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Abstract—In this paper we derive mathematical description of 

TCP (Transmission Control Protocol) retransmission probability 

based on Jacobson’s smoothing algorithm that belongs to EWMA 

(Exponentially Weighted Moving Average) category. This 

description is parametrized on the probability density function 

(pdf) of RTT (Round Trip Time) samples and α, β – two primary 

parameters of Jacobson’s algorithm. Although it is not a close form 

expression, it is formulated as an effective algorithm that let us to 

explicitly calculate the values of RTO (Retransmission Time Out) 

probability as a function of α, β and the pdf of RTT samples. We 

achieve the effectiveness of this approach by applying smart 

discretization of the state space and replacement of continuous 

functions with discrete approximate equivalents. In this way, we 

mitigate the cardinality of discrete distributions we deal with that 

results in linear (n+m) instead of multiplicative (n⋅m) growth of 

computational complexity. We provide the evaluation of RTO 

probability for a wide set of α, β parameter values and differently 

shaped Normal and Laplace pdfs the RTT samples are taken from. 

The obtained numerical results let us to draw some conclusions 

regarding the choice of optimal values of α, β parameters as well as 

the impact of pdf the RTT samples are taken from. 

 

Keywords—TCP; EWMA; Jacobson’s algorithm; 

retransmission timeout; retransmission probability 

I. INTRODUCTION 

NY communication protocol that aims at assuring reliability 

requires a retransmission mechanism. The crucial part of 

this mechanism is the algorithm for calculating the retransmission 

timeout (RTO) i.e. the time after which the sent portion of data is 

assumed to be lost and thus is retransmitted. Example of such 

protocols are TCP [1], SIP [2] if used over UDP [3] to mention 

few older ones or CoAP (Constrained Application Protocol) [4] 

to indicate more recent protocols. In each case, RTO mechanism 

impacts the performance of applications that use these protocols 

and that’s why it is the subject of new proposals and optimization 

effort. For example, for CoAP a new RTO algorithm has been 

proposed and tested in [5]. Another example is a new variant of 

CoAP called CoAPEifel [6] wherein the Eifel Retransmission 

Timer  which was originally designed for TCP has been integrated 

with CoAP working over UDP. For TCP protocol itself, many 

research works were done as well. Some authors investigated the 

impact of parameters of RTO algorithm e.g. EWMA parameters 
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or minimum RTO [7] or the impact of TCP parameters like 

delayed acknowledgements or OS clock granularity by 

experiments [8]. Fewer works took an analytical approach trying 

to provide models to capture the dependencies between parameter 

values and the evaluated performance metrics of TCP [9]. Finally, 

some works took entirely different approach trying to improve 

TCP RTO mechanism by proposing new algorithm to replace 

well-known EWMA rule. To mention some examples, we can 

indicate the works: [10] where the Weighted Median concept was 

used and [11] where the calculation of the entropy was  

fundamental for RTO estimation.  

Despite the long history of TCP being used as a transport by 

different popular applications and application protocols e.g. e-

mail exchange (SMTP protocol), file transfer (FTP protocol), web 

browsing (HTTP), it is still under the investigation for new 

applications or application protocols. One of such applications is 

CCN (Content-Centric Networking). The authors of [12] 

analyzed Jacobson’s algorithm to find the most appropriate 

setting for EWMA (Exponentially Weighted Moving Average) 

parameters in CCN application. They experimented with different 

values of minimum RTO and other parameters of RTO algorithm.  

In this paper we propose the analytical framework to provide 

more rigorous treatment of the already introduced problem that is 

the adjustment of RTO parameter values to achieve the optimal 

performance of TCP. The remaining part of this paper is 

organized as follows: in section 2 we state the problem that is the 

adjustment of RTO parameter values to achieve optimal 

performance. In section 3, we present the analytical framework 

that lets for RTO probability value and TCP performance 

estimation based on the given values of RTO parameters. In 

section 4, we provide the numerical results that let to decide about 

usability of the proposed framework. In section 5, we conclude 

the work. 

II. BASIC PERFORMANCE METRICS FOR RTO 

ALGORITHMS 

TCP retransmission algorithm works with a series of round 
trip time (RTT) values that represent the time from TCP 
segment transmission to respective TCP acknowledgement 
reception. The RTT values let a TCP sender to infer current 
network conditions and approximate the timeout it should await 
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a TCP acknowledgement for any TCP segment sent. Nowadays 
the most widely implemented TCP retransmission timeout 
(RTO) algorithm is the one defined by Jacobson [13]. 
According to this algorithm the RTO value is calculated as a 
sum of a smoothed round trip time (SRTT) and a component 
representing a variability - see formula (1).  

RTO(n) = SRTT(n) + δ ⋅  (n)         (1) 

where δ is an integer typically chosen to be 2 or 4.  

 

A smoothed RTT (SRTT) after collecting an n-th RTT sample 

is computed as an exponentially weighted moving average 

(EWMA) according to (2): 

SRTT(n) =  (1 − α) ⋅ SRTT(n − 1) + α ⋅  RTT(n)   (2) 

where RTT(n) denotes the lastly measured RTT sample 

i.e. the n-th one, SRTT(n) and SRTT(n-1) denote the SRTT 

value for the last (current) and the previous RTT measurements, 

respectively. Parameter α is an averaging factor with default 

value of 1/8 [1]. 

