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Abstract—This paper crowns efforts, made by its author, 

aiming in showing and proving that the current formula for 

calculation of the spectra of output signals at A/D converters 

requires a correcting factor in it. A number of partial results 

obtained and published in the last years are referred to here. 

They paved the way to a fully satisfactory and correct result; it is 

presented in this work. The corrected formula for spectrum 

calculation is derived using a description of the output signal of 

an A/D converter by means of the so-called Dirac comb, however 

not in a direct form, but with taking into account physical reality. 

In addition, the paper contains a number of interpretative 

remarks, comments, and explanations - clarifying those matters 

that have so far been omitted in analyses of the sampling process, 

despite the fact that they raised various types of doubts. 

 
Keywords—Modelling of output signals of A/D converters for 

calculation of their spectra and a corrected formula for 

performing this task 

I. INTRODUCTION 

HERE are many important formulas that are used in signal 

processing. And their understanding does not cause 

troubles, except for a one. This is the highly celebrated formula 

that determines the spectrum of a sampled signal treated as a 

signal of a continuous time at the output of an analog-to-digital 

(A/D) converter. It has the following form:  
 

 ( ) ( )/

1
A D s

k

X f X f kf
T



=−

= −  , (1) 

 

where ( )X f  and ( )/A DX f  stand for the spectra (Fourier 

transforms) of a band-limited, un-sampled signal ( )x t  and, 

respectively, of its sampled version ( )/A Dx t  at the output of 

an A/D converter (in the sense as mentioned above). The 

continuous frequency and continuous time are denoted here by 

f and t, accordingly. Furthermore, T  means the sampling 

period, but 
sf  stands for the sampling frequency; 1 sT f= . 

Moreover, the indices k  in (1) belong to the set of integers, 

i.e. kZ . 

A trouble with the formula (1) lies in the fact that it is a 

direct consequence of modelling the signal ( )/A Dx t  with the 

help of weighted Dirac deltas, i.e. with the use of objects 
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which are not present at the outputs of A/D converters. 

Consequently, this formula is not fully reliable. Its credibility 

should be demonstrated in some way. 

The author of this paper tried to perform this task by 

checking various arguments present in the literature, 

conventional opinions and beliefs of researchers working in 

the field of signal processing that refer to the description of 

signals at the output of A/D converters through Dirac deltas 

and/or so-called non-ideal variants associated with this 

description. 

The works mentioned above have been done in a careful, 

comprehensive, and thorough manner. The outcomes of these 

pursuits have been published in a series of papers [1]–[11]. 

However, in order not to be exposed to the accusation of self-

plagiarism, they will not be discussed here. Besides, there is 

no room for them here, in this short paper; but, see that all this 

material is readily available on the websites whose addresses 

are provided in the section References below. Moreover, note 

that a critical summary of all these efforts along with the 

reasons of failures of the various ideas discussed in [1]–[11], 

the false paths leading to nowhere, the lessons learned, and an 

ordering of all this material can be found in [12]. 

The correct form for signals appearing at outputs of A/D 

converters – considered as functions of a continuous time –  

was derived in [12] and [13]. And, as well known, it is 

precisely such functions, i.e. functions of a continuous time, 

that are used in calculations of the spectra of signals at the 

outputs of A/D converters. The signal form derived therein has 

the shape of a step function – weighted by samples of an 

analog signal applied at the input of the A/D converter. 

Examples provided in [12] and [13] illustrate its use. This 

form is also exploited here. 

The analysis presented in [12] and its outcomes explain 

why the values of a step function between the successive 

instants of signal sampling (i.e. step values) should be taken as 

they appear at the output of an A/D converter. Simply because 

they then correspond directly with the discrete signal values 

with which a microprocessor connected to the output of the 

A/D converter works. That is they are equal to them, and this 

is the best choice when it comes to the need to take into 

account any non-idealities of the signal sampling process. 

Then any possible imperfections of this process are 

automatically accounted for in both. What do we mean here? 

Namely, we mean the need to take into account amplitude 

quantization errors (quantization noise) as well as, at the same 

time, all other errors associated with an imprecise "signal 

sampling" performed by a given A/D converter. The latter 

ones are attempted to be modelled somehow in various ways, 
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such as, for example, by an averaging operation, by blurring 

the sampled signal, or by switching of finite duration, or by 

some combination of the above-mentioned operations. 

Moreover, note that the imperfections listed above, excluding 

quantization noise, are accounted for in the literature under a 

notion of "nonideal sampling" or "non-idealities of the 

sampling process".  

