of OpenMP solutions. It is unable to reliably

manage exceptions or assign running threads to certain

processors because of its complexity.

IV. CONVERTING OF A SEQUENTIAL PROGRAM INTO A

PARALLEL ONE

The objective of this project is to try and create algorithms

that can autonomously identify sections of code within a

sequential program and transform those sections into parallel

threads. On a system with many processors (cores), such a

customized program can run concurrently.

In the realm of sequential code structures, there are three main

categories that can be made parallel: function calls, instruction

paths, and loops. A list of prerequisites for adding parallelism

was established. This leads to the creation of algorithms that

assess whether a particular occurrence of each of these

structures satisfies the criteria for parallelism. These algorithms

are distinctive and come with explanatory components that can

be utilized in both academic and professional contexts.

The examination relies on two approaches: a static evaluation

of C# code and a dynamic comparison of the performance

between sequential and parallel versions.

A. Asynchronous function call

In this section, we outline the invocations of a function, along

with the conditions that must be fulfilled for such a structure to

be executed concurrently alongside the code that follows the

function call.

1) Function calls.

There are two sequences: during the function call and

following the call, if a function is invoked. If any of the

Bernstein conditions [3] are broken, they may become

dependent on one another. Hence, by making use of the function

result (if it provides the result), variables passed by reference,

and variables affected by the function side effects (including

those arising from nested function calls), we can identify the

longest execution path after the function call that remains

unaffected by all three of these characteristics. We call it

deferred use when there is at least one statement with the

aforementioned characteristics between the function call and the

instruction. We have the option to execute the function

concurrently with the code starting from the function call until

the point where its first deferred usage occurs.

2) Data structures.

Each program statement must have a label that identifies

explicitly it in order for the asynchronous call algorithm and

subsequent algorithms to function. The algorithms employ the

following data structures:

• Call graph is a directed graph, where nodes and edges

represent functions within the source code under analysis.

When there is an edge connecting nodes X and Y, it signifies

that function X calls function Y. In practice, it is more like a

multigraph because every function call results in an edge, and

multiple edges can exist between the same pair of nodes. The

edges are marked with the function call number for

identification and algorithmic reasons.

• Collection of instructions Causing Side Effects (CSE). These

instructions alter the value of a variable beyond their

immediate scope or produce the program output.

• Collection of instructions Dependent on Side Effects (DSE).

For example, these instructions may read a variable from

outside their immediate scope, and that variable could

potentially influence the result.

Fig. 1. Example of a call graph, with the analysis levels given in distinct

colors. Every CSE/DSE entry contains a list of non-local variables accessed or

resources that have been written.

3) Algorithm for asynchronous calls.

The proposed method changes the source code after

determining whether asynchronous calls are feasible.

Call graph. The call graph is initially built using static

analysis. Based on the documentation for the programming

environment, only thread-safe library functions can be taken

into consideration. The graph is created as follows: The initial

set at level 0 in the analysis consists of the terminal functions

within a call graph. Subsequent levels are defined as follows:

The level i set includes all functions that directly invoke

functions at level i-1 (and possibly levels below i-1) while

excluding those within a call graph loop, except for recursive

calls.

In the call graph shown in Fig. 1, we can discern different

levels of function calls. In the topmost level, level 0 (depicted

in red), we find functions H, I, F, and K. However, Function B

does not fall into any level, denoted as level -1, because it is part

of a loop (the D-B loop). Moving down to level 1 (represented

in blue), we encounter functions E and J. Function G is situated

in level 2, marked in orange, while C resides in level 3, indicated

by green. Functions A, B, and D, grey, do not belong to any

specific level. This is because they are enclosed within loops or

call functions with undetermined levels.

When one function invokes another function (when the level

is greater than 0), the CSE and/or DSE of the calling instructions

rely on the CSE and/or DSE of the called function. If a function

calls a library function, any documentation-based instructions

related to the call are included in CSE. The level of a calling

function that invokes a library function remains uncertain unless

the library function is thread-safe (as described in [21] for

.NET). Even when there are no observable side effects, using

variables that are passed by reference can lead to their inclusion

in the CSE or DSE. All such CSE and DSE are essentially

"pulled" into the instructions that call the function. This is done

because these symbols might undergo further analysis.

However, there is an exception: local variables of the calling

-1

-1

3

1

-1 2

2

0

0 H I F K

E J

G

C

D B A

138 W.DASZCZUK, D.B.CZEJDO, W.GRZEŚKOWIAK

function that are passed by reference are not included in this

process.

4) Dynamic evaluation.

We can determine if enough parallelism is available until the

deferred usage by looking at how long both parallel sequences

take to run. We use three timestamps to evaluate this: Z1, Z2, Z3.

Z1 marks the beginning of the function that will be

asynchronously called, Z2 is set when this function finishes, and

Z3 is placed at the point where the deferred usage occurs. We

calculate the average differences between these timestamps

across multiple program runs to get an accurate measure: 𝑍 =
𝑍1 − 𝑍2, 𝑆 = 𝑍3 − 𝑍2. We also need to determine the average

thread-starting time, P, for asynchronous calls. Using

asynchronous calls makes sense when the times it takes for two

measures, Z and S, are similar, and both Z and S are substantially

larger than a third value, P: 𝑍 ≈ 𝑆, 𝑍 ≫ 𝑃, 𝑆 ≫ 𝑃, the

asynchronous call is reasonable.