The component representing the variability of the measured 

RTT is calculated in a very similar way - see (3): 

 (n) =  (1 − β) ⋅   (n − 1) + β ⋅ |SRTT(n − 1) − RTT(n)| 
(3)  

where (n) and (n-1) denote the  value for the current and the 

previous RTT measurements, respectively. Parameter β is the 

averaging factor with default value of 1/4 [1]. 

Jacobson's algorithm tries to follow the current trend of RTT 

values while not being so sensitive to the sudden changes of RTT 

values. That's why it relies also on the previous measurements 

either for smoothed RTT or variability calculations. Preserving 

this balance between the responsiveness to changes in RTT values 

while keeping stable operation (without oscillations) is the crucial 

point. It is affected by the selection of the values of α and β 

parameters. More conservative approach in the sense of lower 

sensitivity to newest RTT values can result in underestimated 

SRTT and RTO values thus providing to premature (spurious) 

timeouts and retransmissions. On the other hand, more aggressive 

approach in the sense of higher sensitivity to newest RTT values 

can result in overestimated SRTT and RTO values thus providing 

to long delays before a necessary retransmission is triggered. Both 

cases: underestimation or overestimation of RTO values are not 

desired as they lead to TCP performance degradation. In the light 

of the above, the need for optimal selection of RTO parameter 

values is unquestionable. As an argument supporting this thesis 

we can cite a number of research works that dealt with this 

problem. In [12] the most appropriate settings of Jacobson’s 

algorithm were sought to optimize the performance of TCP 

connections in CCN applications, Amongst the others, the values 

of α, β, δ, RTOmin parameters were examined to see its impact on 

TCP performance. In [7] the authors evaluated TCP performance 

in LAN network (short delays) with various settings of the α and 

β constants in the presence of varying levels of background traffic 

generated by conventional systems. In [9] the more rigorous 

approach was proposed. Instead of empirical study as in [12], [7] 

or [8], the authors provided an analytical model of Jacobson’s 

algorithm to find out some dependencies between RTT statistical 

values drawn from Gamma probability distribution and some 

performance measures of RTO algorithms. These measures were 

chosen to be: mean reaction time of RTO algorithm expressed as 

an average RTO and the probability of premature retransmission 

of TCP RTO algorithm. Our work follows the similar approach 

as in [9]. Instead of empirical study that usually provides some 

tangible results but limited to evaluated cases, we chose an 

analytical approach. By providing a quite realistic model of 

Jacobson’s algorithm that takes into account the passage of time 

and calculation of RTO value for consecutive RTT 

measurements, we believe to gather valuable insights into the 

characteristics of RTO algorithm and better recognition of its 

performance dependency on values of α and β parameters as well 

as the characteristics of RTT samples. Providing an analytical 

framework that lets for accounting of probability distribution of 

RTT values as one of the parameters of the model, seems to be 

valuable contribution in the cognitive sense of RTO algorithms as 

well as an element that differentiates our work from cited 

literature, especially from [9]. 

 

III. ANALYTICAL FRAMEWORK FOR JACOBSON'S 

RTO ALGORITHM 

 

We start with a given sequence of TCP RTT samples: 

(𝑥0, 𝑥1, … , 𝑥𝑛)          (4) 

and parameters α, β, δ representing the respective constants 

in equations (1) – (3). The values of these parameters fulfil the 

following conditions:  0<α<1, 0<β<1, 0<δ. The values of 

random variables SRTT, Dev and RTO for the consecutive RTT 

samples from the set (4) are denoted as SRTT, Dev and RTO 

and calculated using the recursive formulae (1) – (3): 

 

SRTT[k] = 𝛼 ⋅ 𝑥𝑘−1 + (1 − 𝛼) ⋅ 𝑆𝑅𝑇𝑇[𝑘 − 1]  (5) 

𝐷𝑒𝑣[𝑘] =  𝛽 ⋅ |𝑆𝑅𝑇𝑇[𝑘 − 1] − 𝑥𝑘−1| + (1 − 𝛽) ⋅ 𝐷𝑒𝑣[𝑘 − 1] 
(6) 

𝑅𝑇𝑂[𝑘] = 𝑆𝑅𝑇𝑇[𝑘 − 1] + 𝛿 ⋅ 𝐷𝑒𝑣[𝑘 − 1]  (7) 

for k=1,…,n. The initial values of SRTT and Dev random 

variables (for the first RTT sample) are given by: 

 

SRTT[0] = 𝛼 ⋅ 𝑥0         (8) 

Dev[0] = 𝛽 ⋅ 𝑥0         (9) 

 

We assume that the consecutive values of RTT samples, 

denoted as xi represent the values of i.i.d (independent, 

identically distributed) random variables Xi, i=0,1,…,n, with the 

common probability density function f. We aim at defining 

probabilistic model M(f,α,β,δ) that lets for calculations of: 

• The values: SRTT[k], Dev[k], RTO[k] of random variables 

SRTT[k], Dev[k], RTO[k] for any k value,  

• Mean value of RTO random variable (denoted as 

E{RTO[n]}), 

• Dependency of retransmission probability Prob(RTO[n] < 

Xn) on the values of α,β parameters, 

• Possible correlations (and its visualization) between the 

retransmission probability and parameters (e.g. its variance, 

entropy) and the type of probability density function f  that 

determines the values of consecutive RTT samples,  

For this purpose we applied an approach based on the direct 

mapping of recursive formula for SRTT, Dev, RTO as the 
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operations executed on the probability density functions of 

random variables SRTT[k], Dev[k], RTO[k], i.e: 

 

𝑃𝐷𝐹 𝑜𝑓 SRTT[𝑘] = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑃𝐷𝐹 𝑜𝑓 α ⋅
Xk−1 , 𝑃𝐷𝐹 𝑜𝑓  (1 − 𝛼) ⋅ SRTT[𝑘 − 1])       (10) 

 

The above direct mapping is possible only due to an 

assumption about the independence of random variables Xi (in 

such case the probability density function of a sum of random 

variables equals the convolution of probability density functions 

of these random variables). However it leads to the need to 

perform n-fold convolution that results in exponential 

complexity of calculations of probability density functions of 

SRTT, Dev, RTO random variables.  

