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Abstract—Robots that can comprehend and navigate their 

surroundings independently on their own are considered 

intelligent mobile robots (MR). Using a sophisticated set of 

controllers, artificial intelligence (AI), deep learning (DL), machine 

learning (ML), sensors, and computation for navigation, MR's can 

understand and navigate around their environments without even 

being connected to a cabled source of power. Mobility and 

intelligence are fundamental drivers of autonomous robots that are 

intended for their planned operations. They are becoming popular 

in a variety of fields, including business, industry, healthcare, 

education, government, agriculture, military operations, and even 

domestic settings, to optimize everyday activities. We describe 

different controllers, including proportional integral derivative 

(PID) controllers, model predictive controllers (MPCs), fuzzy logic 

controllers (FLCs), and reinforcement learning controllers used in 

robotics science. The main objective of this article is to demonstrate 

a comprehensive idea and basic working principle of controllers 

utilized by mobile robots (MR) for navigation. This work 

thoroughly investigates several available books and literature to 

provide a better understanding of the navigation strategies taken 

by MR. Future research trends and possible challenges to 

optimizing the MR navigation system are also discussed. 

 

Keywords—artificial intelligence (AI); autonomous mobile robot 

(AMR); deep learning (DL); human-robot interaction (HRI); 

mobile robot (MR); machine learning (ML); PID controller 

I. INTRODUCTION 

HERE are two types of ground robots generally in robotics 

science, stationary robots and mobile robots. Robots with 

fixed bases at a definite location are considered stationary robots 

and they have a limited workplace by the length of their linkages 

and the dynamic architecture. Despite stationary robots, those 

robots can move freely or autonomously in an unknown or 

predefined environment is considered as mobile robot and they 

have the unique ability to move independently inside a 

predetermined or variable environment to carry out specific 

operations and accomplish desired targets [1], [2]. With the 

continuous development in robotics science, nowadays robots 

are the most important part of national defense, the service 

sector, and industries. Demand for MR has increased recently 

due to its application in tough and dangerous tasks such as heavy 

object carriage, military surveillance, operations, and many 

more. The well-organized integration of hardware systems, 

vision, motion control, and decision-making establish robotic 
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intelligence. Robust and accurate visual intelligence helps 

robots be intelligent and recognize their environment [3]. 

Moreover, mobile robots became autonomous and even 

more intelligent when AI was implemented into them. Today's 

MRs can navigate securely through complex environments, 

recognize natural language, recognize objects, track themselves, 

outline their own tracks, and usually think for themselves. 

Throughout the decades, mobile robots have made a significant 

contribution to modern society's well-being in a variety of 

fields, including commercial, retail, healthcare, and social 

domains [4]. The process of designing MRs uses the 

technologies and methodologies of behavior, intelligent, and 

cognitive-based control, and efforts to optimize the resiliency of 

performance dependent on minimum input datasets and 

minimum complexity of computation. Fig. 1 shows the 

illustration of controller’s objective used in MR. 

Fig. 1. Illustration of controller’s objective in MR 

MRs have gained a lot of fascination over the past decade 
because of their capacity to explore difficult and complex 
regions including space, perform search and rescue, and carry 
out activities that are not dependent on human intervention. 
MRs is defined as a device that can gather data from their 
surroundings and apply their understanding of their job to 
advance protection practically and importantly [5]. Generally, 
an MR is considered in the literature as a device that operates a 
cognitive link between perception and their corresponding 
action. MRs are becoming the essential technological driver of 
modern society because of the rapid advancement of 
automation, intelligence, and digitalization, and the market for 
applications for intelligent goods has continuously risen, which 
has also led more individuals to understand the relationship 
between intelligent objects and the latest techniques [6]. The 
field of control and navigation for MRs has attained over recent 
years higher achievements, both in experiments and theories. 
The remainder of this review paper is structured as follows. 
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Section II introduces the literature survey of some important 
review or survey articles and books, Section-III describes the 
most important controllers such as PID controllers, and model 
predictive controllers, as well as rule-based systems such as 
fuzzy logic controllers (FLC) and reinforcement learning (RL) 
controllers, Section-IV provides a comprehensive discussion on 
controller’s application and future trends, and Section-V 
describes conclusion. 

II. LITERATURE SURVEY 

Several state-of-the-art reviews, and survey articles from 
well-known journals, and books remain in the literature which 
extensively describes reviews of specific areas within the 
mobile robot (MR) field. 

A. State-of-the-Art, Review, and Survey Articles 

 Many researchers have been working continuously to 
provide the best state-of-the-art articles having information 
about the MR in recent decades. Some of these articles are 
summarized here. 

Rubio et al. [7] summarized and explored the idea of mobile 
robots including the new trends. Different types of mobile 
robots such as flying robots, legged robots, and wheeled mobile 
robots have been explained. This article discusses the role of 
new technologies such as AI, nanorobotics, cooperative work, 
human-robot interactions, perceptions, and many more in the 
development of different kinds of mobile robots. Robotics 
applications in numerous fields of applications such as industry, 
healthcare, medicine, distribution of goods, ergonomics, and 
service robots are illustrated in this paper. 

Paden et al. [8] present a survey of the state-of-the-art 
algorithms for control and planning by keeping a specific focus 
on urban settings. This article analyzed different models of 
mobile vehicles used, in the contrast of architecture of 
predefined and unknown environments, and the requirements of 
various computation strategies. This survey helps to get a deeper 
insight into the limitations and strengths of available control and 
planning approaches for the navigation of mobile vehicles. 