5) Introducing asynchronous call

The transparent mode of the asynchronous function call,

which means that it is identical to sequential execution, must be

preserved in the program. We should store the result of a

function in a local variable within the calling function (if the

called function produces a result) because threads usually do not

directly return results.

B. Parallel statement paths

To execute the instructions within a function concurrently,

we can organize them into instruction paths. Imagine the current

program state as Z and the next statement to be executed as I.

Then, the program state after executing statement I, referred to

as 𝑍{𝐼}, can be described as a function 𝐼(𝑍), where 𝑍{𝐼} = 𝐼(𝑍).

If we have two consecutive statements to execute, say I1, I2, the

resulting system state after executing both, denoted as 𝑍{𝐼1; 𝐼2},

can be expressed as: 𝑍{𝐼1; 𝐼2} = 𝐼1(𝐼2(𝑍)).

For a program having state Y, if we can apply two statements:

I0 and I1, then we can say that I1 directly depends on I0 when

𝑌{𝐼0; 𝐼1}. differs from 𝑌{𝐼1; 𝐼0}. Indirect dependence of Ik on I0

is in the case of an instruction sequence I0, I1, …, Ik-1, Ik, where

every Ij directly depends on the previous Ij-1, j=1,…,k.

Instructions that are independent of each other can be executed

simultaneously in parallel because the order of their execution

does not affect the final result.

A series of dependent instructions that are organized

according to the source program make up an instruction path. If

two paths do not contain crosswise dependent assertions, then

they are independent of one another. The maximum level of

parallelism achievable for a specific sequence is determined by

how many distinct independent paths can be identified within it.

The example function in which parallel paths are present is

shown below. The two paths are found, and one of them is

highlighted.
1. void fun()

2. {

3. int k = 5;
4. int l = 10;
5. int p = fun_0();
6. k = fun_1() ? p + 1 : p - 1;
7. fun_2(k);
8. l += 15;
9. for(int i = 0; i < MAX; ++i)
10. {
11. l += 1;

12. }

13. if (k == 22)
14. {
15. p = k * 8;

16. }
17. return;
18. }

The sets for individual instructions are: CSE(3)={k},

CSE(4)={l}, CSE{5}={p} (we assume that CSE(fun_0) is

empty, and DSE(fun_0) contains only variables not used in fun),

CSE(6)={k}, DSE(6)={p} (similar assumptions to fun_1),

DSE(7)={k} (we assume that CSE(fun_2) contains only

variables not used in fun, and DSE(fun_2) contains only k),

CSE(8)={l}, DSE(9)={i,l}, CSE(9)={i,l} (l pulled in from 11),

DSE(13)={k,p}, CSE(13)={p} (p pulled in from 15),

DSE(15)={k}, CSE(15)={p}.

The extraction of parallel paths is performed as follows:

instruction 3 creates the set I (instruction 3, modified variable

k), 4 creates the set II (instruction 4, modified variable l), 5

creates the set III (instruction 5, modified variable p).

Instruction 6 merges the sets I and III, as it is a read/write

conflict on p and write/write conflict on k, so the resulting set I

contains instructions 3,5,6 and variables k,p. Instruction 7

enlarges set I by itself (accessed k), and 8 enlarges set II by itself

(accessed and modified l). Instruction 9 adds itself and variable

i to set II, and so on. Finally, set I contains instructions

3,5,6,7,13,15 and variables k,p, while set II contains instructions

4,8,9,11 and variables l,i. Therefore, two independent paths are

identified that can be subject to parallelization.

If we want to make a function capable of running in parallel

with multiple instruction paths, it can only contain one return

statement. This return statement must always ensure the

function's complete execution. Otherwise, it might lead to the

execution of instructions in parallel paths that would not occur

in a sequential mode.

1) Algorithm for independent paths

It is necessary to build an independence graph, with the labels

of the instructions and the employed variables (local and non-

local) serving as its nodes. The edges link the variable names

used to the instruction labels. Furthermore, the content within a

conditional statement is tied to the variables used in the

condition itself, and the entire content within a loop is connected

to the variables specified in the loop header. Code slicing

techniques are the foundation of the independent path discovery

algorithm [22]. Function calls must have their CDE and CSE

calculated in accordance with the asynchronous calls algorithm,

if there are any. They serve as the foundation for joining local

and non-local variables given via reference and function call

parameters. Edges connected with variables that are only read

are eliminated from the graph due to the Bernstein conditions.

The possibility of parallelization exists within the

independence graph when it consists of multiple separate

components, with no edges connecting nodes between them.

Each of these components represents the start of a unique path,

and it is crucial to ensure synchronization at the end of each path

within the function.

If the independence graph does not have separate

components, the potential for parallelization might still exist

within a cohesive section of the function. This could be

something like an if-else instruction, an if instruction

alone, or the content of a loop for a single iteration.

ADDING PARALLELISM TO SEQUENTIAL PROGRAMS – A COMBINED METHOD 139

2) Dynamic evaluation

To make instructions run in parallel, we create individual

threads for each independent path, execute them in parallel, and

then synchronize their control flow. Parallelization becomes

practical when we have at least two paths with similar execution

times, which are much larger than the average time of starting

parallel threads, denoted as P. It is a good idea to consolidate all

paths with execution times close to or shorter than P, into longer

paths. The same if their execution times are significantly shorter

than the two (or more) longest ones. This helps optimize the

parallel execution process.