One possible remedy to effectively calculate the convolution 

of two functions f and g it is the application of Fourier Inverse 

Formula i.e. calculating a convolution according to (11): 

 

𝑓 ∗ 𝑔 = 𝐹−1(𝐹(𝑓) ⋅ 𝐹(𝑔))     (11) 

where F-1 is calculated as a simple integral (see [14]). 

 

The application of formula (11) and simplified calculation of 

F-1 is plausible if the functions f ang g belong to the class of 

Schwartz’s functions (the functions with real arguments and 

complex values, that are infinity-times differentiable and that 

converge to 0 in  (+∞,-∞) domain faster than any polynomial). 

The presence of absolute value function in (6) results in a 

situation where the probability density functions of Dev and 

RTO random variables don’t belong to Schwartz’s class. 

Moreover, the important for us pdfs of RTT samples e.g. 

exponential or Laplace pdfs, do not also belong to Schwartz’s 

class due to not being differentiable for some arguments. 

Therefore, straightforward application of formula (11) is not 

possible due to the violation of Schwartz’s class conditions. On 

the other hand, direct application of n-fold convolution 

operation is not acceptable because of too high complexity of 

calculations of resulting pdfs. However, the lack of effective 

calculations of SRTT, Dev and RTO pdfs precludes the 

achievement of the final result that is e.g. calculation of 

retransmission probability. Concluding, the definition of the full 

analytical, probabilistic model that lets for characterization of 

RTT, Dev, RTO random variables is possible, but this model 

precludes obtaining the numerical results e.g. retransmission 

probability. 

To alleviate the above problem, we propose to use another 

approach. In order to  mitigate the complexity of recurrent 

calculations with continuous pdfs of RTT, SRTT, Dev and RTO 

random variables we replace continuous functions with discrete 

approximate equivalents. This let us to use discrete Fourier 

transform and Fast Fourier Transform algorithm for calculations 

and skips the problem of the functions not belonging to 

Schwartz’s class.  As a consequence we introduce finite discrete 

random variables DSRTT, DDev, DRTO in place of their 

continuous counterparts: SRTT, Dev, RTO.  

Discrete distribution D is defined by: 

• Domain of the distribution: Dom(D) = (x0,…,xn-1) 

• Probability distribution function Prob(D) defined in 

domain Dom(D): p = (p0,…,pn-1), Prob(D)(xi) = pi 

Consider two discrete random variables X, Y with discrete 

probability distribution functions D1, D2. Then, the random 

variable X+Y has a discrete probability distribution  

D=join(D1,D2) in the following way: 

Dom(D)  =  {x + y|x ∈ Dom(D1) and y ∈ Dom(D2)}  (12)                      

For a ∈ Dom(D), Prob(D) (a) =
∑ Prob (D1)(x) ⋅ Prob(D2)(y)xϵDom(D1),yϵDom(D2),x+y=a  (13) 

The above proposed approach may be applied to recursive 

calculations of SRTT, Dev, RTO random variables. We model 

the recursive equations (5) – (7) as the operations on random 

variables with discrete probability distributions. For example, 

the formula for the random variable SRTT at k-th moment 

(after (k-1)-th RTT sample computation), that is given by (14): 

SRTT[k]  =  α ⋅ Xk−1 + (1 − α) ⋅ SRTT[k − 1]    (14) 

we model in the following way. Let D(α⋅Xk-1) denotes the 

discrete distribution approximating probability distribution of 

α⋅Xk-1 random variable, i.e. discrete distribution approximating 

Xk-1 that is scaled by α. Let D((1-α)∙SRTT[k-1]) denotes the 

discrete distribution approximating probability distribution of 

(1-α)∙SRTT[k-1] random variable, i.e. recursively computed 

discrete distribution DSRTT[k-1] that is scaled by 1-α.  

Then, probability distribution function of DSRTT[k] is given 

by:  

PDF of DSRTT[𝑘] = 𝑗𝑜𝑖𝑛(D(α ⋅ Xk−1), D((1 − α) ∙ SRTT[k −
1]))                                                    (15) 

where the ‘join’ operation is defined by (12), (13).  