Expressing this more briefly and having the detailed 

considerations carried out in [12] and [13] in the background, 

we can say that a separate consideration of the effect of 

quantization noise and all other imperfections on the discrete 

values processed by the microprocessor, as postulated by 

some researchers, makes no sense from the point of view of 

digital signal processing. Simply, since these two things 

overlap in an inseparable way so that a possible separation 

would be very difficult. And if it were to be done, it is not 

really known for what purpose? 

In conclusion, we say that in [12] and [13] a model of the 

signal at the output of A/D converters has been derived, in 

which the error in the sample amplitude value is treated 

compactly. Not as a quantization error plus something else, 

but both taken into account together as, let us call it, a 

sampling error (in place of a quantization error). 

To emphasize this fact, it is worth to illustrate the last 

conclusion also in a graphic way. So, for this purpose, let us 

refer to Fig. 2.21 on page 74 in the famous van de Plassche’s 

monograph [14]. Observe that in our model we do not try to 

render (in one or another form) this whole delicate structure of 

the signal occurring between the successive sampling points 

shown in the figure mentioned, but we model it through a step 

with a constant value. And this is really enough in the digital 

signal processing. 

The description of the signal appearing at the output of A/D 

converters, whose basic form was derived in [12] and further 

developed in [13], was also used in the latter article to 

calculate the spectrum of this signal. For this purpose, the 

Fourier transform formula was applied directly to the step 

function. However, in this paper, we carry out this task 

differently (it is performed in the next section). Namely, by 

writing first the step function in a form of the convolution of a 

weighted Dirac comb with a single rectangular pulse, and only 

then applying the Fourier transform to the resulting function. 

As we will see in the next section, the latter approach makes it 

possible to reveal an "internal structure" of the spectrum 

pattern of the signal at the output of the A/D converter and, 

consequently, to relate it with the one given by (1). 

Section II deals with derivation of the new formula for the 

spectrum of the signal at the output of an A/D converter, but 

the next one contains some interpretative remarks and 

conclusions following from it. The paper ends with collected 

comments that the author received from people who read it and 

his other publications written by him and referred to here. 

These comments are accompanied with relevant and 

comprehensive explanations.  

II. DERIVATION OF THE NEW FORMULA 

It seems best to start this section with discussing a helpful 

example from everyday life. Let it be a thought experiment we 

discuss below. And now for its details: let us consider one 

digital sample of an acoustic signal and a CD where we want 

to store it and take away after some time, but with a 

simultaneous deletion on that CD. How can we describe this 

operation as a function of time? Just as it is shown in Fig. 1. 
Observe the step character of the “stay function” shown in 

Fig. 1. It describes the fact of staying a sample on CD during 

some time. And this is visualized by just a step function that 

has the form of a single box (rectangle). Obviously, this 

cannot be any other function, for instance, a function 

containing a (single) triangle. 

Fig. 1. Illustration to a “stay” function on example of an acoustic signal 
sample staying some time on a CD 

 

Further, we note that we have to do with a similar situation 

in the case of the A/D converter output. The signal samples 

( ) 'sx kT , each of them, step by step, stay only a time interval 

T at the A/D converter output. Then, they move, step by step, 

to a buffer, for example, of a digital signal processor. 

Moreover, note that no dedicated special device as, for 

example, a so-called sample-and-hold unit is needed here to 

have to do with the step-wise behavior of an A/D converter 

output. 
Let us now define, for the purposes of our derivations in 

this section, the “stay” function visualized in Fig. 1 in a formal 

way as 
 

 ( ) )rect 1 for 0,   and  0 otherwise.t t T=   (2) 

 

This is simply a rectangular pulse of the length T. 

(Mathematicians call it a boxcar function.) 

Further, define a Dirac comb and a weighted one, which we 

denote here by ( )T t  and ( )Tx t , respectively. The first of 

them is given by 
 

 ( ) ( )T

k

t t kT 


=−

= −   (3) 

 

where ( ) ,  ., 1,0,1,.,t kT k − = −  mean the time-shifted Dirac 

deltas (called also Dirac distributions or Dirac impulses). But 

the second has the following form: 
 

 ( ) ( ) ( ) ( ) ( )T T

k

x t x kT t kT t x t 


=−

= − =   . (4) 

 

and it is a Dirac comb weighted by the corresponding values 

of the samples of the signal ( )x t  taken at the successive 

instants kT, where kZ . The most right-hand side of (4) 

shows also that it can viewed as a signal ( )x t  modulated by 

the comb ( )T t . 

 stay_on_CD(t) 

t instant of putting 

 a sample on CD 

quantized and coded 

value  

of a sample 

instant of taking 

 the sample from CD 
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In the next step, note that the convolution of ( )Tx t  with a 

rectangular pulse ( )rect t  given by (2) results in 
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T
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

=−



=−



=− −



=−

 
 = −  = 

 

= −  =

 
= − − = 

 

= − =





 



  (5) 

 

where ( )STEPx t  means the resulting step function. In view of 

what has been said above, this function is a proper (i.e. 

correct) function of a continuous time t, which describes a 

waveform at the output of an A/D converter. 

