

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 1, PP. 161-167

Manuscript received August 1, 2023; revised March, 2024. doi: 10.24425/ijet.2024.149526

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—Medical information systems could benefit from

electronic health records management using openEHR. On the

other hand, such a standard adds an additional software layer to

the system, which might impact performance. In this article, we

present an in-depth comparison of open-source openEHR servers

and propose tools for testing them. Load tests for selected open-

source servers were prepared using Apache JMeter. Statistics of

elapsed time of requests and throughput of each solution were

calculated. Results show that open-source openEHR servers

significantly differ in performance and stability and prove that

load testing should be a crucial part of a development process.

Keywords—medical information systems; electronic health

record; openEHR

I. INTRODUCTION

HE openEHR [1] consists of specifications, clinical

models, and software, which together create a healthcare

technology allowing the management of electronic health

records (EHRs). Using multi-level modeling, data

representation is separated from domain content, significantly

improving the ability to design and process patient-related data.

The basic unit of data describing medical terms is known as an

archetype, and archetypes can be combined into so-called

templates. This approach allows to model virtually any medical-

related event or examination, which can be stored securely in a

repository of EHRs. openEHR guarantees interoperability. The

standard has already been applied to many existing medical

information systems [2]-[6], as well as been studied in many

research works which show that openEHR is suitable for various

applications in medicine [7]-[17].

In our recent work, we presented a performance comparison

of custom and openEHR-based solutions for medical

information systems [18]. As the name suggests, openEHR is an

open solution, but unfortunately, there are currently only two

supported open-source openEHR servers that allow

incorporating this standard into medical information systems:

EHRServer [19] and EHRbase [20]. An organization

responsible for maintaining the standard also indicates Ethercis

[21], but this solution seems unsupported for several years. In

the previous work, we selected EHRServer as an EHR

repository. We also provided a simple comparison between this

software and EHRbase in which we showed the superiority of

EHRServer in terms of performance. Those tests simulated the

This work was financed thanks to an internal grant for employees of the

Warsaw University of Technology supporting scientific activity in the discipline

of Biomedical Engineering [grant number 504/04763/1034/43.052202].

usage of both servers by one user. After a more thorough

analysis, we came to the conclusion that this approach was

flawed. Because of that, we have developed more

comprehensive load tests of both servers to perform an objective

and complex comparison presented in this paper. Apache

JMeter load tests were prepared for both solutions in order to

test the most basic operations (creating and fetching EHRs,

creating and fetching compositions). Moreover, we made the

test framework created in this work available open-source to

allow others to perform their own studies, which might be

crucial in developing new medical information systems based

on openEHR.

II. METHODS

EHRServer and EHRbase are both open-source web

applications that allow the storage of openEHR data. Both

provide REST APIs that enable communication with them using

HTTP protocol and JSON/XML data. EHRbase is only a

repository with no graphical user interface (GUI), whereas

EHRServer provides GUI for browsing and managing data, so

it might be used as a standalone solution. EHRbase is pure Java,

whereas EHRServer is developed using Grails 3.3.10.

Described systems differ in a database system used for data

storage. EHRbase uses PostgreSQL, whereas EHRServer uses

MySQL. In this study, we used EHRbase version 0.24.0

(commit c1a6db20, 22 Feb 2023) running on Java 17.0.6 with

PostgreSQL 13.10 and EHRServer version 2.3 (commit

1215f58, 7 Dec 2022) running on Java 1.8.0_351 with

MySQL 5.7.40.

Both systems can be run in Docker, which simplifies

configuration and deployment. Both are configured so that the

web application and the database run in separate containers that

communicate through a network. In this study, we decided to

test each server in different configurations (Figure 1) to test if

the selected architecture might affect the servers' performance.

In addition to running both applications in containers, we

decided to run each app locally in two scenarios: the web

application and the database running on the same host machine

(Figure 1 b) and the web application and the database on

separate machines (Figure 1 c). EHRServer can be run in

different environments: development, test, and production. The

containerized version, by default, runs in production. Because

of that the local version was always run using grails prod run-

app command which ensures the production environment.

All Authors are with Warsaw University of Technology, Faculty of

Electronics and Information Technology, Institute of Radioelectronics and

Multimedia Technology (e-mail: damian.wanta@pw.edu.pl).