 

Let us point out some drawbacks of the above direct 

approach. If D1, D2 have the cardinality equal to n, m 

respectively, then the pessimistic estimation of the cardinality 

of distribution D of random variable X+Y equals n⋅m. In this 

case, the usage of the above definition for calculations of 

DSRTT, DDev, DRTO distributions, leads to the situation 

where the cardinality of final distribution domain for DRTO is 

of the order tens of thousands for some probability density 

functions the values of RTT are generated from. This in turn, 

will result in unacceptable burden and delay in processing final 

probability distributions. We solve the above problem of 

computation complexity by our own, proprietary algorithm. We 

introduce the assumption about the regularity of the 

approximate discrete probability distributions that we use 

during the analysis. We state that discrete distribution D has 

granularity ε if (and only if) there exists an ‘a’ such that: 

a ∈ R, Dom(D) = {a + i ⋅ ε|0 ≤ i ≤ n}, for some n   (16) 

If probability distributions D1, D2 of random variables X, Y 

have the same granularity ε and fulfil the condition (17): 

 

Dom(D1) = {a + i ⋅ ε|0 ≤ i ≤ n}, Dom(D2) =
 {b + j ⋅ ε|0 ≤ j ≤ m}                                            (17) 

 

then discrete distribution D of random variable X+Y has the 

granularity also equal to ε and Dom(D) defined by (18): 

Dom(D) = {(a + b) + k ⋅ ε|0 ≤ k ≤ n + m}        (18) 

Probability distribution function Prob(D) is the convolution 

of series (probability distribution functions) Prob(D1), 

Prob(D2) as defined in (19): 
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Prob(D) ((a + b) + k ⋅ ε) = ∑ Prob(D1) (a + i ⋅ ε) ∙i+j=k

Prob(D2)(b + j ⋅ ε)  for k = 1, . . , n + m          (19) 

We denote the convolution of discrete distributions D1, D2 as: 

D = D1 ∗ D2                                           (20) 

The calculations of this convolution might be carried out 

using discrete Fourier transform with FFT algorithm to speed up 

the operation to obtain the probability distribution function of 

the sum of random variables X, Y. However, the most important 

benefit from applying this approach is the mitigation of the 

cardinality of discrete distribution D that is n+m instead of n⋅m. 

For large n, m, the difference for the operation complexity 

(expressed as a number of convolution operations to be 

performed) might be even several orders of magnitude. It is 

itself a dramatical decline in the computation time of final 

probability distribution, making the numerical calculations 

feasible at all.  

We define some common global granularity ε for all discrete 

probability distribution functions of DSRTT[k], DDev[k], 

DRTO[k] random variables. However, a new problem arises. 

Multiplying a random variable with discrete probability 

distribution by a constant (e.g. α⋅Xk-1), we scale the domain of 

its probability distribution, that results in the change of the 

granularity in this domain. This leads to the loss of homogeneity 

in the granularity of calculated probability distributions. As a 

consequence, the probability distribution function of discrete 

distribution D being the sum of discrete random variables X, Y 

with different granularities, in general won’t be the convolution 

of the probability distribution functions of discrete random 

variables X and Y. All the advantages mentioned above and 

regarding the mitigation of the cardinality of the discrete 

distribution D (n+m states instead of n⋅m states) and the 

applicability of FFT algorithm, that are due to the fact of the 

same common and global granularity for probability 

distributions for all random variables involved in computations, 

will disappear. We solve this problem by introducing an 

approximate model of the information included in formula for 

SRTT, Dev, RTO calculations. Instead of continuous random 

variables, we will deal with discrete random variables denoted 

as: DSRTT, DDev, DRTO. This substitution is a trade of 

between the accuracy of results and computation feasibility of 

obtaining them.  

For any continuous random variable Y with probability 

density function (pdf) g and for any granularity ε, we define 

discrete distribution DY with the granularity ε that approximates 

probability distribution of Y in the following way: 

• We calculate the interval [a,b] such, that 1 − ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
<

0.001  – i.e. the whole probability mass of pdf g is focused 

in [a,b] interval with the accuracy equal to 0.001, 

• Dom(DY) = {a + i ⋅ ε | 0 ≤ i ∧  a + i ⋅ ε ≤ b} 

• Prob(DY) (a + i ⋅ ε) = ε ⋅ g(a + i ⋅ ε) 

 

The leading idea is to represent random variables SRTT, Dev, 

RTO as a linear combination of X0,…,Xn random variables.  

For k=0, …, n we express the random variable SRTT[k] as a 

linear combination of random variables X0,…,Xn representing 

consecutive RTT measurements (21).  

SRTT(k) = ak,k ⋅ Xk + ak,k−1 ⋅ Xk−1 + ⋯ + ak,i ⋅ Xi + ⋯ +

+ak,1 ⋅ X1 + ak,0 ⋅ X0                           (21) 

The derivation of ak,i coefficients is described in Appendix 1. 

Notice, all scaling operations like  α⋅Xk-1 or (1-α)⋅SRTT[k-1] are 

incorporated in ak,i coefficients dependent on α.  

For any constant a > 0, random variable a⋅X has pdf 𝑔(𝑥) =
1

𝑎
𝑓(𝑥

𝑎⁄ ), where f  is continuous pdf, common for all  X0,…,Xn 

random variables. The calculations of discrete distribution 

D(a⋅X) are accomplished by revoking to original information 

that is the function f in accordance to definitions outlined in 

bullet points above that constitute the discrete distribution DY 

for random variable Y=a⋅X, its probability density function g 

and, the most important, for the global, common granularity ε. 

In consequence we get: 

DSRTT(k) = D(ak,k ⋅ Xk) ∗ D(ak,k−1 ⋅ Xk−1) ∗ … ∗ D(ak,i ⋅

Xi) ∗ … ∗ D(ak,1 ⋅ X1) ∗ D(ak,0 ⋅ X0)                     (22) 

According to (22), DSRTT(k) that denotes probability 

distribution function of DSRTT[k] random variable is defined 

as n-fold convolution of discrete distribution functions with the 

same granularity what makes the application of discrete Fourier 

transform possible. The same approach we apply for Dev 

random variable. However, in the formula for calculation of 

Dev, there appears an absolute value |xk-SRTT(k-1)|, that makes 

a representation of RTO random variable as a linear 

combination of random variables X0,…,Xn more complicated. 