In what follows, we calculate the spectrum of this 

waveform. And to this end, we use a classical definition of the 

Fourier transform. So, then, we get in the successive steps 
 

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

( ) ( )( ) ( )( )
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( )
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rect

exp 2
1 exp 2   .

2

STEP STEP STEP

k

k

k

k

X f x t x t j ft dt

x kT t kT t j ft dt

x kT t kT t

x kT t kT t

j fkT
x kT j fT

j f



 












−

 
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
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
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
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 
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 

= −  =

= −  =

−
= − −  











F

F

F F

  (6) 

 

In (6), the description of the step function ( )STEPx t  is 

intentionally taken as shown in the second row of (5) (not as 

in the last row there). Further, the change of order of summing 

and integrating operations has been carried out in (6). 

Moreover, ( )F  stands there for the Fourier transform of the 

signal or of the Dirac delta; ( )( )STEPx tF  is also denoted as 

( )STEPX f  to emphasize its meaning as the spectrum of this 

waveform. Moreover, 1j = − . 

And rearranging further the expressions in the last row of 

(6), we obtain 
 

 

( )

( ) ( )( )
( )

( )( )
exp exp

DTFT
2 exp

STEPX f

j fT j fT
T x kT

j fT j fT

 

 

=

− −
=   =

  (7) 

 ( )( ) ( )
( )sin

DTFT exp  ,
fT

T x kT j fT
fT





=  −  

 

where the ( )( )DTFT x kT  means the so-called discrete-time 

Fourier transform of the sequence ( ) x kT  and is given by 

 

 ( )( ) ( ) ( )DTFT exp 2
k

x kT x kT j fkT


=−

= −  .  (8) 

 

Note that the last row of (7) can be rewritten with the use of 

the sinc function. So we get then 
 

 ( ) ( )( ) ( ) ( )DTFT sinc expSTEPX f T x kT fT j fT =  − .  (9) 

 

And this is our final result in the first derivation presented in 

this section, showing the spectrum of the output signal at an 

A/D converter via the DTFT of an associated sequence 

( ) x kT . It is identical with the result presented in [13], 

where, to derive it, a step function as it is (that is in the form 

seen in the last row of (5)) was used. This fact shows that if, in 

calculation of the spectrum of some signal, where we start 

with the classical definition of the Fourier transform and in the 

description of this signal in the time domain t we encounter 

Dirac deltas (to which, obviously, we cannot apply the above 

definition), we “switch”, with respect to them, to the definition 

in the sense of distribution theory. And this leads to correct 

results. 

Let us now start derivation of the formula for ( )STEPX f  

slightly differently. So, to this end, note that with the use of 

(4) and (5) we can write ( )STEPx t  as 
 

 ( ) ( ) ( )  ( )rectSTEP Tx t t x t t=    .  (10) 

 

Therefore, the Fourier transform of the step function 

( )STEPx t  is given here by 
 

 
( ) ( ) ( )( ) ( )( )

( )( ) ( )( )( ) ( )( )

rect

rect   .

STEP T

T

X f t x t t

t x t t





=   =
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F F

F F F

  (11) 

 

Taking into account the fact that ( )( )T tF  in (11) is itself 

a Dirac comb and can be written as [15]  
 

 ( )( ) ( )( ) ( )
2 1

2  ,T s s

k k

t f kf f kf
T T


   

 

=− =−

= − = − F  (12) 

 

and performing the convolution operation shown there, we 

finally arrive at 
 

 

( )

( ) ( ) ( )sinc exp

STEP

s

k

X f

X f kf fT j fT 


=−

=

 
= −  − 

 


 . (13) 

 

Comparison of (13) with (1) shows that evidently 

( )/A DX f  differs from ( )STEPX f . Obviously, the correct 

result is (13), not (1). 