Comparison of openEHR open-source servers
Jacek Kryszyn, Waldemar T. Smolik, Damian Wanta, Przemysław Wróblewski, and Mateusz Midura

T

https://creativecommons.org/licenses/by/4.0/

162 J. KRYSZYN, W. T. SMOLIK, D. WANTA, P. WRÓBLEWSKI, M. MIDURA

(a) (b) (c)

Fig. 1. Different architectures tested (a) an openEHR server and a database

running in a Docker container on a host machine (b) an openEHR server and a

database running locally on a host machine (c) an openEHR server and a

database running locally, each on separate machine.

To test performance, we prepared Apache JMeter load tests

of four operations:

1. creating EHRs

• PUT /ehr/${ehr_uuid} in EHRbase,

• POST /ehrs in EHRServer,

2. fetching EHRs

• GET /ehr/${ehr_uuid} in EHRbase;

• GET /ehrs/${ehr_uuid} in EHRServer,

3. creating compositions

• POST /ehr/${ehr_uuid}/composition in EHRbase,

• POST /ehrs/${ehr_uuid}/compositions in EHRServer,

4. fetching compositions

• GET /ehr/${ehr_uuid}/composition/${composition_uuid}

in EHRbase,

• GET /ehrs/${{her_uuid}/${composition_uuid}

in EHRServer.

In EHRbase tests, random UUIDs were generated by Apache

JMeter, whereas in EHRServer tests, UUIDs were generated

randomly by the server. Basic auth was used in EHRbase,

whereas token authorization was used in EHRServer. This

means a token valid for 24 hours had to be issued before tests.

This token was later added to the Authorization header in the

HTTP request. Apache JMeter 5.5 in CLI (NON-GUI) mode

was used for load tests. Batch scripts were prepared to automate

tests as much as possible. Each test lasted 3 minutes, but only

the last 60 seconds of the tests were analyzed. This was done

because we wanted to obtain as stable conditions as possible

and omit the phase in which Apache JMeter starts consecutive

threads that send requests. Each test was repeated for the

different number of concurrent users: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

12, 15, 20, 25, 30, 35, 40, 45, 50. The maximum number of

users was selected according to the settings of servers which by

default allow 50 connections.

The following scenario was executed: first, N concurrent

users create EHRs for 3 minutes. Identifiers of these EHRs are

saved in a CSV file later used in the test, which fetches EHRs

for 3 minutes. Next, ten compositions for each EHR are created

in the third test, their identifiers are saved in a CSV file, and

those compositions are fetched in the last test.

Compositions were created using an ePrescription (FHIR)

template downloaded from Clinical Knowledge Manager, an

openEHR repository of archetypes and templates [22]. This

template is an openEHR Medication order. An instance

(composition) of this template was generated using openEHR-

OPT tool [23], which was later randomized in each request sent

by Apache JMeter.

The host and database machines had the same parameters:

Intel Core i7-11700, 128 GB RAM, SSD NVMe SK Hynix 512

GB, Windows 11 Pro 22H2. The client machine used in the

experiments had the following specifications: Intel Core i7-

9700K, 32 GB RAM, SSD ADATA SX8200PNP, Windows 10

Pro 22H2. We also modified Java parameters available to JVM

regarding RAM to ensure as many resources as possible: -

XX:InitialRAMPercentage=50.0 (% of available initial RAM),

-XX:MinRAMPercentage=50.0 (% of minimum available

RAM), -XX:MaxRAMPercentage=80.0 (% of maximum

available RAM). All machines were in the same local area

network with 1 Gpbs speed and ping below 1 ms.

Data processing was done in MATLAB and was very similar

to our previous work [18]. Elapsed times of each request (total

time of the HTTP request and HTTP response) measured by

Apache JMeter were used to calculate: minimum elapsed time

(calculated using min function), maximum elapsed time

(calculated using max function), mean elapsed time (calculated

using mean function), standard deviation of the elapsed time

(calculated using std function), 90-th (P90), 95-th (P95), 99-th

(P99), 99.99-th (P99.99) percentiles (maximum time in which

given percentage of requests was handled calculated using

prctile function) and throughput (number of handled requests in

one second).

The test framework used in this study and MATLAB scripts

used to process the collected data are available publicly at [24].

III. RESULTS

Table I and Table II show metrics of all tests made for
EHRbase and EHRServer, respectively. For clarity, we decided
to show data for 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50
concurrent users in the main part of the article limited to mean
elapsed time of requests, standard deviation of elapsed time of
requests and throughput. All tests were performed many times
in case of any temporary problems that could occur. Presented
results are representative in this sense that all other instances of
certain test gave similar results.