Let’s assume that zero-one sequence s, |s|≤n , represents 

information about meeting (zero) or not meeting (one) the 

conditions (23): 

Xi − SRTT(i − 1) ≥ 0 for   i = 1, … , |𝑠| − 1     (23) 

For zero-one sequences s, |s|≤n , we define Dev(s) values in 

the recursive way: 

Dev(s0) = β ⋅ (x|s|+1 − SRTT(|s|)) + (1 − β) ⋅ Dev(s) (24) 

Dev(s1) = β ⋅ (−x|s|+1 + SRTT(|s|) + (1 − β) ⋅ Dev(s)(25) 

The values Dev(s) we represent as a linear combination:  

Dev(s) = bs,|s| ⋅ x|s| + bs,|s|−1 ⋅ x|s|−1 + ⋯ + bs,i ⋅ xi + ⋯ +

bs,1 ⋅ x1 + bs,0 ⋅ x0                                                            (26) 

 

The derivation of bs,i coefficients is included in Appendix 2.  

Next, we proceed with the characterization of RTO random 

variable. We define value of RTO based on a given path ‘s’ as: 

rto(s) = SRTT(|s|) + δ ⋅ Dev(s) = ∑ (a|s|,i + δ ∙ bs,i) ⋅ xi
|s|
i=0  

(27) 

The value of random variable after n-th RTT measurement 

(RTO[n]) is defined as a rto(s) averaged over all possible paths 

‘s’ with |s|=n. On the other hand, since all applied mathematical 

operations are linear, we can approximate RTO[n] as a linear 

combination LRTO[n] of random variables X0,…,Xn denoting 

the n consecutive RTT measurements: 

LRTO[n] = ∑ Prob(s) ⋅ rto(s) = ∑ ck ⋅ Xk
n
k=0s∈{0,1}n  (28) 

The coefficients ck are represented as the sums of an.k, bs,k 

coefficients averaged over appropriate paths s in a probabilistic 

sense: 

ck = ∑ Prob(s) ⋅ (an.k + δ ⋅ bs,k)s∈{0,1}n           (29) 
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So far we are unable to give any estimation of the accuracy 

of approximation LRTO[n]. The probability of a path ‘s’ 

(Prob(s)) we define as a multiplication of probabilities of the 

events:  

Xi − SRTT(i − 1) ≥ 0, Xi − SRTT(i − 1) < 0  for  i =
1, … , |s| − 1                                           (30) 

depending on the occurrence of zeros or ones on the path ‘s’. 

We calculate these probabilities (Prob(s)) by using the results of 

prior calculations of discrete distributions DXi, DSRTT[i]. 

Linear representation LRTO[n] of RTO[n]  (see formulae (28)) 

lets to calculate discrete distribution LDRTO(n) (of LDRTO[n] 

discrete random variable) that approximates pdf of LRTO[n] by 

the convolution of probability distribution functions with the 

same granularity analogously to the aforementioned 

calculations of the probability distribution functions DSRTT(k), 

k=0,…,n. Finally, our probabilistic model M(f,ε,α,β,δ), with ε 

being global, common granularity for probability distributions, 

is defined by 3 discrete probability distributions: 

• DX – discrete distribution approximating the probability 

density function of i.i.d random variables: X0,…,Xn 

• DSRTT(0),…,DSRTT(n) – discrete distributions 

approximating random variables SRTT[0],…,SRTT[n] 

• LDRTO(n) – discrete distribution approximating the 

defined above random variable LRTO[n] 

and by well-defined operations on these probability 

distributions: 

• Convolution D1*D2 

• m(D) = distribution D1 defined in the following way: 

o Dom(D1)={-a | a ∈ Dom(D)} 

o Prob(D1) (a)=Prob(D)(-a) for a ∈ Dom(D1) 

If D is the distribution of Y random variable, then m(D) is the 

distribution of -Y random variable. 

All these distributions DX, DSRTT, LDRTO are dependent 

on parameters: f,ε,α,β,δ. The proposed model lets for calculating 

the aforementioned main values of interests: 

• Mean value of LRTO approximated by mean value of 

LDRTO[n], 

• The visualisation of the dependency of retransmission 

probability Prob(DRTO[n] < Xn) on values of α, β 

parameters, 

• Possible correlations between retransmission probability 

(or equivalent measure that is retransmission probability 

times mean RTO: Prob(LDRTO[n] < Xn)⋅E{LDRTO[n]}) 

for different pdfs f and their parameters e.g. variance, 

entropy.  

For example, let D = LDRTO(n) ∗ m(DX) be a discrete 

distribution approximating the difference of random variables 

LRTO[n] and Xn i.e. LRTO[n] – Xn. Then, the retransmission 

probability dependent on f, ε, α, β, δ we define as: 

 Prob(LDRTO[n] − Xn < 0) = ∑ Prob(D)(a)𝑎∈𝐷𝑜𝑚(𝐷),𝑎<0    

(31) 

IV. NUMERICAL RESULTS 

The framework presented in section III lets to obtain 

numerical results thus allowing the investigation of the impact 

of 𝛼, 𝛽 parameters on the retransmission probability.  