 Kiumarsi et al. [9] present a comprehensive review of 
available feedback control solutions based on reinforcement 
learning (RL) to optimize tracking and regulations of multiagent 
and single systems. This study describes major algorithms such 
as RL and Q-learning algorithms for continuous-time (CT) and 
discrete-time (DT) systems, respectively. A novel approach to 
off-policy RL has been discussed for both CT and DT systems. 
Various applications of RL algorithms for navigation purposes 
are described. 

Elbanhawi et al. [10] present a review paper on sampling-
based planning of robotics motion. Some major proposed 
planners are estimated through simulation and underline some 
of the details of methodologies that are generally left undefined. 
This study addresses techniques that can tackle current 
problems in robot navigation and emphasizes future research 
probabilities. Optimal planning, planning under uncertainty, 
Kino-dynamic planning for real life, and replanning for dynamic 
environments are discussed. 

Bresson et al. [11] proposed a survey on SLAM 
(Simultaneous Localization and Mapping) technology when 
considering current trends in autonomous driving. Firstly, the 
limitations of classical techniques in autonomous driving have 
been presented and then, major approaches are described to 
tackle these limitations. Various conditions such as season, 
weather forecast, etc., and different paradigms such as 

distributed, centralized, etc., for long-term planning of maps are 
considered. This paper discussed the remaining challenges and 
future research trends around the SLAM approach. 

Chen et al. [12] present a brief description of the current 
advancements in robotics vision. Kalman filters resolve 
dilemmas in robot motion control, navigation, tracking, 
localization, following, visual manipulation, estimation and 
prediction, and reconstruction of structure from a set of gathered 
images.  This article mostly described the different kinds of 
Kalman filters including unscented and extended Kalman 
filters, which are used nowadays for the autonomous navigation 
of robots. 

Zhu et al. [13] illustrate Deep Reinforcement Learning 
(DRL) application for the navigation of MR. This work analyses 
the differences and relationship between major scenarios such 
as indoor navigation, social navigation, multi-robot navigation, 
and local obstacle avoidance, during the case of the DRL 
application for MR navigation. Also, some major developments, 
challenges, and their corresponding possible measures have 
been provided for DRL-based navigation. 

Khan et al. [14] analyses of cooperative MR target tracking 
approaches. Some important control strategies for cooperative 
tracking, are cooperative search, tracking, and acquisition, 
cooperative multi-robot consideration of unstable targets, and 
avoiding multi-robot pursuit. This study recognizes the five 
biggest steps that characterize this issue, namely, the target, the 
environment, the robot, the coordination technique, and the used 
sensors. This systematic study is mainly focused on the 
observation of multi-target situations. 

David et al. [15] provide a survey on the several control 
techniques developed over time for the backward direction 
motion of MR with trailers. A truck-trailer MR's ability to move 
in the backward direction is challenging since the whole system 
is extremely unstable and non-linear. This study describes the 
available literature in this area to recognize unsolved issues and 
challenges. 

Mohan et al. [16] present an overview of available and 
possible research techniques in swarm robotics. Swarm robotics 
is a novel technique for coordinating multi-robot systems 
composed of many small, very basic robots that draw their 
concept from social insects. The potential of swarm robots is 
also discussed in this review to achieve a common goal for 
cooperative work. This article mainly focused on the existing 
algorithms, problems, and research shown in swarm robotics 
methodologies. 

Haddadin et al. [17] explain the recognition, detection, and 
isolation of robotics collisions through the survey. For better 
HRI, reliable and fast handling of prospective collisions on the 
complete architecture of the robot is required, together with 
control techniques for risk-free robot reaction. The main 
objective behind this is to protect human beings from possible 
physical injuries. This study addresses the context-free stages of 
the event of collision sequence for robots dealing with 
surroundings, including HRI, and manipulating tasks. The issue 
is initially examined for static robots followed by expansion to 
incorporate transmission or joint flexibility.  

B. Some Major Books 

In recent decades, several researchers have been focusing on 
optimizing the potential of MR. Many researchers have been 
working continuously to provide the best state-of-the-art articles 
having information about the MR in recent decades. Some of 
these articles are summarized here in Table I. 
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TABLE I 

SOME MOST IMPORTANT BOOKS ON INTELLIGENT MOBILE ROBOTS 

Author Title of the book Year Contents 

Canny et al. [18] Complexity of Robot Motion 

Planning 

1988 • Analysis of robotics and algorithms 

• The roadmap algorithms, and motion constraints 

• Problems associated with robot motion planning. 

• Lower bounds in motion planning, and elimination theory. 

Meystel et al. [19] Autonomous Mobile Robots 

Vehicles with Cognitive Control 

1991 • Intelligent motion control, the evolution of AMR 

• Basic theory of cognitive control, cognitive controller 

• Planner, Navigator, Pilot, Cartographers 

• Actuation control system, simulation, and testing 

Borenstein et al. [20] Navigating Mobile Robots: Systems 

and Techniques 

1996 • State-of-the-art mobile robot navigation 

• Basic sensors, systems, methods, and technologies 

• Position measuring technologies including odometry, inertial 

navigation, and natural and artificial landmark recognition. 

• Comparing and analysis of different techniques for navigation 

Jones et al. [21] Mobile Robots: Inspiration to 
Implementation 

1998 • Introduction and designing principle of MR. 

• TuteBot, computational hardware including relays, bump switches, and 

some discrete components. 

• Designing and prototyping, sensors, power sources, mechanics 

• Motors, robot programming and applications, robot projects 

Nehmzow et al. [22]  Mobile Robotics: A Practical 

Introduction  

2003 • Introduction of MR, and its hardware parts 

• Learning technologies, navigation strategy, and novelty detection 

• Simulation and modeling of robot and environment interactions 

• Study and analysis of robot’s behavior. 