III. SOME REMARKS AND CONCLUSIONS FOLLOWING FROM 

COMPARISON OF FORMULAS (1), (9), AND (13) 

Let us note first that the comparison of (9) with (13) leads 

to the following: 
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 ( )( ) ( )
1

DTFT s

k

x kT X f kf
T



=−

= −  ,  (14) 

 

that is to the well-known identity. Further, (14) in connection 

with (1) shows clearly that ( )/A DX f  represents only the 

DTFT of the associated sequence ( ) x kT , fed to the input of 

a signal processor – not the spectrum of a real signal of a 

continuous time t at the output of the A/D converter. 

Of these two alternative formulas, (9) and (14), derived 

above for determining the spectrum of the signal at the output 

of an A/D converter, the latter seems to be a more useful 

formula Why? Because it shows what is difficult to guess 

when looking at the former. It can be said that the latter 

formula reveals the "internal structure" of the spectrum of the 

signal mentioned above. It shows that this spectrum can be 

represented as a sequence of successively shifted on the 

frequency axis and attenuated spectrum of a certain analog 

signal. What signal? The above formula, however, does not 

solve this problem. As we know, there can be a lot of such 

signals. 

The third remark is as follows: It seems that most of 

students and researchers working in the area of signal 

processing are aware of the fact that, according to (8), there is 

only one DTFT for a given sequence ( ) x kT , but, at the 

same time, related with a lot of analog signals whose sampling 

results in that sequence mentioned above. This is called 

aliasing in the time domain. 

In the frequency domain, the picture of the above is what 

the formulas (1) and (14) represent. And probably only a few 

pay attention to the fact that they concern many analog signals 

fulfilling the conditions mentioned above, not just only one of 

them. Normally, the people focus only on a one signal 

spectrum to check whether an aliasing in the frequency 

domain occurs or does not for it. 

Next, note also that according to the modified description of 

the signal at the output of an A/D converter, which we present 

in this paper, a given sequence ( ) x kT  is represented by 

only a one step signal ( )STEPx t  (and vice versa). Hence, one 

step signal ( )STEPx t  stands for a lot of un-sampled analog 

signals ( )x t . And therefore, the relationship between this 

image in the time domain and its equivalent image in the 

frequency domain is similar as above. That is the formula (13) 

applies to many of un-sampled analog signals satisfying the 

conditions mentioned before. 

IV. COLLECTED COMMENTS FROM READERS AND 

ASSOCIATED EXPLANATIONS   

The manuscript of this paper and other works of its author, 

which are referred to in it, on understanding the spectrum of a 

sampled signal at the output of an A/D converter, have been 

read by many people (scientists, ordinary engineers, as well as 

by students). They shared with the author of this paper their 

criticisms, doubts, and objections to the conclusions and 

interpretations drawn – those most important ones are 

collected here. And, obviously, all these people mentioned 

above received answers to their comments, remarks, etc., but 

it seems worthwhile to share these answers with a wider 

audience as well. And that is precisely the task of this section. 

The discussion on the topic raised in this paper and its 

predecessors is still ongoing. Hopefully, the explanations 

provided in this section will help to clarify many contentious 

and ambiguous issues in modelling of the sampling process of 

analog signals. 

Let us start with the first remark. Namely, with observation 

that some people noted that modelling the signal at the output 

of an A/D converter with the use of a step function, as 

proposed in [12], and as it is exploited here, corresponds to a 

more realistic modelling of the sampling operation than the 

one which uses a weighted Dirac comb. 

This assertion is obviously true. Someone pictorially put it 

this way: The A/D converter works in a similar way to the 

shutter of a camera, which cannot let the portions of light 

falling on it pass through in a time equal to zero, because, de 

facto, zero opening time means no opening time. In other 

words, it is not possible to speak of pulses of light passing 

through the shutter onto the camera lens at zero time. That 

would be illogical. One can only speak of a finite shutter 

opening time or shutter closure. Besides, portions of light 

transmitted through the shutter never have infinite energy or 

intensity. That is, they "do not deliver Dirac deltas". And any 

A/D converter works in a similar way. 

Some who read the manuscript of this paper had impression 

that its author implies that the formula (1) is erroneous. Not at 

all: such a conclusion cannot be drawn from its contents. The 

author of this paper implies only that under an assumption of 

modelling the A/D output waveforms as step functions this 

formula needs a minor correction precisely by introducing a 

correcting factor. Comparison of (1) with (13) shows that this 

correcting coefficient is equal to ( ) ( )sinc expT fT j fT  − .   

(In this context, note that no one claims, for example, that 

Newton's theory of gravity is erroneous. His theory was only 

refined by Einstein. And here we deal with a similar case.) 