Let us summarize up the algorithm.  

Input: 

• Parameters 𝛼, 𝛽, 𝛿 = 2 

• Number of random RTT samples 𝑛 = 10 

• Global granularity 𝜀 = 0.01 

• Probability density function 𝑓 

Actions: 

• For k = 0, …, n , i = 0, …, k  compute coefficients 𝑎𝑘,𝑖 of 

linear combination (21) (see Appendix 1), 

• For all paths 𝑠 ∈ ⋃ {0,1}𝑘𝑛
𝑘=0  compute coefficients 𝑏𝑠,𝑖  𝑖 =

0, … , |𝑠| of linear combination (26) (see Appendix 2), 

• Compute DSRTT(0), … , DSRTT(n) – discrete distributions 

approximating random variables SRTT[0],…,SRTT[n] by 

making use of Fast Fourier Transform algorithm in 

computation of convolutions (22), 

• Compute discrete distribution DX approximating the 

random variable X with density f,   

• For i = 0, … , n,  

o Compute discrete distribution Di = DX ∗
m(DSRTT(i)) approximating the random variable 

X − SRTT[i] 

o q[i] = ∑ Prob(Dix∈dom(Di) ∧ x≥0 )(x); probability 

approximating Prob(X − SRTT[i] ≥ 0) 

• Compute probabilities Prob(s) of paths s by the following 

recursion:  

o Prob(ε) = 1,      ε denotes an empty path here, 

o Prob(s0) = Prob(s) ∙ q[|s|], Prob(s1) =
Prob(s) ∙ (1 − q[|s|]),    

• Compute coefficients ck = ∑ Prob(s)(an.k + δbs,k)s∈{0,1}n  

of linear combination (28), 

• Compute discrete distribution LDRTO(n) approximating 

random variable LRTO[𝑛] = ∑ ckXk
n
k=0  by making use of 

Fast Fourier Transform algorithm in computation of 

appropriate convolutions,  

• Compute discrete distribution D = LDRTO(n) ∗ m(DX) 

approximating the random variable LRTO[𝑛] − X. 

Output: 

• Retransmission probability =∑ Prob(D)(x)𝑥∈𝑑𝑜𝑚(𝐷) ∧ 𝑥≥0   

• Mean value of RTO = ∑ x ∙x∈dom(LDRTO(n))

Prob (LDRTO(n))(x) 

For given values of 𝛿 parameter we investigate the optimal 

value of retransmission probability ORP against the values of 

𝛼, 𝛽 parameters:  

ORP = min{Prob(LDRTO[𝑛] < 𝑋𝑛) |  0 < 𝛼 < 1, 0 < 𝛽 <
1}                                                                          (32) 

We want to verify if there exists any relationship between 

optimal values of retransmission probability and the attributes, 

like variance or entropy, of different pdfs f. For this purpose we 

have made an evaluation of retransmission probability for 15 

different cases of pdfs f. We have chosen five pdfs of Normal 

distribution differing in standard deviations: σ = 0.5, 1, 1.5, 2, 

2.5, five pdfs of Laplace distributions differing in standard 

deviations: σ = 0.5, 1, 1.5, 2, 2.5, five pdfs of exponential 

distribution differing in 𝜆 = 0.5, 1, 1.5, 2, 2.5.  

The target measure (the result) is defined to be retransmission 

probability (denoted on the figures as Pr) or retransmission 

probability times mean LRTO value (denoted on the figures as 

Pr⋅avg_RTO). Both measures depend on the value of 𝛼, 𝛽 

parameters denoted on the figures as alpha, beta, respectively. 

Since 𝛼, 𝛽 parameters might take any real value in the range 

(0;1) we decided to discretized this range with a step of 0.1 to 
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limit the number of possible combinations of  𝛼, 𝛽 values to 

9⋅9=81 cases.  

We present the results as two-dimensional figures. The 

figures let for visualisation of the changes of values on α, β 

cartesian space. In the figures there is no information about the 

actual value however it is easy to observe the monotonicity of 

the target function. For this purpose it is enough to represent the 

level of the value expressed by the colour and by the size of the 

balls. The higher value the larger ball and the more warm colour. 

On the other hand, the lower value the smaller ball (might be 

even invisible) and the colder colour.  

 

 
Fig. 1. The values of Pr metric calculated for RTT values taken from exponential 

probability distribution with λ = 1.5. 

 

 
Fig. 2. The values of Pr⋅avg_RTO metric calculated for RTT values taken from 

exponential probability distribution with λ = 1.5. 

 

 
Fig. 3. The values of Pr metric calculated for RTT values taken from Laplace 
probability distribution with mean=2 and standard deviation σ = 1.5. 

 
Fig. 4. The values of Pr⋅avg_RTO metric calculated for RTT values taken 
from Laplace probability distribution with mean=2 and standard deviation σ = 
1.5. 

 
Fig. 5. The values of Pr metric calculated for RTT values taken from Normal 

probability distribution with mean=2 and standard deviation σ = 1.5. 

 

 
Fig. 6. The values of Pr⋅avg_RTO metric calculated for RTT values taken from 

Normal probability distribution with mean=2 and standard deviation σ = 1.5. 
 