Cuesta et al. [23] Intelligent Mobile Robot Navigation 2005 • Different control techniques 

• Fuzzy systems and stability analysis 

• Intelligent control of MR with Fuzzy perception, Fuzzy reactive 

navigation of MR 

• Adaptation of traditional electrical vehicles 

Dudek et al. [24] Computational Principles of Mobile 

Robotics 

2010 • Describes algorithms related to several techniques for reasoning, 

sensing, and locomotion. 

• Focused on legged and wheeled MR. 

• Details of multi-robot systems and SLAM techniques 

• State-of-the-art for the computational principles of MR 

Siegwart et al. [25] Introduction to Autonomous Mobile 
Robots 

2011 • Fundamentals of MR concepts about localization, motion planning, 

control theory, signal analysis, cognitive layers, and AI. 

• Hardware parts of MR include motor, sensory, and perceptual. 

• Description of software and hardware architecture 

• Computer vision, information theory, and probability theory 

Juang et al. [26] Intelligent Robots 2019 • Complex line tracking for the humanoid robots 

• Active vision communications between two humanoid robots using 

image recognition techniques. 

• Active speech communications between two MRs enable robots to 

understand human language and communicate. 

• Multi-target object recognition by humanoid robots with complex 

colors and a humanoid robot grabs steady objects. 

III.  SOME MAJOR CONTROLLERS 

In the context of MRs, a controller is a device or system that 

receives sensor data and generates actuator commands to guide 

the robot's motion toward a desired behavior or goal. The 

controller is the most important part of the MR that falls in the 

control system, for navigation with higher efficiency and 

accuracy. The controller uses feedback from the robot's sensors 

to continuously adjust the actuator commands, to maintain a 

desired trajectory or achieve a specific task. MR control 

addresses the issue of finding out the amounts of torque and 

forces generated by the robot's controllers that need to be 

generated to enable the MR to move in an intended direction, 

follow an intended trajectory, and, generally, complete an action 

with the required performance standards. The inertia forces, 

coupled response actions, and gravitational impacts 

make controlling problems in MRs (fixed and dynamic) more 

challenging than normal. Both the transitional phase and the 

stable-state term are protected by the efficiency criteria. In 

surroundings that are well-defined and fixed, like factories, the 

surroundings can be set up to match the MRs characteristics. 

The specific type of controller used will depend on the 

application and the desired performance of the mobile robot. 

Overall, the goal of a controller in an MR is to enable the robot 

to autonomously navigate and perform tasks in dynamic and 
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uncertain environments. Various types of controllers can be 

used in mobile robots, including feedback control systems such 

as PID controllers, and model predictive controllers (MPC), as 

well as rule-based systems such as FLCs and reinforcement 

learning controllers. 

A. PID Controllers 

A PID controller is a device employed in processes requiring 

control to govern process variables including speed, pressure, 

flow, and temperature. Proportional, integral, and derivative 

control make up the PID controller. All these controllers work 

together to provide a control plan to obtain control over the 

process. PID controllers, considered to be highly precise and 

reliable controllers, use a feedback system known as the control 

loop for controlling variables that impact the process. The most 

used control algorithm implemented in robotic systems is the 

PID controller. The usage of PID algorithms for control is 

almost exclusively necessary for high-end robots that have 

powerful dynamics and excellent mobility precision. MRs are 

made to carry out certain jobs in a challenging and hazardous 

environment. Because of this, it's crucial to proceed at a precise, 

accurate velocity that will be appropriate for the task itself and 

the surrounding circumstances [27]. Fig. 2 shows an algorithm 

for an MR control within a desired distance. 

PID adaptation serves as a closed-loop algorithm and is 

frequently used in academic and industrial research due to its 

simplicity and higher performance. The fundamental objective 

for feedback-controlled systems in MR is to minimize this 

signal of error, which represents the discrepancy between the 

calculated speed values and the speed of reference. In PID 

controllers: the main objective of the proportional operation is 

to provide a response that changes in proportion to the incorrect 

signals; the integral controller mitigates the regulatory mistakes 

generated by a proportional controller during operations; and 

the derivative controller is used to find the variations in 

estimated signal by utilizing proportional controller in the rate 

of fluctuation. PID controllers estimate the value of error as the 

variance between a calculated value of the operational variable 

and the expected value. The calculation for the tracking error 

provides a framework for the PID controller operations. The 

control action taken by the PID controller for MR navigation is 

denoted by u(t), which is abbreviated as equation 1. 

𝑢(𝑡) = 𝑘𝑝ⅇ(𝑡) + 𝑘𝑖 ∫ ⅇ(𝑡) ⅆ𝑡
𝑡

0
+ 𝑘𝑑

𝑑ⅇ(𝑡)

𝑑𝑡
                  (1) 

Where proportional, integral, and derivative parameters are 

denoted by 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 respectively. The time step is denoted 

by ⅇ(𝑡), where the controller regulates the signal of control 

proportionally to the errors. Some important PID controller-

based MR navigation is described in Table II. 

TABLE II 

PID CONTROLLER-BASED MOBILE ROBOT NAVIGATION 

Reference Main Work 

[28] • A PID controller is used to solve the path-finding issues 

for MR. The model of MR is integrated with a delay and 
an integrator. 

• Here, the simple integration process enables the PID 

controller to be adjusted while using nominal 

effectiveness and reliability as control parameters. 

[29] • The development of the robotic fish and its movement 

control strategies are the objectives of this study. 

• A versatile anterior body and a vibrating foil acting as 

propellers have been employed to create a remote-

controlled, four-linked analogous robotic fish. 

• The hybrid control technique and a PID control 

technique are used in the remote control of fish speed. 