A. EHRbase – PUT /ehr endpoint

PUT /ehr is an endpoint used for creating EHRs in EHRbase.
The throughput of each architecture stabilizes and doesn’t
increase for more than 20 users. This means that every new user
results in a slower request processing time for all other users.
The difference between each architecture is clearly visible –
Docker being the slowest, whereas EHRbase running locally on
one machine along the database being the fastest.

Assuming that the maximum throughput of EHRbase running
in Docker is equal to about 157 requests per second and the
maximum throughput of the server and database running locally
on one machine is about 1280 requests per second, we can see
that the difference in performance is equal to about eight times.
The performance of a server running locally on one machine and
a database running locally on another machine is somewhere in

COMPARISON OF OPENEHR OPEN-SOURCE SERVERS 163

the middle – faster than Docker but visibly slower than both
components running on the same machine.

B. EHRbase – GET /ehr

GET /ehr allows to fetch data of a certain EHR. Similar
relationships between the throughput of each architecture, as in
PUT /ehr tests, are visible. Local architecture with the server
and the database running on one machine overperforms the
other two architectures.

C. EHRbase – POST /composition

POST /composition is used in EHRbase to add a composition

to a specific EHR. These tests result in a slightly different

outcome than the previous. Still, a host as a server and a

database running locally on one machine is faster, but this time

EHRbase running in a container tuned out to be able to host

more concurrent users than the third architecture. Actually, the

third's throughput was higher for fewer users but then saturated

TABLE I

LOAD TESTS METRICS. EHRBASE INSTANCES.

 Docker Server and DB locally on one machine Server and DB locally on separate machines

Users
Mean

elapsed

time [ms]

Std of
elapsed

time [ms]

Throughput
[requests/s]

Mean
elapsed

time [ms]

Std of
elapsed

time [ms]

Throughput
[requests/s]

Mean
elapsed

time [ms]

Std of
elapsed

time [ms]

Throughput
[requests/s]

PUT /her

1 62.05 1.59 15.60 5.25 1.12 170.60 25.83 2.08 38.02

2 62.26 1.32 31.63 4.97 1.24 357.25 25.53 3.26 77.23
5 69.98 2.24 69.17 6.66 1.84 575.03 16.83 1.40 290.25

10 88.35 4.44 112.18 8.06 3.31 1037.28 14.76 1.83 655.25

15 102.15 6.30 145.67 10.83 5.27 1287.03 20.87 5.43 701.83
20 127.75 22.51 155.20 14.74 8.85 1246.08 27.58 10.74 711.60

25 158.58 40.43 156.68 17.47 8.58 1337.98 34.55 14.73 712.50

30 192.90 57.64 154.93 21.59 11.00 1317.70 41.55 25.21 713.60
35 221.48 69.85 157.40 25.52 13.84 1300.50 48.72 24.69 711.12

40 252.60 81.79 157.75 30.30 18.92 1264.53 55.77 30.75 710.72

45 284.82 99.72 157.35 33.85 19.16 1285.20 62.71 34.97 712.65
50 316.75 112.04 157.68 37.88 20.72 1280.97 70.42 45.65 705.00

GET /ehr

1 68.24 5.96 14.62 5.36 0.87 184.70 67.48 3.82 14.80
2 65.40 1.47 30.53 5.53 0.71 355.32 56.96 5.10 35.08

5 76.36 5.15 65.33 7.65 0.65 639.20 44.25 2.53 112.93

10 91.22 4.49 109.48 8.71 0.67 1138.08 41.40 2.15 241.43
15 102.92 7.22 145.55 11.29 1.87 1322.83 61.74 17.34 242.95

20 128.05 25.51 155.98 14.63 4.56 1357.30 81.02 35.61 246.73

25 157.78 42.27 158.48 18.17 7.43 1367.73 101.12 60.23 247.32
30 188.03 57.28 159.42 21.88 11.35 1364.88 121.58 67.28 246.65

35 219.52 85.00 159.32 26.69 15.30 1308.28 139.15 79.76 251.32

40 250.45 100.43 159.35 30.02 17.76 1329.93 159.14 148.80 251.23
45 281.78 117.42 159.55 33.75 21.14 1331.78 184.40 114.74 244.23