Above, we have presented some example results. A careful 

evaluation of more cases (15 different shapes of probability 

distributions functions like Laplace, Normal and exponential the 

RTT samples are drawn from) has revealed that there is always 

optimal pair of values of 𝛼, 𝛽 parameters in the sense of 

minimalization of Pr or Pr⋅avg_RTO measures. This suggests 
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existence of rules that govern the adjustment of 𝛼, 𝛽 parameter 

values to provide the best performance of van Jacobsen’s RTO 

algorithm  in dependence on the probability distribution 

function the RTT samples are taken from. The presented 

framework lest for identifying these values, however not in a 

close-form expression but with algorithmic approach. 

Moreover, the numerical results revealed that the correlation 

between entropy of pdfs 𝑓1, … , 𝑓15 and the optimal 

retransmission probability for these pdfs was at the order of 0.9 

whereas the correlation with variance was at the order of 0.7. In 

some algorithms for the calculation of RTO value e.g. in 

classical van Jacobson’s algorithm, the properties of a stochastic 

process modelling RTT values are taken into account by using 

its variance that is a kind of intuitive approach (Chebyshev’s 

bound).  

We state that the results of our experiments suggest the 

intuition  for exploiting a concept of entropy while calculating 

the RTO values. One of the most simple suggestions for 

exploiting entropy concept, would be the following formulae for 

RTO calculation:  

RTO = SRTT + h(e) ⋅ Dev                       (33) 

 Formula (33) reminds classical van Jacobson’s formula 

where a constant 𝛿 was replaced with h(e)  denoting a function 

of entropy e of pdfs f modelling the RTT times. The choice of 

the function h is a separate problem. For the function ℎ(𝑒) = 6 ⋅

√𝑒 we performed some experiments on the RTT values 

artificially generated as a set of values from some arbitrary 

chosen probability distribution functions as well as on the RTT 

values taken from real network measurements. The real RTT 

samples usually had unneglectable autocorrelation coefficient 

values. In these experiments the argument e of h(e)  function 

was calculated as entropy of histogram of 200 last RTT values. 

It appeared that the use of this modified RTO algorithm gave 

much better results in the sense of smaller number of 

retransmissions along the sample trajectory of RTT values than 

for classical van Jacobson’s algorithm when RTT values were 

modelled as i.i.d. random variables (this i.i.d property is the 

fundamental assumption of our probabilistic model 

𝑀(𝑓, 𝜀, 𝛼, 𝛽, 𝛿)). For the RTT samples that exhibit an 

unneglectable autocorrelation coefficient value the situation is 

opposite – van Jacobson’s algorithm gives better results. The 

honest conclusion of our work should be the statement that the 

right exploitation of entropy concept for RTO calculations is not 

straightforward task and still presents a set of challenges.  

V. CONCLUSIONS 

When summarizing the paper it is worth to remark that the 

effectiveness of proposed analytical framework relies on smart 

discretization of the state space and replacement of continuous 

functions with discrete approximate equivalents. This mitigates 

the cardinality of discrete distributions we deal with that results 

in linear (n+m) instead of multiplicative (n⋅m) growth of 

computational complexity. However, the price for 

circumventing the granularity homogeneity problems of 

discrete distributions is replacing the original RTO random 

variable with its linear LRTO approximation. This linearity and 

access to the original continuous probability density information 

of generating successive RTTs makes it possible to circumvent 

the granularity uniformity problem. In turn, the homogeneity of 

granulation allows the discrete Fourier transform to be used to 

reduce the cost of computing the discrete probability 

distributions we need. 

The usefulness  of the proposed analytical framework 

manifests in the fact that we were able to efficiently carry out 

the examination of TCP RTO probability values for a wide 

range of input parameter values (α, β, the shape of pdf we take 

RTT samples from). A simulation investigation seems 

infeasible in this case. This is due to the computation burden 

implied by the number of trajectories we would have to pass 

along at least 1000 times each in order to get reliable 

probabilities values with the accuracy of 2 digits after the dot. 

The number of trajectories rises geometrically with the number 

of possible RTT values (x) in a fashion 𝑥𝑛. For example, with 

RTT samples drawn from 10 point discrete distribution (i.e. 

x=10) and with n=10 (evaluation of RTO after 10 consecutive 

samples) would result in 1010 different trajectories and the 

requirement to pass along them 103⋅1010 in order to collect 

enough data to provide reliable retransmission probability 

value. This is definitely infeasible in a reasonable time. 

Moreover, as the dependency is of geometrical nature, the 

problem gets worse when the number of RTT values (x) or a 

number of consecutive steps (n) increases. If the simulation time 

is not long enough or the simulations are not repeated 

appropriate number of times, then the results of experiments are 

unstable. That’s why we think there is no alternative approach 

for the analytical investigation.  

On the contrary, this analytical examination provided us 

valuable data to better understand the dependency of RTO 

probability values on the input parameters. One of the 

observations we notice is that the visual similarity of the graphs 

depends on the type of density function and not on the 

parameters of this density – e.g. graphs for densities with similar 

entropy but different types are dissimilar. We also conclude that 

there is always optimal pair of values of 𝛼, 𝛽 parameters in the 

sense of minimalization of Pr or Pr⋅avg_RTO measures. This 

suggests existence of rules that govern the adjustment of 𝛼, 𝛽 

parameter values to provide the best performance of van 

Jacobsen’s RTO algorithm  in dependence of the probability 

distribution function the RTT samples are taken from.  