[30] • A basic decentralized continuously sliding PID 

controller has been developed for navigation tasks that 

ensure semi-global robustness for each closed-loop 
signal and exponential convergence of monitoring 

faults. 

• Terminal attractants and saturating ones are 

considered, along with a dynamic sliding mode that has 

been imposed without reaching the stage. 

• This paper is supported by an experimental comparison 

against adaptive control, PID control, and PD 

control for a stiff robot hand. 
[31] • A novel dynamic architecture PID controller pattern 

method is used for monitoring and stabilizing robot 
movement. 

• This study validates the feasibility of an exact PID 

sliding controller and PID sliding surface in monitoring 

the manipulator of a robot. 

• The entire quadratic model of Lyapunov and both the 

lower and upper matrix standard inequality are used in 

this work to define the global and sliding stability 

specifications. 

• Using simulations, the suggested control algorithm in 

this study is implemented for a two-link direct-driven 
robot hand. 

[32] • The global asymptotic control of manipulators for 

robotics within input limitations is covered in this study, 
regardless of velocity data presence. 

• By applying LaSalle's invariance principle 

and Lyapunov's direct technique, it is demonstrated that 

a robotic system with limited inputs might be 

universally asymptotically stabilized using a highly 
saturated PID controller. 

• In this article, the indicated controller's features are 

discussed, including the shortage of modeling variables 

in the description of a control rule and the capability of 

assuring that actuator limitations are not violated. 
[33] • This study proposes a fuzzy-PID controller architecture 

for tracking the trajectory of an MR with a differential 
drive. 

• The fuzzy PID controller has three outputs and two 

inputs, and its design includes a fuzzy controller and a 
PID controller. 

• An MR with a differential drive is explained using a 

model depending on the Lagrange dynamic method. 

• For an MR with any variable beginning state, the 

recommended controller provides a greater rate of 

convergence than the traditional PID controller. 

B. Model Predictive Controllers 

A movable device that can navigate and communicate with 

its surroundings through its actuators and sensors is known as 

an MR. The difficulty of determining how to push to travel from 

one location to another along with how to complete an assigned 

task is an example that controllers for MR tackle. A modern 

control technique referred to as MPC (model predictive control) 

 

Fig. 2. PID controller for controlling a MR to a distance 
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has the potential to generate optimal responses while taking the 

system's state and input constraints into consideration. To 

optimize the signal to control and anticipate possible breaches 

in the state trajectories while restricting the input signal within 

the acceptable range of standards, a dynamical system is 

implemented to determine how the state trajectories will evolve 

in the future [34]. MPC develops the control rule implicitly by 

resolving an optimization problem that can be constrained. Fig. 

3 shows the role of MPC for MR navigation. 

The receding horizon optimization control formulation is a 

key component of MPC. The best control series across a limited 

potential horizon for N steps can be determined at time t using 

this technique. The appropriate formulations have been 

presented below in Equation 2 [34]: 

𝑚𝑖𝑛
𝑢𝑡,…,𝑢𝑡+𝑁−1

{∑(‖𝑦𝑡+𝑘 − 𝑟(𝑡)‖
2 + 𝜌‖𝑢𝑡+𝑘 − 𝑢𝑟(𝑡)‖

2)

𝑁−1

𝑘=0

}     (2) 

Subject to: 

𝑥𝑡+𝑘+1 = 𝑓(𝑥𝑡+𝑘 , 𝑢𝑡+𝑘) 

𝑦𝑡+𝑘 = 𝑔(𝑥𝑡+𝑘, 𝑢𝑡+𝑘) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑡+𝑘 ≤ 𝑢𝑚𝑎𝑥  

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑡+𝑘 ≤ 𝑦𝑚𝑎𝑥  

𝑥𝑡 = 𝑥(𝑡), 𝑘 = 0,…… ,𝑁 − 1 

We calculate the optimal series through N steps by applying 

the principle of the receding horizon, although we just use the 

initial component, the initial ideal control movement action 

u*(t). We continue the optimization at time t+1 using the latest 

information and state estimations. In general, we use feedback 

to improve the optimization throughout the time horizon chosen 

to estimate the prospective evolution of the system outcomes. 

MPC can operate control systems that traditional feedback 

controllers are unable to control. The concept of optimum 

control under limitations and the basic structuring of control 

laws into an optimization issue have made MPC useful for a 

variety of work. The most significant difference between MPC 

and traditional control systems, which employ control principles 

that have already been computed, is the integration of 

optimization and prediction [35]. The present measurements 

and anticipated outcomes of the outputs serve as a base for the 

MPC computations. The goal of the MPC control computations 

is to select a series of control actions that will move the 

projected response to the reference or target value in the best 

possible manner [36]. Fig. 4 illustrates the single-input-single-

output (SISO) control for MPC, where the manipulated input is 

u, and the projected output is y. The term "prediction horizon" 

refers to the range of predictions P, whereas "control horizon" 

refers to the range of control actions N. 

 

Fig. 4. Illustration of primary idea for Model Predictive Controllers [37] 

The MPC approach determines an array of N values ranging 

from the input {u (k + j - 1), j = 1, 2, ….., N}, at the present 

sampling moment, represented by k. The array contains N - 1 

anticipated inputs and the present input u(k). Following the N 

control movements, the input is kept constant. The inputs are 

computed to ensure that an array of P anticipated outputs {y (k 

+ j), where, j = 1, 2,..., P}, attains the reference points through 

an optimal approach. An objective function is optimized in the 

control computations [37]. 