50 312.42 101.71 159.85 36.60 22.71 1363.03 208.16 134.92 240.08

POST /composition

1 73.49 1.84 13.37 19.28 0.90 50.37 49.88 2.77 19.85

2 75.93 10.61 26.02 20.00 1.13 97.57 53.93 5.23 36.80
5 89.82 12.38 54.80 26.09 2.12 185.40 62.01 3.17 80.10

10 115.20 21.35 86.07 34.69 4.01 281.27 96.79 16.73 102.42

15 139.78 36.97 106.57 46.66 5.42 316.90 144.36 40.87 103.35
20 172.78 40.38 115.05 61.85 10.45 320.27 192.98 58.78 103.22

25 211.89 55.96 117.38 77.15 12.19 321.30 241.50 107.15 103.12

30 253.53 74.89 117.90 92.07 14.18 322.77 290.82 111.86 102.87
35 298.68 98.20 116.85 109.16 40.28 317.97 335.62 177.94 104.28

40 336.14 124.15 118.55 124.08 41.02 320.97 382.45 178.30 104.98

45 373.58 142.51 120.00 140.58 58.54 318.17 432.64 248.09 103.83
50 415.62 176.69 120.02 154.32 31.66 322.60 481.12 236.88 104.65

GET /composition

1 69.00 1.25 14.47 10.35 0.99 96.03 63.20 3.36 15.80

2 72.45 5.65 27.57 10.43 0.94 190.48 52.19 3.05 38.32

5 79.79 3.04 62.57 15.44 1.21 322.92 55.34 2.49 90.27
10 99.18 4.57 100.67 30.90 4.17 323.12 69.00 2.86 144.88

15 111.79 6.50 134.02 46.37 44.06 323.38 101.31 21.46 148.00

20 137.86 22.20 144.98 61.82 85.48 323.22 135.19 40.22 147.93
25 170.45 41.08 146.60 77.17 124.90 324.68 168.68 58.56 148.28

30 203.93 60.53 146.98 92.74 152.18 329.27 200.65 75.27 149.45

35 237.03 75.31 148.32 107.64 183.29 324.13 234.19 94.51 149.47
40 272.73 91.72 147.13 123.02 203.94 326.08 268.04 117.30 149.23

45 308.96 116.42 145.37 138.92 241.98 323.40 304.53 136.76 148.05
50 352.90 133.12 142.97 154.36 258.69 326.45 338.49 151.66 148.25

164 J. KRYSZYN, W. T. SMOLIK, D. WANTA, P. WRÓBLEWSKI, M. MIDURA

and achieved a lower value overall. The ratio of a Docker

architecture's throughput and a system running on two machines

locally for 50 concurrent users equals 1.15. The difference is not

big but noticeable.

D. EHRbase – GET /composition

GET /composition is the last EHRbase endpoint tested. It

allows to fetch a specific composition of a selected EHR.

Results are similar to POST /composition except that this time

the Docker version of the system and the version running locally

on two separate machines achieved almost identical throughput,

although for lower number of users EHRbase running in a

container was able to process lower number of requests.

E. EHRServer – POST /ehrs

POST /ehrs is EHRServer’s version of PUT /ehr in EHRbase.

The same problem occurred as in our previous work [18] – no

matter what kind of architecture was used, EHRServer was

unable to process more than one concurrent user while creating

resources – both EHRs and compositions. Trying to send

requests by more than one user almost always resulted in errors

with the following description: “Batch update returned

unexpected row count from update [0]; actual row count: 0;

expected: 1” which suggests that the system might have some

problems with transactions and concurrent inserts to the

database. Because of that we decided to modify the scenario.

Only one thread was used to create EHRs and compositions

whereas multiple threads were used for GET operations. Results

are similar to EHRbase PUT /ehr endpoint – EHRServer

running in a container is slower than EHRServer running

locally. The fastest version is running both the server and the

database on the same host machine. Discrepancies between

architectures are smaller than in case of EHRbase – Docker

version is 2.3 times slower than EHRServer running locally on

the same machine as the database.

F. EHRServer – GET /ehrs

In the case of GET /ehrs there were no such errors as in the

case of POST /ehrs, but other issues manifested. In case of 50

concurrent users sending requests to EHRServer running locally

on the same host machine as the database, mean time achieved

values bigger of the order of magnitude than in other cases.