By the way, note that the author of this paper questioned the 

correctness of formula (1) in [1], but for a different reason. 

Namely, for the reason that this formula determines the 

spectrum of a signal that is not present at the output of A/D 

converters (that is in form of a weighted Dirac comb). In other 

words, he criticized the inconsistency existing between the 

form of the signal spectrum assumed and the time-domain 

form of a real waveform appearing at the output of an A/D 

converter. And note that just this inconsistency has been 

overcome in this paper. An excellent approximation of the real 

waveform at the output of an A/D converter by means of a 

step function has just its spectrum in the frequency domain as 

defined by the formula (13). And the latter differs only 

slightly from the formula (1), which "we should be happy 

about, not cry that we did not get something more 

complicated." 

The next remark concerns the assertion of some researchers 

that the formulas (1) and (13) refer to two different sampling 

processes. Note however that in reality we have to do with 

only one process of signal sampling. So, because of this fact, 

such a reasoning as above must be regarded as erroneous. 

But, obviously, we can say that there exist two different 
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descriptions of the sampling process – however not two 

distinct sampling processes. Every signal sampling process is 

performed by an A/D converter. So the question is rather the 

following: which of these descriptions describes the real 

sampling process better. Talking about two types of sampling 

processes is a methodological error. 

Note that on the above point one can also reason as follows: 

Let us assume that formulas (1) and (13) actually refer to two 

distinct sampling processes. So since there is actually only one 

sampling process, one of these formulas must be completely 

false. A comparison of (1) with (13) shows however that this 

is not the case. They differ from each other, as we already said 

above, only in the coefficient ( ) ( )sinc expT fT j fT  − . 

Hence, a conclusion that must be drawn from this fact is that 

one of them "approximates reality" better, and the other worse. 

Further, some distinguish the so-called "delta Dirac-like" 

A/D samplers (converters) – and use (1) in this case – from the 

so-called "sample and hold" A/D samplers (converters), for 

which they reach for (13). Of course, there are various A/D 

converters on the market, which are manufactured using 

different architectures, design philosophies as well as  

different technologies. But it does not mean at all that we need 

to distinguish among them "delta Dirac-like" A/D converters 

or "sample and hold" ones, and maybe also others. They all 

are characterized by a finite time to hold a given sample value. 

So, from the above, it follows that the most reasonable way to 

model this behavior (in an ideal case) – in a continuous time 

domain – is by assuming a holding operation of sample values 

all the time (approximately) from one sampling instant to the 

next. 

With regard to the above, we will now show an example of 

a deceptive reasoning followed by researchers, who admit that 

apart of "delta Dirac-like" A/D converters there exist also 

"sample and hold" A/D ones. But they argue, as, for instance 

[16], [17], that if we even assume that there are many distinct 

designs of A/D converters we can describe all of them very 

well through a "delta Dirac-like" model. That is also any  

"sample and hold" A/D converter. Because according these 

people the differences between all of the possible models 

(including the "sample and hold" mentioned above) are minor. 

Let us consider why they think so. They say that the reason 

is that in the range of frequencies used in practice, the 

formulas (1) and (13) differ only slightly between themselves. 

Indeed, note that for small values of the frequency f, compared 

to the value of the sampling frequency 1sf T= , that is for 

1sf f , we can assume 0fT   in the coefficient 

( ) ( )sinc expfT j fT −  in (13), and this allows us to rewrite 

the latter formula in the following approximate form: 
  

 ( ) ( ) ( )( )DTFTSTEP s

k

X f X f kf T x kT


=−

 − =   . (15) 

 

A comparison of (15) with (1) shows that, apart from the 

constant coefficient 1/T and the fact that the former indicates 

an approximate relationship, they do not differ from each 

other in any way. Moreover, note also that (15) as well as (1) 

describe very well spectra of the sampled signals for analog 

signals whose maximum frequencies of their bandwidths are 

significantly less than their sampling frequencies. And in 

practice, this is the choice most often made. 

By the way, we explain also the reason for occurrence of 

the scaling factors 1 T  or T  in equations (1), (14), (9) and 

(15) above. Their existence follows from the fact that the 

DTFT (denoted here also by ( )/A DX f ) is a weighted sum of 

signal samples, while a "real" signal spectrum (denoted also 

here by ( )STEPX f ) is related to the integration over time. 