MPC delivers various significant advantages [37], [38], [39]: 

(1) the inputs, outputs, and disturbance parameters operate 

dynamically and statically for the process framework, (2) 

comprehensive assessment of the inputs and outputs constraint, 

(3) the acquisition of the best reference points might be 

connected to the control computations, and (4) a reliable model 

anticipates can provide preliminary indications of prospective 

issues. MPC is a useful control technique for MR navigation; 

however, there are still several unresolved challenges and 

opportunities for advancement. The computing complexity 

involved with addressing the optimization difficulty in real-time 

is a key constraint in MPC for MR navigation. Research might 

be focused on the development of more accurate optimization 

algorithms or estimations that can deliver real-time strategies, 

especially to address MRs with constrained handling features 

[40]. The development of MPC algorithms that will successfully 

rely on data from multiple sensors (including cameras, IMUs, 

and lidar) and perception methods (including object and 

character recognition) to enhance navigation performances can 

be an area for further study [41]. It becomes even more essential 

to generate MPC algorithms that optimize the planning paths 

and the efficiency of energy, specifically for MRs that utilize 

batteries. Some important MPC-based MR navigation is 

described in Table III. 

 

 

Fig. 3. Illustration of Model Predictive Controllers for Mobile Robots 
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TABLE III 

MPC-BASED MOBILE ROBOT NAVIGATION 

Reference Used Technique Main Work 

[42] Interactive MPC 

framework 
• A system that anticipates the 

purposes of pedestrians and their 
engagement with groups and, 

consequently, depending on the 

prediction, MR searches for the 
perfect path. 

• The recommended approach 

provides safe, effective, and 

intuitive robot behaviors in the 

presence of crowded situations. 
[43] Perception-

Aware MPC 
• This framework uses numerical 

optimization to generate 
trajectories under the platform's 

spatial constraints that fulfill the 

framework's behavior and require 
inputs to control. 

• By increasing the extent of view of 

an object of focus and decreasing 
its rate of motion at the visual 

level, it optimizes awareness 

criteria for reliable and robust 
sensing during MR navigation. 

[44] Robust 

Constrained 
Learning-based 

Nonlinear MPC 

• The outcome in this study shows a 

reliable, adaptive controller that, 

during initial testing whenever 

uncertainty about the model is 
substantial, offers safe, traditional 

control and eventually ends in 

higher-performance, optimum 
control over subsequent 

experiments, while model 

uncertainty decreases as 
experience rises. 

[45] DeepMPC • This paper introduces DeepMPC, a 

remote real-time MPC technique 

developed to handle challenging 

tasks like automated food cutting, 
where dynamics can vary with 

external variables such as material 

and equipment category as well as 
with time. 

[46] Convex 

Quadratic 
Programming-

Based MPC 

• This work considers the collision-

free movement of robotic 

automobiles using convex 

quadratic programming-based 
MPC. 

• Real-time prevention of collisions 

for a fully autonomous vehicle in 
dynamic as well as static 

conditions is made possible by a 

novel collision-free navigation 
mechanism presented. 

[47] Nonlinear MPC 
algorithm 

• For the virtual motion planning 

and monitoring of an 

omnidirectional AMR, a nonlinear 

MPC technique is presented in this 
study. 

• A Hamiltonian minimization 

approach is used as the foundation 

of the technique to optimize the 

control route as determined using a 
cost function. 

C. Fuzzy Logic Controllers 

 As AI technology quickly advances, robotics is becoming 

more sophisticated and effective in doing activities that were 

previously considered extremely challenging and complicated. 

MRs are capable of being autonomous, which means they can 

do tasks without human assistance by combining AI technology 

with robots [48]. To enhance the efficiency of MRs' reactive 

navigation, a variety of AI approaches, including RL, fuzzy 

logic, neural networks, and evolutionary algorithms, can be 

used. Fuzzy logic is an essential instrument in control systems 

because it can express linguistic words and make decisions 

reliably despite unpredictability and insufficient data. Fuzzy 

logic is applied for developing potential approaches to 

execute steering control, path planning, local navigation, global 

navigation, obstacle avoidance, and speed control for an MR. 

FLC is highly suited for operating MR due to its ability to make 

decisions even in the face of unpredictability and subsequently 

employs a collection of linguistically fuzzy rules to apply expert 

skills in a variety of circumstances [49]. 

 

Fig. 5.  Illustration of Fuzzy Logic Controllers architecture 

The architecture of FLC is illustrated in Fig. 5. The 

Fuzzification, inference engine, rule base, and defuzzification 

are all four fundamental parts that collectively form the FLC, 

which are described below: 

1) Fuzzification 

Fuzzy sets are generated from raw inputs using this element. 

The fuzzy sets move through the control system to undergo 

additional processing. Fuzzification, which converts each 

actual value of input and outcome into degrees of 

participation in fuzzy regulation conditions, is the starting 

point of generating a fuzzy controller [50]. 

2) Inference Engine 

This tool generates the most appropriate rules for specific 

inputs. The output is subsequently produced as a fuzzy 

output by applying these rules to the provided data. The 

fuzzy decision-making technique is carried out using fuzzy 

inference, that integrates the information obtained through 

the fuzzification [50]. Various fuzzy inference techniques 

exist according to a membership function objective and 

structure. 

3) Rule Base 

The functions of membership and rules that govern or 

control the fuzzy logic system's decision-making ability can 

be found within this component. It also includes the IF-

THEN statements that can be employed to set up conditions 

and control the system. 

4) Defuzzification 

The fuzzy sets are converted into a precise output by this 

component. This is the final step for a fuzzy logic system 

and the purpose of this step is to interpret the outcomes that 

the inference engine determined in subgroups. 