Figure 2 shows elapsed time of all requests sent in this test. The

server virtually stopped responding after about 100 seconds of

the test. This is why there are almost no requests in the last 60

seconds of the test, and their elapsed time is enormous. We

repeated this test many times, and similar results were obtained,

sometimes for fewer users. It is worth noting that the server

running locally on a separate machine than the database had

issues with dealing with 40 concurrent users. Figure 3 shows the

problem. This time requests didn’t stop to be processed, but

their elapsed time was periodically much higher, especially in

the last 60 seconds. This resulted in much lower throughput of

TABLE II

LOAD TESTS METRICS. EHRSERVER INSTANCES.

 Docker Server and DB locally on one machine Server and DB locally on separate machines

Users
Mean

elapsed

time [ms]

Std of
elapsed

time [ms]

Throughput
[requests/s]

Mean
elapsed

time [ms]

Std of
elapsed

time [ms]

Throughput
[requests/s]

Mean
elapsed

time [ms]

Std of
elapsed

time [ms]

Throughput
[requests/s]

POST /ehrs

1 26.29 2.08 35.92 11.56 1.15 84.00 18.51 3.70 53.03

GET /ehrs

1 19.90 1.36 49.93 12.32 1.12 80.90 15.37 2.56 64.97

2 20.13 2.26 98.70 13.23 0.93 150.77 17.67 2.53 113.05

5 23.40 2.90 212.77 18.28 2.25 273.25 18.85 3.04 264.93
10 28.91 4.01 344.67 26.30 3.52 379.73 21.18 3.92 471.57

15 33.65 5.24 443.62 32.44 3.48 461.93 23.57 5.24 635.67

20 41.73 6.87 477.47 40.29 11.01 495.95 26.58 6.15 751.67
25 50.64 8.96 492.27 49.31 20.27 506.68 30.56 5.57 817.50

30 59.59 11.16 502.13 58.84 26.84 509.50 34.94 9.72 858.03

35 68.11 12.96 512.90 68.20 33.06 513.00 39.58 10.91 883.85

40 77.42 16.14 515.77 78.61 44.89 508.67 61.98 57.22 645.07

45 86.45 18.55 520.38 101.68 94.63 446.72 49.39 15.09 910.68

50 95.40 21.77 523.57 281620.86 83983.98 0.23 55.79 71.29 895.83

POST /compositions

1 11562.17 210.16 0.10 277.73 15.14 3.60 241.01 6.56 4.15

GET /compositions

1 19.22 1.72 51.42 13.54 2.47 73.77 28.61 2.82 34.90
2 24.98 2.83 79.52 14.31 2.06 139.55 22.60 2.37 88.42

5 40.31 3.56 123.52 14.75 1.75 338.17 21.88 2.40 228.25

10 60.55 9.47 164.62 19.74 2.76 505.87 25.34 2.87 394.30
15 64.97 29.14 229.77 24.36 3.71 614.55 28.52 3.42 525.45

20 79.00 38.07 252.72 29.03 5.06 688.18 31.18 2.90 640.90

25 93.33 53.96 267.67 33.71 11.07 740.90 33.56 4.71 744.28
30 100.27 55.03 299.05 40.44 11.54 741.33 36.29 5.91 826.00

35 110.39 72.95 317.63 57.21 72.59 615.82 40.12 7.88 872.02

40 123.82 88.83 323.55 252759.35 92701.07 0.28 44.78 10.83 892.92
45 137.41 100.29 326.92 31550.14 732.90 0.23 575.29 11060.03 367.62

50 151.85 118.57 329.47 1086.70 21146.56 414.40 86.93 76.68 234.10

COMPARISON OF OPENEHR OPEN-SOURCE SERVERS 165

the server. Tests were repeated many times in order to exclude

some temporary issues with the network/host machine/any other

reason. Such slowdowns for many users occurred every time.

This time, the server running locally on a separate machine than

the database was the fastest. This might be due to resources

needed by both applications running on the same machine.

G. EHRServer – POST /compositions

The POST /compositions endpoint of EHRServer had the

same issue as POST /ehrs – obtaining a test with no errors

regarding many concurrent inserts was impossible. Because of

that, only one user was used to test each architecture. Once

again, the Docker version was much slower than EHRServer

running locally. Interestingly, this time the version running

separately from the database was a little bit faster, but overall

all instances were not able to process more than a few requests

per second.