Now, observe that by performing the inverse transform of 

DTFT occurring in (15), we get the following: 
  

 ( ) ( ) ( ) ( ) ( )( )STEP T

k

x t T x kT t kT T t x t 


=−

  − =    , (16) 

 

where ( )STEPx t  means the signal following from inverting the 

spectrum given by (15). That is we get in this case the (scaled 

by T) weighted Dirac comb ( )Tx t , i.e. ( )TT x t . So the shape 

of this signal (which is a distribution) is completely different – 

as visualized in many textbooks – from the step function 

( ) ( ) ( )rectSTEP

k

x t x kT t kT


=−

= − . And this observation 

concludes demonstration of the deceptiveness of the 

argumentation presented above. 

 In addition, it seems to be worth illustrating the nature of 

the deceptive reasoning presented above with the following 

example: 2 times 2 equals 4, but 2 plus 2 equals 4, too. 

However, it does not at all follow from this that they describe 

the same arithmetic operation. In the first case, we have to do 

with a multiplication, but in the second, with an addition. This 

makes a colossal difference. 

Let us now consider a fundamental issue of modelling the 

operation of analog signal sampling that is performed in 

digital systems by A/D converters. We mean here the concept 

of an ideal (perfect) sampling. Note that it is generally 

accepted in the research papers and textbooks on digital signal 

processing that this is the model we call here the "delta Dirac-

like" A/D sampler (converter). And, as we know, this model is 

defined via (4) (in the time domain) and via (1) (in the 

frequency domain). As seen, the description (4) uses non-

physical objects called Dirac deltas. For this reason, it is called 

in the literature an ideal sampling. Mathematically, the 

formula (4) is flawless, but the problem with it is that it cannot 

be used to model the signal at the output of an A/D converter, 

even in an idealized case. Why? Because it leads to erroneous 

results, what was shown (in various ways) in [1]–[13]. No 

A/D converter produces a Dirac comb (i.e. a sequence of 

Dirac deltas), nor does it act as a Dirac comb (what, as (4) 

shows, represents the same thing) – even as an idealized 

approximation. (Incidentally, a number of authors tried to 

demonstrate the latter, but something did not work. The reason 

for the failure was explained in [11].) Standard A/D converters 

produce waveforms at their outputs similar to that in Fig. 2.21 

on page 74 (the first curve from the bottom) in the well known 

van de Plassche’s monograph [14]; we refer to this figure in 

this paper. And it is really hard to imagine that a piece of the 

waveform shown in Fig. 2.21 between the adjacent sampling 

instants is modelled better by a Dirac delta multiplied by a 

number than by means of a step with a value equal to this 
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number. Or, formulated in the form of a question: which of 

these two approximations: the one by the former ideal variant 

or that by the latter variant (which is obviously also ideal but 

in another sense) is better? In opinion of the author of this 

paper, everyone will answer that with the help of the latter 

ideal variant. And why? Because it is more natural in terms of 

how the sampling operation of an analog signal is 

implemented in an A/D converter. It provides at regular 

intervals (in the case of regular sampling) the numbers that are 

the values of the aforementioned analog signal. Not the 

weighted Dirac deltas. Besides, no A/D converter has a built-

in electronic component that implements the zeroing operation 

after sampling the signal. There is no reason to do this. The 

value of the signal sample remains naturally present until the 

next sampling moment (it is not zeroed). That is, it can be 

assumed that the A/D converter operates – naturally – in a 

regime that is called in the literature a "sample-and-hold". 

The author of this paper, like everyone else, was deceived 

by the fact that (4) describes an ideal (perfect) sampling and 

therefore in all his previous publications [1]–[13] he stuck to 

this definition exploited in the literature on signal processing 

as well as at students’ lectures. Today, he would not say so 

any more. Why? Because (4) is not a correct formula, 

primarily for the reasons outlined in detail in [9]. That is it has 

no correct physical justification. Therefore, it is difficult to 

refer to it as a one describing an ideal or non-ideal model. It 

can be however viewed, as shown in this paper, as a part of a 

right formula that produces the step waveform. And just the 

formula which describes the step waveform that follows from 

an ideal approximation of a one "with turbulences" – like 

those in Fig. 2.21 on page 74 (the first curve from the bottom) 

in the van de Plassche’s monograph [14] – should be assumed 

to represent an ideal model of sampling. 