As the instructions within these paths can overlap and run

concurrently, it is challenging to estimate the path execution

times of the independent paths in a sequential program. As a

result, we must apply the solution to as many paths as possible,

assess their execution times, and then join any that do not

comply with the timing criteria.

3) Running the paths in parallel

Parallel paths should originate from a common starting point.

Subsequently, for each of these parallel paths, a thread

comprising instructions from of the component in the graph in

the original order should be initiated.

C. Parallelized loops

The loop is often considered the most conducive component

for parallelism. If the following conditions hold, it is possible to

parallelize loop iterations because of their repetitive nature and

behavior (where the same piece of code is executed multiple

times).

1) Loops

There are two primary types of loops in high-level languages:

for (foreach can be transformed to for), and while (also

including do-while). The examination of loops considers

variables access (side effects, parameters, and iteration

dependency), loop nesting, and the capacity to forecast the

number of iterations.

Number of iterations. The loop cannot be parallelized if it

includes situations where the loop, its containing function, or

the entire program terminates prematurely. Loop iterations that

cannot be interrupted can be identified statically or dynamically.

The most commonly used loops are for loops, where the

number of iterations is either set as a fixed value or determined

dynamically before the loop begins. For loops, whose size can

be predetermined or fixed before the loop begins, are frequently

used to iterate through elements of collections. The initializer,

condition, and iterator are all contained in the header of for

loop. In a for loop, the initializer runs before the loop starts,

the iterator runs after each cycle, and the condition is checked

before every iteration. If the condition is false, the loop is

terminated, and any subsequent cycles are skipped.

Loops while are commonly used when the number of

iterations depends on an ongoing condition, and the exact

number of iterations is uncertain. In such loops, it is typical for

the values of variables used in the condition to change during

the loop execution or for the loop to be terminated prematurely,

as seen in loops like while(true). Due to this

unpredictability, we primarily focus on analyzing for loops.

Analysis of loop dependencies. Other loop iterations may be

able to make use of side effects produced by each loop iteration.

We consider any changes to function-local variables, like the

loop counter, as side effects. It is important to note that

modifying variables that are part of the loop condition is not

allowed, as these variables are interdependent when one loop

cycle triggers side effects that affect other iterations.

Consider a loop that runs N times, with iterations numbered

from 1 onwards, regardless of the actual values of the loop

iterator. We define the following sets of variables for each

iteration:

• PIn: The variables read in the loop header iterator after

iteration n,

• POn: The variables modified in the loop header iterator after

iteration n,

• CIn: The variables that are read in the loop body in iteration

n and also in the condition of the loop,

• COn: The set of variables modified in the loop body in

iteration n.

If a variable read within the loop body is modified only in the

loop iterator after each iteration, and its modification is not

dependent on the variables modified in the loop body of any

iteration (in other words, 𝑃𝑂𝑛 ∩ 𝐶𝑂𝑛 = ∅ → 𝑃𝑂𝑛 ∩ 𝐶𝐼𝑛 =
𝑃𝑛), and the variables 𝐶𝑂𝑛 do not influence any 𝑃𝑂𝑚

(𝑃𝑂𝑛 ≠ 𝐹(𝐶𝑂𝑚) for any n and m), then the value of this

variable for each iteration n can be computed before the loop

cycle begins..

If the following criteria are true for 𝑖, 𝑗 ∈ (1, … , 𝑁): 𝐶𝐼𝑗 ∩

𝐶𝑂𝑖 = ∅, 𝐶𝐼𝑖 ∩ 𝐶𝑂𝑗 = ∅, 𝐶𝑂𝑖 ∩ 𝐶𝑂𝑗 = ∅, which are the

modified Bernstein conditions, and if any variables changed by

the loop iterator are loop parameters, then this for loop can be

parallelized. In this context, for loops that use a counter

iterated after each iteration can be parallelized.

Nested loops. When working with multi-dimensional data,

like the rows and columns of an image or matrix multiplication,

we might encounter nested loops. These are loops within loops,

and it's not very common to have four or more levels of nesting.

We attempt to parallelize the outermost loop in nested loops

because it offers the most parallelism. When a parallelized loop

Z1 is nested inside loop Z0, note that during each iteration of Z0,

many parallel Z1 cycles begin in parallel. In this scenario, Z0 has

to wait for all the Z1 iterations to finish before it can begin the

next iteration. However, if we parallelize Z0, the Z1 cycles from

different Z0 iterations can run simultaneously. This means that

parallelization and waiting for parallel threads to finish only

occur once, making the process more efficient.

2) Loop parallelism

Parallelizing a loop is possible when these three conditions

are satisfied:

• We must know the values of loop parameters for each

iteration before starting the loop.

• Each iteration should be independent and not rely on others.

• The total number of iterations should be known in advance.

It is important to note that these criteria significantly limit the

number of loops that can be parallelized.

3) Parallelized loop algorithm

Loop parameters analysis. A loop iterator is a variable read

within the loop body but only modified in the loop header.

Significantly, any changes made to this iterator in the header

140 W.DASZCZUK, D.B.CZEJDO, W.GRZEŚKOWIAK

must not be influenced by modifications occurring inside the

loop.

Since we cannot predict the iterator value before the loop

starts, parallelization is not possible if the variables modified in

the loop iterator intersect with the variables modified inside the

loop.

The next step is to check if altering the loop parameters is

unrelated to changing any variables inside the loop. It is crucial

for these two sets of variables, loop parameters and those

updated inside the loop, to be distinct. Otherwise, parallelization

of the loop is not feasible.