H. EHRServer – GET /compositions

This endpoint allows to fetch a given composition of a certain

EHR. Yet again, the same problems as in GET /ehrs tests

occurred. For some tests, the server simply stopped responding

in an acceptable amount of time (45 concurrent users,

EHRServer running locally on the same machine as the

database), whereas in some tests, there were large slowdowns in

response time. Interestingly, EHRServer running locally on a

different machine than the database had better throughput for a

smaller number of users. In the end, both locally running

deployments had big issues with handling requests for more

than 35 users.

IV. DISCUSSION

Results obtained for EHRbase running in a container for one

user are consistent with what we presented in [18]. It is also true

for EHRServer except POST /compositions endpoint, which

was much slower this time. It seems that the performance of this

endpoint depends on uploaded data. The template selected in

this study (ePrescription (FHIR)) is much more sophisticated

than the one used in the previous study. This suggests that

EHRServer should be tested with many different templates

because results obtained for one template might not be

comparable to other templates. EHRServer was much more

problematic overall. It seems that load testing was missing

during the development of this software. It is possible that

during this process, it was tested manually or by unit testing but

with no load from more than one user. This means there is a

need for testing presented in this paper and tools which we

publish along this paper. They allow to profile the performance

of a system and find errors that are impossible to observe on a

test deployment by a single user.

Interestingly, the best stability was achieved using Docker

and running the system as containers. This suggests that those

containers have some specific configuration that should be done

when running the system locally. Moreover, local deployment

using separate machines performed better than the local

deployment of the server and the database on one machine

except POST /ehrs. This means that other operations have to be

so consuming that the resources of the host machine

(processor/RAM) are insufficient for both components working

on one machine.

Fig. 2. Elapsed time of all requests sent by 50 users to GET /ehrs – EHRServer running locally on the same machine as the database.

166 J. KRYSZYN, W. T. SMOLIK, D. WANTA, P. WRÓBLEWSKI, M. MIDURA

In the case of EHRbase, we can see that the best performance

is achieved when the server and database run locally on the same

machine. This means that the need to communicate between two

machines over the network adds latency and increases the

processing time of requests. In the case of the other two

architectures, there is a major difference in the processing time

of endpoints related to EHR (in favor of locally running server

and database on two separate machines), but in the case of

endpoints related to compositions, this difference is small. In the

end, the throughput of GET /composition is identical, whereas

the throughput of POST /composition is even higher for the

Docker version of the system. This suggests that there has to be

a common bottleneck for both architectures – probably the

speed of connection between machines hosting the server and

the database.

Table III shows the throughput achieved for 50 concurrent

users (or less in certain cases of EHRServer) for each endpoint

of EHRbase and EHRServer, respectively. The ratio of

throughput of each instance is also calculated. This allows to

notice some interesting relations. There is a big difference in the

performance of each instance of EHRbase regarding endpoints

related to EHRs, but the difference is smaller in the case of

composition endpoints. This shows that the processing of

compositions must be much more complicated, and the

advantage of a localhost connection between the database and

the server is less important. In the case of EHRServer, we

selected the best throughput before errors started to occur in

each test. Of course, this means throughput for only one user in

the case of POST endpoints. Because of this, EHRbase seems to

be faster overall for POST operations since it can serve more

than one user, and throughput usually saturates after 15

concurrent users. Due to problems with stability, it is hard to

make a comparison between both servers. When EHRServer

works, it seems to work faster. Nonetheless, speed is

overshadowed by problems with stability.

V. CONCLISION

In this work, we presented a detailed comparison of the

performance of two open-source openEHR servers: EHRbase

and EHRServer. These are two constantly maintained solutions

referenced by openEHR Foundation. Load tests (sending

requests by many concurrent users for a certain amount of time)

showed that EHRServer has problems with stability: it is not

able to correctly process POST requests from many concurrent

users at all and has a problem with handling larger traffic for

GET requests. EHRbase is clearly more stable and didn’t result

in any errors in all performed tests. It is hard to compare the

performance of both systems due to errors during EHRServer.

EHRbase processed requests from one user slower than

EHRServer, but due to ability to serve more users without errors

its throughput of POST operations was usually higher. On the

other hand, EHRServer showed better performance of fetching

compositions.

