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Current trends on the early diagnosis of Alzheimer’s
Disease by means of neural computation methods

Carmen Paz Sudrez-Araujo ©®, Ylermi Cabrera-Le6n

Abstract—The prevalence of dementia is expected to increment
in the next decades as the elderly population grows and ages.
Hence, Alzheimer’s Disease (AD), as the most frequent dementia,
will be more problematic from a socioeconomic point of view.
Different diagnostic criteria have been proposed by clinicians for
the early diagnosis of AD. After discarding the longitudinal and
prognosis articles, a selection of articles from the last decade
and based on Artificial Neural Networks (ANNs) was collated
from the PubMed database, and complemented with researches
extracted from others. The latest trends on this field were
discovered in these selected articles, which were later discussed.
Only articles based whether on shallow ANNs, Deep Learning
(DL) or a mix of both were included. The total number of
cross-sectional articles that complied with our selection criteria
was 154. Convolutional Neural Networks (CNNs) combined with
neuroimaging has been the most popular approach, yielding
very good performance results. Approaches based on non-
neuroimaging techniques, such as gait, genetics, speech and
neuropsychological tests, were less common but have their own
advantages. Multimodality solutions may become even more
prevalent in the near future. Similarly, novel diagnostic criteria
will appear and the popularity of currently not-so-common ones
will expand. A new proposal emerged from these trends, which
is based on ontogenetic ANNSs.

Keywords—Alzheimer’s Disease; Mild Cognitive Impairment;
Computer-Aided Diagnosis; Artificial Neural Network; Deep
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I. INTRODUCTION

HE aging and increasing quantity of elderly population

bring along an increment of patients with chronic dis-
eases such as stroke and dementia. AD, as the most frequent
type of the latter, is a neurodegenerative disease characterized
by a rather slow development. Mild Cognitive Impairment
(MCI) is a construct equivalent to the oligosymptomatic or
prodromal stage of this disease [!]. It was proposed by
clinicians for subjects characterized with cognition levels
intermediate between those of Cognitively Normal (CN) and

This work was funded by the Consejeria de Vicepresidencia Primera y
de Obras Publicas, Infraestructuras, Transporte y Movilidad del Cabildo de
Gran Canaria under Grant Number “23/2021”.

C. P. Sudrez-Araujo, Y. Cabrera-Leén and P. Fernandez-Lopez are
with Instituto Universitario de Cibernética, Empresa y Sociedad, Univer-
sidad de Las Palmas de Gran Canaria, Parque Cientifico Tecnoldgico,
Campus Universitario de Tafira, Las Palmas de Gran Canaria, CN,
Spain (e-mail: carmenpaz.suarez@ulpgc.es, ylermi.cabreral01 @alu.ulpgc.es,
pablo.fernandezlopez @ulpgc.es).

P. Garcia Bdez is with Departamento de Ingenieria Informdtica y de
Sistemas, Universidad de La Laguna, Escuela Superior de Ingenieria y
Tecnologia, San Cristébal de La Laguna, CN, Spain (e-mail: pgarcia@ull.es).

, Pablo Fernandez-Lépez

, and Patricio Garcia Baez

AD, and where no impact on their daily live activities has
been observed [1].

AD has no cure yet so researchers have been working on
finding good diagnostic and prognostic methods. The difficulty
of both diagnosis and different diagnosis of AD and MCI is the
main problem due to the unavailability of both standardized
diagnostic criteria and specific biomarkers [2]. Thanks to the
automatic characteristic of computation-based methods, their
popularity has boosted. Initially, most of those that worked
with Artificial Intelligence (AI) techniques were based on non-
neural approaches, which are outside the scope of this work,
such as Support Vector Machine (SVM), Decision Tree (DT)
and Random Forest (RF) [3]-[5]. Neural approaches arrived
later and have been obtaining very good performance results
in different classification tasks. The main reason for such good
behavior is that ANNSs are able to work with multidimensional,
noisy and complex data, and even with data where classes
are highly overlapped [2]. Thus, as dementia diagnosis and
prognosis are characterized with these troublesome properties,
proposals based on Deep Neural Networks (DNNs) and shal-
low ANNs have become commonplace lately.

The main goals of this overview are two, each further
explained in the next sections. On the one hand, finding trends
on the selected ANN-based articles from the last decade but,
unlike in [2], we will only focus on early AD diagnosis in
cross-sectional studies. That is, prognosis and longitudinal
studies will be excluded. On the other hand, a new proposal
that emerged from the previous trends will be discussed.
This high-potential ANN-based proposal will be able to face
this classification challenge with efficiency, facilitating its
incorporation in e-Health environments.