Iteration independence analysis. Determining the sets of

variables that are read and written involves examining the DSE

and CSE of called functions. If a variable is both read and

written within the loop, it creates the potential for a race

condition between loop cycles. This situation aligns with what

is known as the Bernstein condition, where a race can occur

between two iterations. Here is an example of code where this

race condition can happen.
1. void count(int* data, int* result,

 int number)

2. {

3. const int constant = 5;
4. int lastResult = 0;
5. for(int i=0; i<number; ++i)
6. {
7. int temp = Math.Pow(data[i], 3);

8. temp += constant;

9. lastResult = temp + data[i];

10. result[i] = lastResult;

11. }
12. }

The variable lastResult is read and changed in a single

iteration.

Iteration count analysis. Suppose we have a loop with a

condition and iterator modification in a specific form, along

with some additional conditions explained below. In that case,

we can determine the number of iterations in advance.

• The condition has the form: <w1><op><w2>, where w1 and

w2 are either simple variable names or constant numbers, and

op is an arithmetic operator.

• One of (𝑤1, 𝑤2) must be the loop counter, whose value

changes by the same amount in each iteration.

• The other variable, either 𝑤1 or 𝑤2, should be a simple

variable or a constant called limit.

• We need to know the initial value of the loop counter before

the loop starts.

• The loop counter must be modified using one of the

following operators: ++, --, +=, -= . The value added

or subtracted must always be 1 in the first two cases. In the

latter two cases, if it is a variable, its value must remain

constant during the loop execution.

• The operator op in the condition must be one of the

following: ==, !=, <, >, <=, >=.

We can determine the number of loop iterations based on the

operator used in the loop condition, the counter modification

operator, and the modifier value. To simplify this, let us

consider that 𝑤1 represents the loop counter, 𝑤10
 is the initial

value of the counter, and 𝑤2 is the limit. The exact analysis of

this calculation can be quite extensive and detailed, so we will

not delve into it here because it consumes too much space.

However, it is possible to calculate the number of iterations by

considering these variables and their interactions, for instance;

when 𝑤1 = 𝑤2, 𝑝 = 0, op:+= infinitely many iterations; when

𝑤1 ≠ 𝑤2, 𝑤2 < 𝑤10
, op:++ unknown number of iterations; and

when 𝑤1 ≠ 𝑤2, 𝑤2 > 𝑤10
, 𝑝 > 0, op=++ →

𝑤2−𝑤10

𝑝
 iterations.

Only the latter scenario is viable. Out of the cases we examined,

we identified 18 scenarios where the loop resulted in more than

one iteration. In these cases, we were able to determine the

number of iterations, as in the code (=number):
1. void countShortcuts(FILE* files,

 MD5* shortcuts, int number)

2. {

3. for(int i=0; i<number; ++i)

4. { shortcuts[i] = CountMD5(files[i]); }

5. }

6.

7. MD5 CountMD5(FILE* file)

8. { //long calculations }

4) Dynamic evaluation

A number of program runs using various data sets are

required for evaluation, with the time taken for each loop cycle

being recorded. A log must be output because there may be

thousands of cycles. It is reasonable to use parallelization if, for

the average situation, at least two iterations of a loop take a

similar amount of time, and this time is significantly longer than

the time it takes to create and synchronize threads, then

parallelization makes sense..

5) Introducing loop parallelism

Every iteration must begin with a separate variable that

represents the counter in order to run the algorithm. By adding

the modifier to 𝑤10
, and applying n-1 modifications, the

assigned value comes. The condition is not required because

parallelism consumes it.

V. COMMON CONSIDERATIONS

Even though we can use asynchronous calls as they are,

sometimes we might end up creating many parallel threads

simultaneously in parallel pathways or loops. This number

could exceed the actual number of processors or cores, or the

parallel threads that the operating system has assigned to the

program. To manage this efficiently, creating threads in smaller

groups closer to the system limits is a good idea.

In parallelization, synchronization is a significant problem.

Synchronization points are provided by environments like

Parallel Extensions, where the thread ends are gathered before

the beginning of the subsequent instruction. To ensure proper

synchronization in asynchronous calls, we must establish

synchronization points before a deferred usage occurs. These

synchronization points are essential, especially when a function

or a portion of it ends in parallel paths or if a loop is parallelized.

In cases where a built-in synchronization mechanism is

unavailable, we can utilize existing synchronization

mechanisms. The instruction following the required

synchronization point typically involves waiting on a lowered

semaphore to coordinate the execution flow. Before the threads

branch, a thread counter is set up, and each completed thread

reduces the counter in a critical section. When the counter hits

0, the semaphore is raised. The event mechanism is available in

C#.

Our techniques have some limits, including the use of virtual

functions, exceptions, and nested function calls like

ADDING PARALLELISM TO SEQUENTIAL PROGRAMS – A COMBINED METHOD 141

𝑓1(𝑓2()).The virtual function approach was discarded because

it is impossible to predict which method, either from the base

class or the inheriting class, will be called. This unpredictability

stems from the limitations of static code analysis, which cannot

determine the specific type of object that might be assigned to a

given variable.

A side effect is any alteration in an object or resource state

that does not stem from the call parameters or interactions with

the environment. When multiple statements induce side effects

on the same resource, like a computer screen, they cannot be

executed simultaneously without additional synchronization

efforts. In simpler terms, if two actions mess with the same

thing, they must be carefully coordinated to avoid conflicts. The

developer should decide which resource operations can be

carried out concurrently.