It may be worthwhile here, in the context of the above, to 

refer to a view presented in the textbook [18], where its author 

assumes a sampling model based on (4) as an ideal model, and 

calls the other two he mentions (a sample-and-hold one and 

the second which is based on signal averaging in time 

segments between the sampling instants) real models. Such an 

interpretation is incorrect. First of all, because his sample-and-

hold model should not be treated as a real version of that 

based on (4). According to that what was said above, it should 

be treated as an idealization of that which was presented in the 

van de Plassche’s monograph [14]. Second, his second model 

he calls a real one is principally false because of the reasons 

discussed in [9]. 

Some researchers (for example, S. Zozor [19]) see the 

function ( )rect t  occurring in (5) as a kind of an 

“interpolation” function that interpolates, but what? Probably, 

it should be understood in the following way: this function 

converts signal samples occurring (after S. Zozor [19] and 

other researchers) in the form of the weighted Dirac deltas into 

the weighted step impulses. Note however that such a 

reasoning is subject to the following fundamental error: none 

of the known converters does produce signals in the form of 

the weighted Dirac combs at its output. There exists no work 

that confirms that such physical signals (objects) occur during 

operation of A/D converters at their outputs. Furthermore, no 

filtering of the weighted Dirac deltas is performed at the 

output of any A/D converter (because they simply are not 

there). At the output of the A/D converter, the waveform as a 

function of a continuous time, in its idealized form, is simply a 

step function. 

There are also such statements, for example, represented by 

[19] and [20], that in the formula (5) any other “interpolation” 

function could be used in place of the rectangular impulse. For 

instance, a triangular impulse could be applied [20]. Then in 

the formula (13) on the spectrum of the sampled signal at the 

output of an A/D converter, we would insert the Fourier 

transform of the triangular impulse, instead of the function 

( )sinc fT . 

It is not clear whether those who say so as mentioned above 

are aware of that that in this way they involuntarily or 

indirectly confirm the thesis of the author of this paper 

expressed in a number of his publications [1], [3]–[6], [11], 

that when we begin to define a signal sampling operation 

using Dirac deltas, we quickly conclude that it is not possible 

then to unambiguously solve the problem of the sampled 

signal spectrum, and when trying to solve it we meet a lot of 

troubles. 

We underlie that the considerations presented in this paper 

show unambiguously that we should not insert in (5) a 

different function (e.g. a triangular impulse) instead of a 

rectangular impulse. This is simply forbidden because this 

model works correctly only with a rectangular impulse. This 

follows from the fact that in the output waveform of an A/D 

converter the spaces between the adjacent sampling points are 

steps parallel to the axis of a continuous time (having values 

equal to the corresponding values of samples of the analog 

signal). 

Further, it seems that some researchers are mixing 

interpolation of the signal with the form of the signal at the 

output of an A/D converter. But we know that the 

interpolation of the signal from its samples is inherently 

connected with another converter, namely with the D/A 

converter. So it is really unclear for what reason they are also 

looking for the interpolation (or some sort of filtering) at the 

output of the A/D converter. 

The crucial result in this paper is to show that despite 

modelling the signal at the output of an A/D converter with 

the use of a step function (correct), but not by means of a 

weighted Dirac comb (false because no such signal appears at 

the output of an A/D converter), the key role in the formula 

for the spectrum of this signal is played precisely by the 

expression ( )s
k

X f kf


=−

− . It is, as we know, responsible 

for the existence of the so-called aliasing and folding effects in 

the spectrum of the aforementioned signal. These effects 

really do exist, but as we have just shown here in a way which 

does not raise any doubts, their modelling with a weighted 

Dirac comb (via (4)) is not needed. In a paper [1], with a 

perhaps somewhat perverse title(?): "Spectrum aliasing does 

not occur in case of ideal signal sampling", the author of this 

work pointed out first that it is rather inadvisable to use a not 

correct model (formula (4)) to derive a (partly) correct result 

(i.e. to demonstrate the existence of the so-called aliasing and 

folding phenomena in the spectrum of a sampled signal). And 

secondly, he pointed out that when adopting a more correct  
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model of the sampling operation (with Kronecker's functions), 

other problems arise. Then, above all, the relativity of the 

spectrum definition becomes apparent and the need for 

adoption of its different definition than the Fourier integral 

becomes apparent, too. And this, as shown, with a certain 

choice, can lead to an absurd result that the aliasing and 

folding effects do not occur in the spectrum of the signal at the 

output of an A/D converter. 

There are also such researchers (for example [19]), who say 

that the factor ( )sinc fT  in (13) is a consequence of the 

(most elementary) "reading" or reconstruction process. Of 

course, such an explanation of reality is false since the signal 

at the output of an A/D converter we are talking here about 

(that is about this continuous time waveform) does not arise as 

a result of some hypothetical "reading" or reconstruction (of 

what?) Whereas it is clear that the “reading” of signal sample 

values takes place at the input of a signal processor connected 

to the A/D converter, while the reconstruction of the signal 

from its samples is performed in a D/A converter. 