II. TRENDS ON NEURAL COMPUTATION APPROACHES FOR
AD AND MCI DIAGNOSIS

The last years have been very fruitful in the research of
Computer-Aided Diagnosis (CAD) systems for AD, especially
after the exceptionally good results of the solutions based on
neuroimaging techniques and DL. A huge number of works
have been published. Researchers have focused on the two
main AD-related tasks: diagnosis and prognosis. Both cross-
sectional and longitudinal studies have been posited by other
researchers.

Articles were extracted from the PubMed database, which
were complemented with other works from ScienceDirect and
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IEEE Xplore. In this work the selection criteria utilized to
filter these articles were:

o Cross-sectional articles related to the diagnosis of AD or
MCI.

o At least one of the classification methods or a module
within it must be based on shallow ANNs, DNNs or a
combination of both.

o Articles must have been written in English and published
in peer-reviewed journals or conference papers between
2012 and 2022, both inclusive.

« Usage of some popular performance metric as to facilitate
comparisons between different works. Examples of these
metrics are Area Under the Curve (AUC), accuracy,
sensitivity, specificity, F1 score and precision [6]-[9].

As seen, none are related to specific diagnostic criteria as the

entire spectrum currently in use was of interest for this study.
These 154 “selected articles”, which met this selection criteria,
were divided into neuroimaging-based and non-neuroimaging-
based because important differences between the trends in
both groups of criteria were found. There were 118 and 36
cross-sectional articles in these groups, respectively. If any of
these works tackled one or more classification task, in the
figures in this work they were counted independently as each
task has different complexity (particularly between binary and
multiclass problems). That is, there were 234 neuroimaging-
related studies and 41 non-neuroimaging ones. On the other
hand, databases were counted independently in the figures
too because articles may use one or more databases for each
classification task they worked in. In this case, 275 studies
for neuroimaging; 41, for non-neuroimaging, which indicates
that in the former it was far more common to use more than
one database in each article, whereas in the latter, all works
utilized only one.

A. Studies based on neuroimaging and brain signals tech-
niques

Sudrez-Araujo et al. [2] described neuroimaging techniques
as “all imaging used to study the structure and function
of the central nervous system, most frequently the brain”.
As no specific biomarker for AD has been discovered yet,
neuroimaging techniques have been utilized as complementary
diagnostic criteria for the diagnosis of AD, including for
discarding other dementia and diseases.

In Table I a selection of cross-sectional works with the best
performance results and based on neuroimaging techniques is
shown.

Within the selected articles, several brain signals and neu-
roimaging techniques were used. Sorted in descending order of
prevalence they were: Structural Magnetic Resonance Imaging
(sMRI), Positron Emission Tomography (PET), Functional
Magnetic Resonance Imaging (fMRI), Electroencephalog-
raphy (EEG) and Functional Near-Infrared Spectroscopy
(fNIRS). Indeed, Magnetic Resonance Imaging (MRI), in
particular sMRI, outnumbered the other ones. PET was never
utilized together with shallow ANNs. Multimodality takes
advantage of favorably using synergies that usually happen
when combining different modalities. Among the selected
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Figure 1. Number and percentage of neuroimaging-based studies per year,
grouped by neural family

articles, multimodal studies where neuroimaging and non-
neuroimaging data were combined were much more common
than those where different modalities of neuroimaging were
combined. The most popular one in the former was sMRI
with scales or demographic data, whereas MRI with PET in
the latter.

Neural computation methods found in articles in this group
were heterogeneous. The majority of works made use of
DNNs, Figure 1. Especially numerous were those based in the
CNN family (almost 41% of the studies), with more complex
versions of this network (in terms of number of layers, neurons
and hyperparameters needed to tune) appearing in subsequent
years. Modular approaches were used in more than 26% of the
studies. On the other hand, the most common shallow ANNs
was the Multilayer Perceptron (MLP) family (below 8% of the
total).

Regarding databases, the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) one was the most popular one in
the neuroimaging-based articles, whether used alone or with
others, followed by far by the varied group of private databases
and the Open Access Series of Imaging Studies (OASIS) one,
Figure 2. It was not rare that the selected articles in this group
utilized more than one database.

Although the number of works in this group has increased
yearly, the growth was dissimilar among the families of neural
computation methods. The greatest positive increases took
place with modular methods (particularly after 2020) and
in CNN family (first works appearing in 2018 and in 2021
becoming the predominant, only surpassed in 2022 by the
modular ones). It should be noted that many of these modular
approaches have at least one of their modules based on DNNS,
and of them, most on CNNs. On the other hand, the usage of
neuroimaging with shallow ANNSs stabilized.