A. Synchronization

In specific high-level programming languages like C#, we

have an alternative to using threads. Instead of manually

managing threads, we can use language features or libraries that

provide parallel processing capabilities. In the case of C#, we

can swap out a traditional for loop with a parallelized version,

specifically the Parallel.For loop found in the Parallel

Extensions library. This allows for harnessing the power of

parallel processing without getting into the details of thread

management.

For running the sets of instructions in parallel in our

benchmark (see Section 6), we use C# threads with

thread.Start() and thread.Join(). In Unix-like

environments, processes can replace threads, using fork()

and wait() operations, but we must remember that in this case

the calculations are slower because the process data is

duplicated in fork(). If the result of calculations is a single

value, it can be passed as the exit code. The program is:
1. int i = fork();

2. if (i==0)

3. {

4. //do the child work

5. exit(EXIT_SUCCESS);

6. }

7. else

8. {

9. int wstatus;

10. do
11. {
12. int w = waitpid(i, &wstatus,

 WUNTRACED | WCONTINUED);

13. if (w == -1) exit(EXIT_FAILURE);
14. } while (!WIFEXITED(wstatus));
15. int result = WEXITSTATUS(wstatus);
16. }

If the results of the child program cannot be passed using the

exit code, the data can be provided to the parent using a file,

shared memory area, or a pipe.

In other environments, a call of a child program from the

parent program can be applied, and the programs should read

the same input data. For synchronization, a simple semaphore

initialized to 0 can be used. For example, if we want to run 6

loop cycles, one of them can be performed by the main thread

(say, cycle 0). All the other cycles 1..5 can be performed by the

child programs. The results can be passed as above by files,

shared memory area, or a pipe. The parent program:

1. start semaphore s(0);

2. for (int i=1; i<6; ++i)

3. { startChildProgram(i); }

4. loopContent(0);

5. for (int i=1; i<6; ++i) s.P();

The child program i:
1. loopcontent(i);

2. s.V();

B. Nesting

Fig. 2. Nesting independent paths

The proposed methods can be hierarchically mixed. This

means that, for example, parallel paths can comprise an

asynchronous function call or a parallelized loop. Additionally,

independent paths can be split into more detailed independent

paths that concern subsets of variables accessed in the “parent”

path. This is described graphically in Fig. 2, in which a set of

variables is divided into subsets in a hierarchical way.

The outer paths concern the sets of variables v1-v4 and v5-v8,

respectively. The path concerning v1-v4 is split into shorter

subpaths in which v1,v2 and v3,v4 are accessed independently,

which do not occur in the starting and ending fragments of the

parent path. More deeply, the subpath concerning v1 and v2 is

split into shorter subpaths concerning individual variables v1

and v2 separately. Fig. 3 shows symbolically how the cases can

be nested.

Fig. 3. Nesting the cases

v
1
,v

2
,v

3
,v

4
 v

5
,v

6
,v

7
,v

8

v
1
,v

2
 v

3
,v

4
 v

5
,v

6
 v

7
,v

8

v
1
 v

2
 v

3
 v

4
 v

5
 v

6
 v

7
 v

8

v
1
,v

2
 v

3
,v

4
 v

5
,v

6
 v

7
,v

8

v
1
,v

2
,v

3
,v

4
 v

5
,v

6
,v

7
,v

8

independent

paths
parallelized

loop

asynchronous
call

142 W.DASZCZUK, D.B.CZEJDO, W.GRZEŚKOWIAK

VI. CASE STUDY

We have developed an experimental tool designed for loop

parallelization, and we have put it to the test on various

programs, including tasks like matrix multiplication, N-

dimensional space point neighborhood search, image

recognition, and information entropy computation.

What is particularly noteworthy is that most of the loops we

encountered could not be transformed into structures suitable

for parallelization. These loops often relied on external

resources, like images or data collections processed by the

application. We observed similar challenges when examining

the other two sequential constructs discussed in this article,

namely asynchronous calls and parallel paths.

In the cases of matrix multiplication and neighborhood

search, we found that out of the 16 loops available, only 8 could

be effectively parallelized. However, it is essential to note that

in the case of matrix multiplication, introducing parallelism led

to a notable efficiency boost of approximately 40% for the

corresponding code. The multiplication program contains 3

hierarchical loops. The tool replaced the outer loop for (int

i = 0; i < matARows; i++) {…} with the parallel loop

Parallel.For (0; matARows; i => {…}).

In some instances, the loop iterations were very brief, and

when we attempted to implement parallelization, it actually

extended the overall execution time of the loop. Therefore, we

decided to elaborate a benchmark common for all three

techniques of parallelization, and show how to write the code

that is tractable for introducing parallelism.

A. The benchmark

To illustrate the application, we prepared a benchmark of a

sequential process in C# that can be parallelized in different

ways. We chose the mergesort algorithm, as it is tractable to be

cut into independent subprocedures. The basic C# code is:
1. string[] mergeSort(string[] v)

2. {

3. if (v.Length <= 1) return v;

4. int middle = v.Length / 2;

5. string[] v1 =

 v.Skip(0).Take(middle).ToArray();

6. v1 = mergeSort(v1);

7. string[] v2 = v.Skip(middle)

8. .Take(v.Length - middle).ToArray();

9. v2 = mergeSort(v2);

10. return merge(v1, v2);
11. }

The sets of individual instructions are: DSE(3)={v},

CSE(4)={middle}, DSE(4)={v}, CSE(5)={v1},

DSE(5)={v,middle}, CSE(6)={v1}, DSE(6)={v1},

CSE(7)={v2}, DSE(7)={v,middle}, CSE(9)={v2},

DSE(9)={v2}, DSE(10)={v1,v2}. The function mergeSort is

recursive, but it does not produce any side effect other than

modifying the variable that holds the result, so we can define

CSE(vi=mergeSort(vi))={vi}.