FLC uses a collection of linguistic fuzzy rules for using 

expert skills in a variety of scenarios. To avoid obstacles 
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precisely and reach the destination while navigating through an 

environment having different shapes and sizes of obstacles, a 

controller based on fuzzy logic can be developed by describing 

or developing the input and output parameters, fuzzification, 

fuzzy logic system-based 'If-Then' fuzzy inference rules, and the 

defuzzification technique to enhance the mobility of MRs in 

coordination with obstacle placements [51]. The FLC 

can control both navigational instruction and obstacle avoidance 

tasks simultaneously. A fuzzy logic system (Fi (i ∈ [n]) is 

described in equation 3 [52], where the total number of inputs is 

n for the fuzzy logic controller. 

𝐹𝑖 = {(𝑦𝑖 , 𝜇𝐹(𝑦𝑖)) | 𝜇𝐹(𝑦𝑙̇) ∈ [0, 1] ∀𝑦𝑖 ∈ ℝ}               (3) 

Where the membership function is 𝜇𝐹: 𝑦𝑙̇ → [0, 1], and the 

following in equation 4 [52], is a convex triangular 

representation of it: 

𝜇𝐹(𝑦𝑙̇) =

{
 
 

 
 
0,                                             𝑖𝑓 𝑦𝑙̇ < 𝑏1

  ℒ = (
𝑦�̇�−𝑏1

𝑏2−𝑏1
)  ,               𝑖𝑓 𝑦𝑙̇ ∈ [𝑏1, 𝑏2]

 𝑅 = (
𝑏2−𝑦�̇�

𝑏3−𝑏2
)  ,               𝑖𝑓 𝑦𝑙̇ ∈ [𝑏2, 𝑏3]

0,                                         𝑖𝑓 𝑦𝑙̇ > 𝑏3

         (4) 

Where 𝑏1 ≤ 𝑏2 ≤ 𝑏3 as illustrated in Fig. 6-(a), and ℒ(𝑅) is 

a rigid decreasing (increasing) function in a predefined interval. 

Then, for a collection of predefined m-rules, and 𝑌 ∈ ℝ, 𝑌 =
(𝑦1, 𝑦2), the j-th rule is abbreviated in equation 5 [52]. 

𝜆𝑗 ∶  𝐼𝑓 𝑦1 𝑖𝑠 𝐴𝑗,1̇  ∧  𝑦2 𝑖𝑠 𝐴𝑗,2̇ →  𝜑 𝑖𝑠 𝐵�̇�,                (5) 

Where 𝐵𝑗  is a subsequent fuzzy system, 𝑦1 = 𝑠 and 𝑦2 = �̇�. 

Therefore, the fuzzy mapping for FLC is a function 𝜑 ∶  𝑌 → ℝ, 

as given in Fig. 6-(b). 

 

Fig. 6. (a) Illustration of the triangular membership function with a basic 
concept. (b) Illustration of the basic idea of mapping for the fuzzy logic 

controller [52] 

The centroid defuzzification establishes a standard mapping 

in equations (6) and (7) [52]: 

 𝜑(𝑌) =
∑ 𝑍𝑗(𝑌).𝐵𝑗
𝑚
𝑗=1

∑ 𝑍𝑗(𝑌)
𝑚
𝑗=1

,                                               (6) 

𝑍𝑗(𝑌) =  𝜇𝐴𝑗,1̇(𝑦1). 𝜇𝐴𝑗,2̇(𝑦2),                                  (7) 

Where 𝜑 represents the control signal u, and  𝑍𝑗(𝑌) represents 

the power of firing for the j-th rule for computed observation Y 

from the product t-normalization of membership function (𝑗 ∈
[𝑚]). 

In recent decades many researchers discovered various 

control strategies based on FLCs for the navigation of MR. 

Some important and famous controllers based on fuzzy logic 

controllers for the navigation of MR are described in Table IV. 

TABLE IV 
FUZZY LOGIC CONTROLLER-BASED MOBILE ROBOT NAVIGATION 

Reference 
Used 

Technique 
Main Work 

[53] Hierarchical 

type-2 FLC 
• For AMRs, a new reactive control 

framework is presented. 

• A type-2 hierarchical FLC is 

developed by combining the 

fundamental navigational behaviors 
and how they coordinate with each 

other. 

• The proposed control system can 

address the challenges that MRs face 

in unpredictable environments. 
[54] Behavior-

based neuro-

FLC 

• This work describes a neuro-fuzzy 

control for indoor sensor-based 
navigation of MRs. 

• MR behaviors are organized in a 

sequence as a component of the 
control system. 

[55] Multilayer 

decision 

based FLC 

• In this paper, the FLC uses the 

predictions and setting priorities 

criteria for a multilayer selection to 

enhance the performance of the 
subsequent position in terms of its 

runtime, safety, and path length. 

• The primary purpose of this research 

is to present a multilayer decision 

based FLC for understanding non-
collision MR mobility in an 

unpredictable dynamic setting and 

find a strategy enabling MR 
navigation along a secure trajectory 

while avoiding all forms of obstacles. 

[56] Genetic-
fuzzy 

approach 

• Real-time prevention of collisions for 

a fully autonomous vehicle in 

dynamic as well as static conditions is 
made possible by a novel collision-

free navigation mechanism presented. 

• The state parameters and set of rules 

in an FLC that an MR employs to 

move through dynamic obstacles are 

scaled up in this research using 
genetic algorithms. 

[57] Neuro-fuzzy 

Controller 
• The neuro-fuzzy is utilized in this 

work for adjusting the fuzzy 

controller's output settings to 

enable the Khepera IV MR to 
navigate on a secure and effective 

path toward the target. 