We tested servers deployed in different ways: using Docker,

locally along the database, and locally on a separate host

machine than the database machine. It is not surprising, but it

turned out that each architecture is characterized by different

performance. Putting a system in a container degrades its

performance, so some tweaking of a container parameters

should also be done. In the case of EHRbase, the best

performance was achievable with the server and the database

running locally on the same machine, which mitigated the

latency of a network connection between software. EHRServer

was rather faster when deployed on a separate machine than the

Fig. 3. Elapsed time of all requests sent by 40 users to GET /ehrs – EHRServer running locally on different machine than the database.

COMPARISON OF OPENEHR OPEN-SOURCE SERVERS 167

database. These results are important because they show how

specific conditions can dramatically affect the results or even

the correct functioning of the system. This should be taken into

account when developing software. Load testing should be the

standard when validating web applications because it exposes

problems that the developer is unable to notice when working

locally with a small set of data.

During this work we developed tools for load testing of

openEHR servers. They are published online as open-source and

available for everyone. We hope that these tools will contribute

to the development of openEHR servers and medical

information systems.

REFERENCES

[1] “openEHR Home.” https://www.openehr.org/ (accessed Dec. 07, 2022).

[2] I. D. Pǎun et al., “Local EHR management based on openEHR and

EN13606,” J Med Syst, vol. 35, no. 4, pp. 585–590, Aug. 2011,
doi:10.1007/s10916-009-9395-1

[3] B. Christensen and G. Ellingsen, “Evaluating Model-Driven Development
for large-scale EHRs through the openEHR approach,” Int J Med Inform,
vol. 89, pp. 43–54, May 2016, doi:10.1016/j.ijmedinf.2016.02.004

[4] L. Min, Q. Tian, X. Lu, and H. Duan, “Modeling EHR with the openEHR

approach: An exploratory study in China Philip Payne,” BMC Med Inform

Decis Mak, vol. 18, no. 1, pp. 1–15, Aug. 2018, doi:10.1186/s12911-018-
0650-6

[5] F. Hak, D. Oliveira, N. Abreu, P. Leuschner, A. Abelha, and M. Santos,
“An OpenEHR Adoption in a Portuguese Healthcare Facility,” in Procedia

Computer Science, Elsevier B.V., Jan. 2020, pp. 1047–1052.
doi:10.1016/j.procs.2020.03.075

[6] G. M. Bacelar-Silva, H. César, P. Braga, and R. Guimarães, “OpenEHR-

based pervasive health information system for primary care: First
Brazilian experience for public care,” Proceedings of CBMS 2013 - 26th

IEEE International Symposium on Computer-Based Medical Systems, pp.
572–573, 2013, doi:10.1109/CBMS.2013.6627881

[7] J. Buck, S. Garde, C. D. Kohl, and P. Knaup-Gregori, “Towards a
comprehensive electronic patient record to support an innovative

individual care concept for premature infants using the openEHR

approach,” Int J Med Inform, vol. 78, no. 8, pp. 521–531, Aug. 2009,
doi:10.1016/j.ijmedinf.2009.03.001

[8] C. Pahl et al., “Role of OpenEHR as an open source solution for the
regional modelling of patient data in obstetrics,” J Biomed Inform, vol. 55,
pp. 174–187, Jun. 2015, doi: https://doi.org/10.1016/j.jbi.2015.04.004

[9] R. Chen, P. Georg-Hemming, and H. Åhlfeldt, “Representing a

chemotherapy guideline using openEHR and rules,” in Studies in Health

Technology and Informatics, IOS Press, 2009, pp. 653–657. doi:
https://doi.org/10.3233/978-1-60750-044-5-653

[10] M. Li et al., “Development of an openEHR Template for COVID-19 Based
on Clinical Guidelines,” J Med Internet Res, vol. 22, no. 6, p. e20239, Jun.
2020, doi: https://doi.org/10.2196/20239

[11] L. Min, Q. Tian, X. Lu, J. An, and H. Duan, “An openEHR based approach
to improve the semantic interoperability of clinical data registry,” BMC

Med Inform Decis Mak, vol. 18, no. 1, p. 15, Mar. 2018, doi:
10.1186/s12911-018-0596-8

[12] S. Garde, E. Hovenga, J. Buck, and P. Knaup, “Expressing clinical data

sets with openEHR archetypes: A solid basis for ubiquitous computing,”
Int J Med Inform, vol. 76, no. SUPPL. 3, pp. S334–S341, Dec. 2007,
doi:10.1016/j.ijmedinf.2007.02.004