B. Asynchronous call

We can apply an asynchronous call to the first invocation of

mergeSort in line 6. The variable v1 receiving the result is

used in line 10, so we have a deferred use effect. In C#, a thread

must execute a function, so we define the first execution of the

sort as the separate function mergeSortParallel and

extract the first nested call of mergeSort to the new function

mergeSortThread. The thread cannot pass a result; thus, the

nonlocal variable v1s is used instead of the local variable v1.

The function mergeSort remains unchanged. The

parallelized function containing asynchronous call is given

below.
1. string[] v1s;

2. void mergeSortThread()

3. { v1s = mergeSort(v1s); }

4.

5. string[] mergeSortParallel(string[] v)

6. {

7. if (v.Length <= 1) return v;

8. int middle = v.Length / 2;

9. v1s = v.Skip(0).Take(middle).ToArray();

10. Thread thread = new Thread(new
 ThreadStart(mergeSortThread));

11. thread.Start();
12. string[] v2 = v.Skip(middle)
13. .Take(v.Length - middle).ToArray();
14. v2 = mergeSort(v2);
15. thread.Join();
16. return merge(v1s, v2);
17. }

C. Parallel paths

To apply parallelization of independent paths, we need the sets

of instructions not in conflict (read/write or write/write). Of

course, it could be continued to sort two parts in parallel, but

here, we decided to create four parallel paths performing partial

sorts of the array quarters. For parallelization, we must extract

the calculation of quarters size to the calling function, as this

variable is modified in the sorting function and used in every

partial sort. This causes all partial sorts to be in read/write

conflict with the quarters size calculation. A similar situation

applies to merging the quarters, so the merging is extracted to

the calling function. Like previously, the independent paths are

extracted as the separate function mergeSortMemberGang.

Generally, every path should have its own function, but we use

a common function because sorting the quarters is performed

identically. The parameter is passed as an object because such

is the requirement for a parametrized thread start. The function

prepared for parallelization is:
1. string[][] vg = new string[4][];

2. void mergeSortMemberGang(object i)

3. { vg[(int)i] = mergeSort(vg[(int)i]); }

4.

5. void mergeSortGang(string[] v, int part)

6. {

7. vg[0] = v.Skip(0).Take(part).ToArray();

8. mergeSortMemberGang((object)0);

9. vg[1] = v.Skip(part).Take(part).ToArray();

10. mergeSortMemberGang((object)1);
11. vg[2] =

 v.Skip(part*2).Take(part).ToArray();

12. mergeSortMemberGang((object)2);
13. vg[3] = v.Skip(part*3).Take(v.Length-

 3*part).ToArray();

14. mergeSortMemberGang((object)3);
15. }
16.
17. string[] mergeSortControl(string[] v)
18. {
19. if (v.Length <= 1) return v;
20. if (v.Length <= 3) return mergeSort(v);
21. int part = v.Length / 4;
22. mergeSortGang(v, part);
23. vg[0] = merge(vg[0], vg[1]);
24. vg[2] = merge(vg[2], vg[3]);
25. return merge(vg[0], vg[2]);
26. }

ADDING PARALLELISM TO SEQUENTIAL PROGRAMS – A COMBINED METHOD 143

The parallelized code of four independent paths is:
1. mergeSortGang(string[] v, int part)

2. {

3. Thread[] threads = new Thread[4];

4. object[] obj = new object[4] { 0,1,2,3 };

5. vg[0] = v.Skip(0).Take(part).ToArray();

6. threads[0] = new Thread(

7. new ParameterizedThreadStart

 (mergeSortMemberGang));

8. threads[0].Start(obj[0]);

9. vg[1] =

 v.Skip(part).Take(part).ToArray();

10. threads[1] = new Thread(
11. new ParameterizedThreadStart

 (mergeSortMemberGang));

12. threads[1].Start(obj[1]);
13. vg[2] =

 v.Skip(part*2).Take(part).ToArray();

14. threads[2] = new Thread(
15. new ParameterizedThreadStart

 (mergeSortMemberGang));

16. threads[2].Start(obj[2]);
17. vg[3] = v.Skip(part*3).

 Take(v.Length-3*part).ToArray();

18. threads[3] = new Thread(
19. new ParameterizedThreadStart

 (mergeSortMemberGang));

20. threads[3].Start(obj[3]);
21. for (int i = 0; i < threads.Length; ++i)
22. threads[i].Join();
23. }

D. Parallel loop

The solution prepared for loop parallelization is quite similar

to that with independent paths; the difference is in calling the

quarter sort inside the loop rather than in the instruction

sequence. As we work with the fragment of the function, the

calculation of the quarter size and merging can be restored:
1. string[][] vf = new string[4][];

2. void mergeSortMemberFor(object i)

3. { vf[(int)i] = mergeSort(vf[(int)i]); }

4.

5. string[] mergeSortFor(string[] v)

6. {

7. if (v.Length <= 1) return v;

8. if (v.Length <= 3) return mergeSort(v);

9. int part = v.Length / 4;

10. for (int i = 0; i < 4; ++i)
11. {
12. if (i < 3) vf[i] = v.Skip(i*part).