D. Reinforcement Learning Controllers  

The traditional MR navigation system lacks the capacity for 

independent learning. MRs must have the ability to move 

independently over unknown terrain and avoid hitting dynamic 

and static obstacles. The navigation system of MRs has been 

developed through a variety of methods, both traditional and 

heuristic. When the environment becomes complicated, 

traditional methods can become tedious and might stop working 

at the local optimum. Heuristic techniques have grown in 

preference nowadays for their proximity to human styles 



236 RAVI RAJ, ANDRZEJ KOS 

 

of behavior learning [58]. RL is one of the most famous 

heuristic approaches that is used extensively nowadays for the 

navigation of MR. Using the RL method, MR can recognize the 

path through its prior behavior. For effective usage of an 

algorithm like this, the MR, also known as an agent, recognizes 

the environment, takes a decision, and subsequently is rewarded 

or penalized according to the environment. The MR then adjusts 

its strategy when it finally obtains a bigger reward. By 

developing a wide range of rules, the agent can learn several 

behavioral approaches [59]. 

RL has drawn substantial interest for its potential to address 

the basic challenge of navigation experienced by MRs, due to 

its powerful representations and experience-based learning 

capabilities. RL is an algorithm that finds the best decision-

making techniques via experience and is influenced by how 

animals learn in psychology [60]. Any decision-maker is 

considered an agent in RL, and all that exists around the agent 

is known as the environment. The agent interacts with its 

surroundings to optimize the overall reward and receives a 

feedback signal as a reward quantity for the training [61], [62]. 

The Markov decision process (MDP) can be utilized to 

represent the link between the environment and the agent [13]. 

Even though the agent obtains immediate input on rewards for 

each time step, the aim of RL is to optimize a long-term 

collective value of rewards rather than temporary rewards. The 

reward value (R) at time t can be expressed as equation 8 by 

considering the discount factor 𝜆 ∈ [0, 1] [13]. 

𝑅𝑡 = 𝑟𝑡+1 + 𝜆𝑟𝑡+2 + 𝜆
2𝑟𝑡+3 +⋯ = ∑ 𝜆𝑘𝑟𝑡+𝑘+1

∞
𝑘=0        (8) 

For the link between the environment and the target through 

the MDP, the state of the environment, obtained reward value, 

action taken by the agent, and the probability of state transition 

are represented by E, R, A, and P, respectively. The policy of 

agents π is the mapping of space between state and action 

elements. When the state of the environment ⅇ𝑡 ∈ 𝐸, the actions 

𝑎𝑡 ∈ 𝐴 is taken by the agent and then goes to the subsequent 

environment state ⅇ𝑡+1 according to the probability (P) of state 

transition, while receiving feedback for reward value 𝑟𝑡 ∈ 𝑅 

from the environment. 

The state value function of the environment ⅇ𝑡 is 𝑉𝜋(ⅇ) and 

function for action value of the pair of state-action (e, a) is 

𝑄𝜋(ⅇ, 𝑎). The long-term reward value that the agents might 

expect through the policy π can be calculated by equations 9 and 

10 [13]. 

𝑉𝜋(ⅇ) = 𝐹𝜋[𝑅𝑡|ⅇ𝑡 = ⅇ]                                  (9) 

𝑄𝜋(ⅇ, 𝑎) = 𝐹𝜋[𝑅𝑡|ⅇ𝑡 = ⅇ, 𝑎𝑡 = 𝑎]                 (10) 

By using equations (8), (9), and (10) can be represented in 

equations (11) and (12), recursively to define the link between 

the states ⅇ = ⅇ𝑡 and ⅇ′ = ⅇ𝑡+1 [13]. 

𝑉𝜋(ⅇ) = ∑ 𝜋(ⅇ, 𝑎) ∑ 𝑃ⅇⅇ′
𝑎

ⅇ′𝑎 [𝑅ⅇⅇ′
𝑎 +𝜆𝑉𝜋(ⅇ′)]            (11) 

𝑄𝜋(ⅇ, 𝑎) = ∑ 𝑃ⅇⅇ′
𝑎

ⅇ′ [𝑅ⅇⅇ′
𝑎 +𝜆∑ 𝑄𝜋(ⅇ′, 𝑎′)ⅇ′ ]            (12) 

Where 𝑅ⅇⅇ′
𝑎 = 𝐹[𝑟𝑡+1|ⅇ𝑡 = ⅇ, ⅇ𝑡+1 = ⅇ

′, 𝑎𝑡 = 𝑎] and 𝑃ⅇⅇ′
𝑎 =

𝑃[ⅇ𝑡+1 = ⅇ
′|ⅇ𝑡 = ⅇ, 𝑎𝑡 = 𝑎]. Equations (11) and (12) are 

referred to as Bellman equations. Dynamic programming is used 

to get the estimated solutions for the Bellman equation with the 

current value function. By optimizing the value function, the 

agent subsequently enhances the policy 𝜋 constantly. 

As comprehensive dynamic data and enormous memory 

usage are required for dynamic programming, which is not 

possible, researchers have established two different methods for 

learning, including Temporal-Difference (TD) learning and 

Monte Carlo. The Q-learning technique was developed in [63] 

by integrating different theories, including MDP and the 

Bellman equations, with TD learning. Following that, RL 

technology has achieved tremendous advances, and RL 

techniques have been utilized to address a variety of real-world 

issues including MR navigation. 

The classic RL technique, on the other hand, struggles with 

the so-called complexity of multidimensional scenarios, where 

the computing load significantly rises as the variety of inputs 

grows. Therefore, applying RL to develop a suitable policy in a 

vast state space is challenging. The DL technique learns the 

basic regulations and fundamental properties of the source data 

while modeling nonlinear functions via training a deep neural 

network (DNN). After combining RL with DNN, deep 

reinforcement learning (DRL) can be developed. 