Almost 53% of the selected articles tackled the CN-AD or
CN-MCIT classification tasks. The CNN family has been the
predominant in all the studied classification tasks but nonAD-
AD. The second most common neural family in all of them
was the modular approaches group.

The main findings from works that utilized neuroimaging
were the prevalence of the CNN family, the usefulness of
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SHALLOW OR DEEP ANNS AND USED NEUROIMAGING DATA (MONOMODALITY OR MULTIMODALITY). MODULAR METHODS ARE INDICATED WITH “+”
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Reference

Dataset

Sabbaghi et al. [10]

Luetal [I11]

Rashid et al. [12]

Wu et al. [13]

Sheng et al. [14]

Sun et al. [15]

Jiang et al. [16]

Wang et al. [17]

Zhao et al. [18]

Bhasin et al. [19]

Neuronetrix: 95 CN, 75 AD
ADNI-2: 100 CN, 100 AD
ADNI; OASIS-1, OASIS-2;

IXI: 1365 CN, 1365 MCI,
1365 AD

OASIS: 80 CN, 80 AD

ADNI-2: 43 CN, 53 EMCI,
34 LMCI, 30 AD

ADNI: 316 CN,
365 MCI, 288 AD

ADNI: 243 CN, 307 AD
ADNI: 205 CN, 174 AD

ADNI: 209 CN, 191 MCI,
113 AD

ADNI: 112 sMCI, 75 pMCI

Ashtari-Majlan et al. 20 APNEL: 231 €N, 100 sMCT,

Features Methods Results
EEG RBFN; MLP 0.98 ac, 1 se, 0.96 sp
fMRI KFS-ELM 0.99 ac
3D-MRI CNN CN-AD 1 ac
MRI WS-AMN; WSDAN; ResNet, 1ac, 1se, 1 sp,
VGG; Inception 1F1, 1 pr
sMRI, fMRI GoogLeNet CN-EMCI-LMCI-AD
0.97 ac
MRI, 5 demographic, ResNet 0.9 ac, 0.9 se,

APOE, CSF, 4 scales

3D-MRI, 2 demogaphic,
1 scale

MRI, SNP

PET, 3 demographic,

fully CNN+MLP

3D-CNN+MLP

AlexNet+SVM; ZF-Net+SVM;

0.89 sp, 0.95 AUC

0.99 ac, 0.99 se,
0.98 sp, 0.99 F1

0.84 ac, 0.92 AUC

CN-AD 1 ac, 1 se,

ResNet+SVM;
3 scales InceptionV3+SVM Lsp, 1 AUC
3D-MRI TGA+CNN+SVM 0.98 ac
CN-AD 0.98 ac,

MRI, 1 demographic,
5 scales

CNN; SVM; MLP

0.99 AUC; sMCI-pMCI

164 pMCI, 200 AD

0.79 ac, 0.94 AUC
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Figure 2. Number and percentage of neuroimaging-based studies where each
database was used, grouped by neural family

transfer learning (using a network pretrained with a different
dataset than the final one, which will be used for fine-tuning
the final network with the final dataset), and the advantage
given by image augmentation techniques (including those
based on Generative Adversarial Networks (GANs)) as they
provide more training samples. It can be concluded that they

have become mandatory for studies combining neuroimaging
and CNNs in order to yield the most optimal performance
values, reduce training times, and require less number of
training samples.

B. Studies based on non-neuroimaging techniques

Many non-neuroimaging techniques have been being used
way before the first neuroimaging ones have, mainly because
of their lower technical complexity and costs.

The variety of modalities in the selected articles belonging
to the non-neuroimaging techniques group was wider [2], and
included: blood, demographic data, gait and movements of
body parts (such as eyes and limbs), retinal Optical Coherence
Tomography Angiography (OCTA), genes, neuropsychological
tests, and speech. Speech-related works have used transcripts
based on the speech, the oral speech itself or a combination
of both. Capture of gait and movements of body parts is
nowadays easier thanks to the low cost and complexity of
webcams, smartphones and wearable devices. Such equipment
has been utilized in the gait-related selected articles.

The cross-sectional researches in this group that obtained
the best performance results with each modality have been
summarized in Table II.