 Take(part).ToArray();

13. else vf[3] = v.Skip(3*part).
 Take(v.Length-3*part).ToArray();

14. mergeSortMemberFor((object)i);
15. }
16. vf[0] = merge(vf[0], vf[1]);
17. vf[2] = merge(vf[2], vf[3]);
18. return merge(vf[0], vf[2]);
19. }

The loop can be parallelized using Parallel.For, but

here we show how it can be converted to explicit threads.
1. string[] mergeSortFor(string[] v)

2. {

3. if (v.Length <= 1) return v;

4. if (v.Length <= 3) return mergeSort(v);

5. int part = v.Length / 4;

6. Thread[] threads = new Thread[4];

7. for (int i = 0; i < 4; ++i)

8. {

9. if (i < 3) vf[i] = v.Skip(i*part).

 Take(part).ToArray();

10. else vf[3] = v.Skip(3*part).
 Take(v.Length-3*part).ToArray();

11. threads[i] = new Thread(

12. new ParameterizedThreadStart
 (mergeSortMemberFor));

13. threads[i].Start((object)i);
14. }
15. vf[0] = merge(vf[0], vf[1]);
16. vf[2] = merge(vf[2], vf[3]);
17. return merge(vf[0], vf[2]);
18. }

E. Tests results

We tested the four parallelized solutions compared with the

sequential ones on the text files downloaded from the Gutenberg

database at https://zenodo.org/record/3360392 : 6MB, 72MB,

and the later one repeated three times (215MB). For all those

files, the run time reduction was independent on the file size.

The asynchronous call solution took approx. 60% of sequential

program, and for both independent paths and parallelized loop,

it was around 45%. The tests were run on 4-core processor. This

environment somehow disturbs the tests, because we have

totally five threads (including the main one) and the operating

system running in parallel, but it shows the potential of

parallelization.

On the base of the presented cases, we can formulate the hints

for building the functions that are tractable for parallelization.

For asynchronous call, the deferred use should be as far from

the function call as possible. For independent paths, initial write

operations on common data (that are only read along the rest of

the function) and aggregation of results should be extracted to

the calling function, leaving sets of instructions more

independent. For parallel loop, the loop cycles should be

independent between themselves, and independent of loop

control variables. Additionally, among loop control

instructions, only continue can be applied to preserve the

total number of cycles. If there are exceptions that can be raised,

they should be extracted to the calling function.

VII. SUMMARY AND FUTURE WORK

This article primarily focuses on the practical methodology

for transforming sequential programs written in C-like

languages into parallel programs. It delves into a comprehensive

analysis of three fundamental components in sequential code:

function calls, instruction paths, and loops. Through this in-

depth exploration, the article introduces algorithms designed to

identify and parallelize these code constructs, along with the

necessary conditions for introducing parallelism within them.

The analysis can go deeper and discover nested cases, as shown

in Fig. 3. Especially, identifying nested independent subpaths

requires additional steps in the algorithm (Fig. 2).

Our approach enables parallelism without the need for extra

resource synchronization methods. Instead, it achieves this by

thoroughly analyzing relevant program structures and assessing

their independence. Future research might involve investigating

dependencies and using these findings to automatically

introduce parallelism along with resource synchronization. Such

an approach could potentially expand the range of structures that

can be parallelized.

To sum it up, automating the integration of parallelism is a

highly complex subject that demands a comprehensive analysis

of numerous aspects and components. Future solutions might

avoid this requirement by using completely different machine

learning techniques. New data-driven approaches, using ML

customized deep learning models [23] or large language models

144 W.DASZCZUK, D.B.CZEJDO, W.GRZEŚKOWIAK

trained on cross-lingual keywords [24], are emerging. We have

conducted initial experiments using a general-purpose language

model in ML to convert sequential code into parallel code.

However, our early experiments show limitations in direct

model use, and further model training is needed. Additionally,

the explanation of the transformations made by these models,

would assist in identifying limitations of ML approach and thus

lead to further improvements [25].

ACKNOWLEDGEMENTS

This article is an extended version of the paper presented on

Depcos-Relcomex 2023 conference [26].

REFERENCES

[1] C. Campbell, R. Johnson, A. Miller, and S. Toub, Parallel Programming

with Microsoft .NET: Design Patterns for Decomposition and
Coordination on Multicore Architectures, 1st ed. Redmond, WA:

Microsoft Press, 2010. ISBN: 978-0-7356-5159-3

[2] ECMA_International, “C# language speification,” 2002. [Online].

Available: https://www.ecma-international.org/publications-and-
standards/standards/ecma-334/.

[3] A. J. Bernstein, “Analysis of Programs for Parallel Processing,” IEEE

Trans. Electron. Comput., vol. EC-15, no. 5, pp. 757–763, Oct. 1966.
doi:10.1109/PGEC.1966.264565

[4] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in spring joint computer conference

on - AFIPS ’67 Atlantic City, NJ, April 18-20, 1967, 1967, p. 483.
doi:10.1145/1465482.1465560

[5] J. L. Gustafson, “Reevaluating Amdahl’s law,” Commun. ACM, vol. 31,
no. 5, pp. 532–533, May 1988. doi:10.1145/42411.42415

[6] M. Danelutto, J. D. Garcia, L. M. Sanchez, R. Sotomayor, and M.