 

Fig. 7.  Illustration of the DRL-based MR navigation [13] 

Nowadays, several studies are using DRL-based MR 

navigation to supplement or replace the conventional navigation 

approach. The DRL-based navigation system's agent and 

environment interact with each other in Fig. 7. The localization 

and map-generating sections, along with the local path planning 

section, that comprise the conventional navigation system are 

replaced by the DRL agent, which moves in the direction of the 

target location while avoiding dynamic, static, and 

other obstacles. A sequence of waypoints is generated by the 

global path planning component in Fig. 7 to serve as 

intermediate points of reference during DRL-based 

MR navigation, allowing the combined system of navigation to 

execute extended-distance navigation across a complicated 

physical environment. Some important RL-based MR 

navigation systems have been discussed in Table V. 
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TABLE V 

REINFORCEMENT LEARNING-BASED MOBILE ROBOT NAVIGATION 

Reference 
Used 

Technique 
Main Work 

[64] Self-

Supervised 

DRL 

• This work suggests a universal 

computational graph that comprises 
value-driven model-free techniques and 

model-based techniques, with 

representations applying interpolation 
between model-based and model-free, 

designed to solve the requirement to 

learn complex policies with limited data. 
[65] Memory-

based 

DRL 

• The technology described in this study 

enables a quadrotor unmanned aerial 
vehicle (UAV) integrated with a 

monocular camera to automatically 

avoid obstacles in irregular and 

unexplored indoor spaces. 

• The main objective of this technique is 

the partial observability concept and 

technique for how UAVs keep safe the 

necessary information for the structure 
of the environment to achieve greater 

navigation decision-making for the 

future. 
[66] Inverse 

RL 
• This study provides an innovative 

technique for simulating human 

behavior in navigation coordination. 

• This research uses a mixed distribution 

to represent the MRs behavior, 
intending to adjust for both the discrete 

navigational choices—such as whether 

to turn left or right—and the inherent 
variability of human paths. 

• The recommended method can mimic 

pedestrian behavior as well as recreate a 

particular behavior that is instructed via 

teleoperation within MR's target 
environment. 

[67] Supervised 

learning 
assisted 

RL 

algorithm 

• A hybrid coarse and fine learning 

process for a neural fuzzy system is 

suggested. 

• The function of membership for both 

input and output parameters are found 

concurrently using supervised learning. 

• When fine learning is used, the function 

memberships for output parameters are 

adjusted using an RL technique. 

• In this work, the MR can perform 

collision-free navigation. 

[68] Graph 

Relational 

RL 

• The challenge of autonomous 

navigation in substantial landscapes 

with dense static and moving objects is 
considered in this study. 

• Results from simulations confirm the 

generalizability to other contexts and 

superior performance for earlier efforts 

in large-scale congested regions. 

IV. DISCUSSION AND FUTURE TRENDS 

MRs will be able to make decisions in real time using input 

from sensors and advanced goals due to the integration of the 

latest algorithms and ML techniques in future controllers. For 

an MR to navigate effectively and safely, controllers need to 

accurately incorporate input from various sensors, including 

cameras, ultrasonics, LiDAR, and many more, to gain 

awareness of their surroundings [69]. Thus, researchers will 

focus on the advancement and accuracy of sensors for further 

research. Prospective MR controllers might want to consider 

ethical and social conventions, mostly for situations where 

humans and robotics interact. Therefore, research will mainly 

focus on the development of navigation controllers that follow 

acceptable social behavior [70]. Future research trends will look 

at hybrid control structures that take advantage of both data-

driven and rule-based control features. Another essential 

research path in the future is to examine how controllers in MR 

might utilize edge computing for instantaneous decision-

making and cloud servers for challenging computations and the 

processing of huge amounts of data [71], [72]. 

MRs will increasingly involve cognitive architecture, AI, 

speech communication, and affective HRI through a variety of 

applications, including military security and defense, hazardous 

work, surveillance, advancing space exploration, hazardous 

environments, and so on [73], [74]. These technologies will 

further have an impact on a wide range of economic fields, 

including agriculture, health care, domestic services, undersea 

research, industry, and many more. MRs will be perfected to 

transform the home, distribution and logistics, marine research, 

and automobile industries. The application of MRs will have an 

expanding impact on the food and beverage sector, processing 

foods, pick-and-place usage, networking purposes, and 

collaborative tasks. 

Technologies like linguistic intelligence, automatic driverless 

automobiles, delivery drones, and automated manufacturing 

facilities with MR as employees are currently having a 

significant impact on how companies perform. For future 

studies, various groups of objectives, such as motion 

consistency, multi-robot frameworks, sensor vibration, and 

several more, need to be taken into consideration. Real-world 

MR navigation regularly experiences uncertainty and sensor 

noises [75]. The most recent trend indicates that the 

commercialization of autonomous vehicles because of advances 

in technology in MRs will drive the economy over the period to 

come, while the rise of open-source systems combined with a 

decline in the cost of sensors is anticipated to boost the 

popularity of domestic MRs, including lawn mowers 

and vacuum cleaners. 

V. CONCLUSION 

     The objective of this paper is to present an overview that 

allows a comprehensive understanding of controllers used for 

MR navigation while analyzing the available information. The 

different controllers are divided into classical and rule-

based techniques in this study that are used in MR navigation. 

Also, we have illustrated the most important books that can be 

referenced as a base for the robotics field of study. Control, 

navigation, path planning, and obstacle avoidance are the core 

components of the study behind the application of controllers 

for MR. We provided a survey on different techniques utilized 

by the most cited articles, according to the IEEE Xplore and 

Google Scholar. The latest references are provided for readers 

who intend to delve into this area, and the state-of-the-art, 

innovative applications and further trends are dispersed 

throughout the article. 
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