As a final notice, we point out that the conducted analysis 

concerns stationary processes of independent RTT generation. 
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APPENDIX 1 

The derivation of coefficients 𝑎𝑘,𝑖,  0 ≤ 𝑖 ≤ 𝑘, 𝑘 = 0, … , 𝑛. We 

assume that the first value of smoothed RTT (SRTT) is: 

 𝑆𝑅𝑇𝑇(0) =  𝛼 ⋅ 𝑥0 then 𝑎0,0 = 𝛼.                  (34) 

From recursive formula (5) we have: 

 𝑆𝑅𝑇𝑇(𝑘) = α𝑥𝑘 + (1 − α)𝑆𝑅𝑇𝑇(𝑘 − 1) = α𝑥𝑘 +
(1 − α)(∑ 𝑎𝑘−1,𝑖

𝑘−1
𝑖=0 𝑥𝑖) = α𝑥𝑘 + ∑ (1 − α)𝑎𝑘−1,𝑖

𝑛−1
𝑖=0 𝑥𝑖.   (35) 

Hence: 

𝑎𝑘,𝑖 = 𝑎𝑘−1,𝑖(1 − α) = (1 − α)𝑘−𝑖α ;  𝑖 = 0, … , 𝑘; 𝑘 = 1, … , 𝑛   

(36) 

APPENDIX 2 

The derivation of recursive formula for coefficients bs,i: 

𝐷𝑒𝑣(𝜀) = 𝛽 ⋅ 𝑥0                            (37) 

For the sequence s , |𝑠| = 𝑘 − 1,     1 ≤ 𝑘 ≤ 𝑛 

 𝐷𝑒𝑣(𝑠0) =  𝛽 ⋅ (𝑥|𝑠|+1 − 𝑆𝑅𝑇𝑇(|𝑠|)) + (1 − 𝛽) ⋅ 𝐷𝑒𝑣(𝑠)   (38) 

𝐷𝑒𝑣(𝑠1) = 𝛽 ⋅ (−𝑥|𝑠|+1 + 𝑆𝑅𝑇𝑇(|𝑠|)) + (1 − 𝛽) ⋅ 𝐷𝑒𝑣(𝑠)  (39) 

𝐷𝑒𝑣(𝑠0) = 𝛽(𝑥𝑘 − ∑ 𝑎𝑘−1,𝑖𝑥𝑖
𝑘−1
𝑖=0 ) + (1 −

𝛽) ∑ 𝑏𝑠,𝑖𝑥𝑖 =𝑘−1
𝑖=0 𝛽𝑥𝑘 − ∑ 𝛽𝑎𝑘−1,𝑖𝑥𝑖

𝑘−1
𝑖=0 + ∑ 𝑏𝑠,𝑖𝑥𝑖

𝑘−1
𝑖=0 −

∑ 𝛽𝑏𝑠,𝑖𝑥𝑖 =𝑘−1
𝑖=0 𝛽𝑥𝑘 + ∑ (−𝛽𝑎𝑘−1,𝑖

𝑘−1
𝑖=0 + 𝑏𝑠,𝑖 − 𝛽𝑏𝑠,𝑖)𝑥𝑖 =

𝛽𝑥𝑘 + ∑ ((1 − 𝛽)𝑏𝑠,𝑖
𝑘−1
𝑖=0 − 𝛽(1 − 𝛼)𝑘−1−𝑖α)𝑥𝑖 = 𝛽𝑥𝑘 +

∑ ((1 − 𝛽)𝑏𝑠,𝑖
𝑘−1
𝑖=0 − 𝛽(1 − 𝛼)𝑘−1−𝑖𝛼)𝑥𝑖                            (40) 

𝐷𝑒𝑣(𝑠1) = 𝛽(−𝑥𝑘 + ∑ 𝑎𝑘−1,𝑖𝑥𝑖
𝑘−1
𝑖=0 ) + (1 −

𝛽) ∑ 𝑏𝑠,𝑖𝑥𝑖 =𝑘−1
𝑖=0 − 𝛽𝑥𝑘 + ∑ 𝛽𝑎𝑘−1,𝑖𝑥𝑖

𝑘−1
𝑖=0 + ∑ 𝑏𝑠,𝑖𝑥𝑖

𝑘−1
𝑖=0 −

∑ 𝛽𝑏𝑠,𝑖𝑥𝑖 =𝑘−1
𝑖=0 − 𝛽𝑥𝑘 + ∑ (𝛽𝑎𝑘−1,𝑖

𝑘−1
𝑖=0 + 𝑏𝑠,𝑖 − 𝛽𝑏𝑠,𝑖)𝑥𝑖 =

−𝛽𝑥𝑘 + ∑ ((1 − 𝛽)𝑏𝑠,𝑖
𝑘−1
𝑖=0 + 𝛽(1 − 𝛼)𝑘−1−𝑖α)𝑥𝑖              (41) 

The recursion for coefficients  bs,i: 

𝑏𝜀,0 = 𝛽, 𝑏𝑠0,|𝑠|+1 = 𝛽, 𝑏𝑠1,|𝑠|+1 = −𝛽            (42) 

𝑏𝑠0,𝑖 = (1 − 𝛽)𝑏𝑠,𝑖 − 𝛽(1 − 𝛼)|𝑠|−𝑖𝛼,   𝑖 = 0, . . . , |𝑠|        (43) 

𝑏𝑠1,𝑖 = (1 − 𝛽)𝑏𝑠,𝑖 + 𝛽(1 − 𝛼)|𝑠|−𝑖𝛼, 𝑖 = 0, . . . , |𝑠|        (44) 

 