[13] C. D. Kohl, S. Garde, and P. Knaup, “Facilitating secondary use of medical

data by using openEHR archetypes,” in Studies in Health Technology and

Informatics, IOS Press, 2010, pp. 1117–1121. doi:10.3233/978-1-60750-
588-4-1117

[14] A. Wulff, B. Haarbrandt, E. Tute, M. Marschollek, P. Beerbaum, and T.
Jack, “An interoperable clinical decision-support system for early

detection of SIRS in pediatric intensive care using openEHR,” Artif Intell
Med, vol. 89, pp. 10–23, Jul. 2018, doi:10.1016/j.artmed.2018.04.012

[15] F. Khennou, Y. I. Khamlichi, and N. E. H. Chaoui, “Improving the use of

big data analytics within electronic health records: A case study based
OpenEHR,” in Procedia Computer Science, Elsevier B.V., Jan. 2018, pp.
60–68. doi:10.1016/j.procs.2018.01.098

[16] J. N. S. Rubí and P. R. L. Gondim, “IoMT platform for pervasive

healthcare data aggregation, processing, and sharing based on oneM2M

and openEHR,” Sensors (Switzerland), vol. 19, no. 19, p. 4283, Oct. 2019,
doi:10.3390/s19194283

[17] Y. Yang, H. Xu, B. Qi, X. Niu, M. Li, and D. Zhao, “Stroke screening data
modeling based on openEHR and NINDS Stroke CDE,” Proceedings -

2020 IEEE International Conference on Bioinformatics and Biomedicine,

BIBM 2020, pp. 2147–2152, Dec. 2020,
doi:10.1109/BIBM49941.2020.9313127

[18] J. Kryszyn, K. Cywoniuk, W. T. Smolik, D. Wanta, P. Wróblewski, and
M. Midura, “Performance of an openEHR based hospital information

system,” Int J Med Inform, vol. 162, p. 104757, Jun. 2022,
doi:10.1016/J.IJMEDINF.2022.104757

[19] “GitHub - ppazos/cabolabs-ehrserver: Open platform to manage and share

standardized clinical data, designed by @ppazos at CaboLabs Health
Informatics.” https://github.com/ppazos/cabolabs-ehrserver (accessed
May 13, 2023).

[20] “ehrbase/ehrbase: An open source openEHR server.”
https://github.com/ehrbase/ehrbase (accessed May 13, 2023).

[21] “GitHub - ethercis/ethercis.” https://github.com/ethercis/ethercis
(accessed May 13, 2023).

[22] “Clinical Knowledge Manager.”

https://ckm.openehr.org/ckm/templates/1013.26.80 (accessed May 26,
2023).

[23] “ppazos/openEHR-OPT: Java/Groovy Support of openEHR Operational

Templates, Reference Model, Data Generators and other tools for

www.CaboLabs.com projects.” https://github.com/ppazos/openEHR-
OPT (accessed May 26, 2023).

[24] “jkryszyn/openehr-test-suite: JMeter test suite for openEHR servers:
EHRServer and EHRbase.” https://github.com/jkryszyn/openehr-test-
suite (accessed May 26, 2023).

TABLE III

THROUGHPUT AND RATIO OF THROUGHPUTS FOR 50 CONCURRENT USERS (OR LESS IF GIVEN IN BRACKETS) OF TESTED EHRBASE AND EHRSERVER INSTANCES.

 Docker (A)
Server and DB on one

machine locally (B)

Server and DB on separate

machines locally (C)
B/A B/C C/A

EHRbase

PUT /ehr 157.68 1280.97 705.00 8.12 1.82 4.47

GET /ehr 159.85 1363.03 240.08 8.53 5.68 1.50
POST /composition 120.02 322.60 104.65 2.69 3.0827 0.87

GET /composition 142.97 258.69 148.25 1.81 1.75 1.0369

EHRServer

POST /ehrs 35.92 (1 user) 84.00 (user) 53.03 (1 user) 2.34 1.58 1.4763

GET /ehrs 523.53 513.00 (35 users) 910.68 (45 users) 0.98 0.56 1.74
POST /compositions 0.10 (1 user) 3.60 (1 user) 4.15 (1 user) 36.00 0.8675 41.50

GET /compositions 329.47 741.33 (30 users) 892.92 (40 users) 2.25 0.8302 2.71