Although there are researchers (such as, for example, [21], 

[22]), who recognize that the signal at the output of an A/D 

converter can be perceived differently by the device behind it, 

which receives that signal for further processing or analysis – 

but it turns out that they do not quite have this problem “under 

control”. Always, it should be clearly seen that if a signal 

processor is connected to the output of an A/D converter, it 

receives this signal "discretely", that is, it receives samples of 

the analog signal applied to the input of the A/D converter, but 

at a certain time rhythm (at specified intervals). However, if 

the signal from the output of this A/D converter is fed to the 

input of an analog oscilloscope, one will see on its screen an 

analog waveform similar to a step function. And by applying 

it at the input of a spectrum analyzer, one will perform a 

spectral analysis of this continuous time signal.  

Note that what was said above can be also expressed, in 

other words, as follows. To this end, observe that an A/D 

converter having physically one output port offers the user to 

work in two variants: to work with continuous time t 

waveforms (functions) and to work with waveforms of the so-

called discrete time k. In the first case (in the case of an ideal 

modelling) these are the step waveforms (functions) 

( )STEPx t , while in the second case, these are the sequences of 

numbers x(k) (i.e. of ordered elements, which in the ideal case 

correspond exactly with the samples of an analog signal at the 

input of the A/D converter). In the case, a user wants to work 

with continuous-time waveforms at the output of the A/D 

converter, this means that she/he will work with waveforms 

( )STEPx t ’s (for example, watching them on a standard analog 

oscilloscope). But if, on the other hand, a user wants to work 

with the so-called discrete-time signals at the output of the 

A/D converter, it means that she/he will work with the 

sequences x(k) (for example, by feeding them into the input of 

a signal processor and processing them further in that device 

according to some digital processing algorithm). That is 

she/he will process the functions of the discrete variable k. 

And expressing the above in mathematical terms, we can say 

so: in the first case one will work with functions of a 

continuous variable (belonging to the set of reals), while in the 

second case with functions of a discrete variable (belonging to 

the set of integers). 

Therefore, the above model of operation can be also viewed 

as a model with two virtual outputs: one which is analog and 

the second that is digital. And this is in principle what M. 

Vetterli et al. do in [21]. In their model (shown in Fig. 1 in 

[21]), the virtual analog output of the A/D converter is 

indicated by the signal ( )sy t  (being a counterpart of 

( )STEPx t  in this paper), while the virtual digital output is a 

discrete function ( )y nT  there (being a counterpart of the 

sequence of ( ) 'sx kT  here). 

Of course, a different definition of the spectrum applies to 

the functions ( )sy t  and ( )STEPx t  (which belong to the space 

of continuous time functions) than that used for the discrete 

functions ( ) 'sy nT  and ( ) 'sx kT  (that belong to the space of 

functions of a discrete variable). In the former case, it will be 

the ordinary Fourier integral (if it exists, of course), and in the 

latter case the so-called Discrete-Time Fourier Transform 

(DTFT). Obviously, here and in [1]–[13], the problems 

associated with the signals at virtual analog outputs of A/D 

converters as well as some problems associated with 

calculation of their spectra are considered. An additional issue 

discussed there is the relationship of these spectra to the DTFT 

spectra of signals coming from the corresponding virtual 

digital outputs of A/D converters.  

As an aside, it is also worth noting that the question of a 

relationship between the spectra mentioned above makes 

sense only because the discrete time axis kT is "immersed" in 

the continuous time axis t. And this is how the spectrum 

problem differs from any digital processing in a signal 

processor. In a signal processor, we can treat the signal 

samples as numbers x(k)'s when analyzing some processing 

algorithm; the only important matter then is their ordering 

(that is, which sample occurs first, which occurs second, etc.) 

It is worth being aware of the above. And, in this context, note 

also that this theme is discussed in more detail in [10].  

V. FINAL CONCLUSION 

This paper summarizes efforts made so far by his author in 

correcting the formula (1) used in the literature for the 

sampled signal spectrum. He hopes that all the doubts raised 

by researchers so far have been clarified here. The corrected 

formula (13) has been derived. Its relationship with the 

formula (1) has been explained in detail. And finally, any 

hitherto incomprehensible complexities in modelling of the 

signal form at the output terminals of A/D converters have 

been discussed.  
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