Torquati, “Introducing Parallelism by Using REPARA C++11 Attributes,”
in 24th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP), Heraklion, Greece, 17-19 Feb 2016,
2016, pp. 354–358. doi:10.1109/PDP.2016.115

[7] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP - Portable
Shared Memory Parallel Programming. Cambridge, MA: MIT Press,
2007. ISBN: 978-0-262-53302-7

[8] R. Atre, A. Jannesari, and F. Wolf, “Brief Announcement: Meeting the

Challenges of Parallelizing Sequential Programs,” in 29th ACM

Symposium on Parallelism in Algorithms and Architectures, Washington,
DC, 24 - 26 July 2017, 2017, pp. 363–365. doi:10.1145/3087556.3087592

[9] D. Dig, “A Refactoring Approach to Parallelism,” IEEE Softw., vol. 28,
no. 1, pp. 17–22, Jan. 2011. doi:10.1109/MS.2011.1

[10] Z. Li, “Discovery of Potential Parallelism in Sequential Programs,” PhD
thesis, Technische Universität Darmstadt, Department of Computer

Science, 2016. [Online] Available: https://tuprints.ulb.tu-
darmstadt.de/5741/7/thesis.pdf

[11] F. Allen, M. Burke, R. Cytron, J. Ferrante, and W. Hsieh, “A framework

for determining useful parallelism,” in 2nd international conference on
Supercomputing - ICS ’88, St. Malo, France, 1 June 1988, 1988, pp. 207–
215. doi:10.1145/55364.55385

[12] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast
Task-Based Parallel Programming Using Modern C++,” in 2019 IEEE

International Parallel and Distributed Processing Symposium (IPDPS),

Rio de Janeiro, Brazil, 20-24 May 2019, 2019, pp. 974–983.
doi:10.1109/IPDPS.2019.00105

[13] Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and Scott Mahlke,
“Uncovering hidden loop level parallelism in sequential applications,” in

2008 IEEE 14th International Symposium on High Performance

Computer Architecture, Salt Lake City, UT, 16-20 Feb 2008, 2008, pp.
290–301. doi:10.1109/HPCA.2008.4658647

[14] A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing
synchronization with affine partitions,” Parallel Comput., vol. 24, no. 3–
4, pp. 445–475, May 1998. doi:10.1016/S0167-8191(98)00021-0

[15] Z. Li, R. Atre, Z. Huda, A. Jannesari, and F. Wolf, “Unveiling

parallelization opportunities in sequential programs,” J. Syst. Softw., vol.
117, pp. 282–295, Jul. 2016. doi:10.1016/j.jss.2016.03.045

[16] G. Tagliavini, D. Cesarini, and A. Marongiu, “Unleashing Fine-Grained
Parallelism on Embedded Many-Core Accelerators with Lightweight

OpenMP Tasking,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 9, pp.
2150–2163, Sep. 2018. doi:10.1109/TPDS.2018.2814602

[17] S. Rul, H. Vandierendonck, and K. De Bosschere, “A profile-based tool

for finding pipeline parallelism in sequential programs,” Parallel Comput.,
vol. 36, no. 9, pp. 531–551, Sep. 2010. doi:10.1016/j.parco.2010.05.006

[18] A. Fonseca, B. Cabral, J. Rafael, and I. Correia, “Automatic
Parallelization: Executing Sequential Programs on a Task-Based Parallel

Runtime,” Int. J. Parallel Program., vol. 44, no. 6, pp. 1337–1358, Dec.
2016. doi:10.1007/s10766-016-0426-5

[19] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai, “A cost-

driven compilation framework for speculative parallelization of sequential
programs,” ACM SIGPLAN Not., vol. 39, no. 6, pp. 71–81, Jun. 2004.
doi:10.1145/996893.996852

[20] Chen Tian, Min Feng, V. Nagarajan, and R. Gupta, “Copy or Discard

execution model for speculative parallelization on multicores,” in 41st

IEEE/ACM International Symposium on Microarchitecture, Como, Italy,
08-12 Nov. 2008, 2008, pp. 330–341. doi:10.1109/MICRO.2008.4771802

[21] Microsoft, “Thread-Safe Collections.” [Online]. Available:
https://learn.microsoft.com/en-us/dotnet/standard/collections/thread-
safe/.

[22] M. Harman and R. Hierons, “An overview of program slicing,” Softw.
Focus, vol. 2, no. 3, pp. 85–92, 2001. doi:10.1002/swf.41

[23] Y. Shen, M. Peng, S. Wang, and Q. Wu, “Towards parallelism detection

of sequential programs with graph neural network,” Futur. Gener.

Comput. Syst., vol. 125, pp. 515–525, Dec. 2021.
doi:10.1016/j.future.2021.07.001

[24] OpenAI, “ChatGPT: Optimizing Language Models for Dialogue.”
[Online]. Available: https://openai.com/blog/chatgpt/.

[25] A. Barredo Arrieta et al., “Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible

AI,” Inf. Fusion, vol. 58, pp. 82–115, Jun. 2020.
doi:10.1016/j.inffus.2019.12.012

[26] D. B. Czejdo, W. B. Daszczuk, and W. Grześkowiak, “Practical Approach

to Introducing Parallelism in Sequential Programs,” in 18th International
Conference on Dependability of Computer Systems DepCoS-RELCOMEX,

Brunów, Poland, 3-7 July 2023, 2023, pp. 13–27. doi:10.1007/978-3-031-
37720-4_2