In the last decade the number of articles in this group also
grew, even increased by a factor of 5, stabilizing after 2020,
Figure 3. A similar proportion of shallow and deep ANN-based
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Figure 3. Number and percentage of non-neuroimaging-based studies per
year, grouped by modality and neural family
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Figure 4. Number and percentage of non-neuroimaging-based studies where
each database was used, grouped by modality and neural family

works were found each year, but when speech, transcript or
eye movement was used, where only DNN-based works were
found. Shallow ones were mostly utilized with blood and genes
data. Novel modalities began being used in the last years, such
as gait. Almost 32% of the studies made use of multimodal
data, so it was the most used one, and it was more frequent
in binary classification tasks and with shallow ANNs. About
the classification tasks being tackled, near 54% were CN-AD
and CN-MCI. Only works based on shallow ANNs worked in
the MCI-AD problem.

Regarding databases, the popularity of private datasets was
much higher than in the neuroimaging case, ranking the first
position (above 52%), followed from a distance by Gene
Expression Omnibus (GEO) and ADReSS databases (both sum
27%), Figure 4. Unlike with neuroimaging, the ADNI one was
fourth with a mere 7%. A reason that may explain this is
the lack of big, multisite databases with some types of non-
neuroimaging data. Also, databases in this group are almost
always limited to a family of non-neuroimaging diagnostic
criteria, especially significant with non-private databases such
as GEO, for blood and genes, and ADReSS and DementiaBank
(which includes Pitt Corpus), for speech and transcripts. None
of the selected articles in this group used more than one
database, unlike in the neuroimaging case.

In contrast to neuroimaging, usage of data augmentation
techniques was never reported by researchers. Similarly hap-
pened with both transfer learning and methodologies to deal
with missing input data.

The CNN family was less popular than in the neuroimaging
case, and it was mostly found with gait or neuropsychological
data and forming part of modular methods. Other types of
DNNs different to CNNs, such as the transformer [29] and
the Recurrent Neural Networks (RNNs) [30], [31] families,
got more common, especially with textual and speech data, re-
spectively. MLPs and Backpropagation Networks (BPNs) were
the predominant shallow ANNSs, although non-neural Machine
Learning methods occasionally yielded better performance.

The main findings from works that utilized non-
neuroimaging were the specialization of the datasets for each
modality, the prevalence of private datasets and multimodality,
the increased popularity of transformers and the opposite with
CNNss, and the little or no use of data augmentation techniques,
imputation methods and transfer learning.

III. ONTOGENIC NEURAL NETWORKS FOR AD AND MCI
DIAGNOSIS: OUR PROPOSAL

The current trends on neural computation-based works and
how difficult it is to solve the problem of early diagnosis of
AD were the main findings of the previous analysis. Consid-
ering the above, we propose the use of ontogenetic neural
architectures as they are characterized by some properties
common to what we consider that the optimal neural solutions
should have: high capability to solve complex and dynamical
problems efficiently, good feasibility, low cost, and the need
to use diagnostic criteria that are less invasive, better cost-
effectiveness and low likelihood of impairing the patients’
quality of life. The first of these properties is brought along
by the added plasticity that such ANNs have, which can be
explained by its definition. Fiesler and Beale [32] defined an
“ontogenic neural network” as an ANN whose interconnection
strengths change according to a predetermined learning rule,
and, additionally and unlike other ANNs, the ANN also
automatically adapts its topology (i.e. the number of layers
and number of neurons per layer) to the problem. Indeed,
topology modification has demonstrated to be a good candidate
to successfully solve the stability-plasticity dilemma, one of
the main problems that all neural networks need to face.

In the POE model explained in [33] to describe bio-
inspired systems, the ontogenic neural architectures that will
be described in the next paragraphs - Hybrid Unsupervised
Modular Adaptive Neural Network (HUMANN), Modular
Hybrid Growing Neural Gas (MyGNG) and Supervised Re-
configurable Growing Neural Gas (SupeRGNG) - lay in the
Ontogeny-Epigeny plane due to their neural growth (in these
cases referred as neurogenesis) and network topology modifi-
cation processes.

HUMANN implements the general approach of the classifi-
cation process, which has three stages [34]: feature extraction,
template generation and discrimination. It uses a multilayer
neural structure with three modules, each with different neu-
rodynamics, connectivity topologies and learning laws [34].
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Table 11

SUMMARY OF THE SELECTED CROSS-SECTIONAL STUDIES THAT YIELDED THE BEST PERFORMANCE RESULTS, WHOSE METHOD WAS BASED ON
SHALLOW OR DEEP ANNS AND DID NOT USE NEUROIMAGING DATA (MONOMODALITY OR MULTIMODALITY). MODULAR METHODS ARE INDICATED
WITH “+” SYMBOLS BETWEEN THEIR MODULES IN THE “METHODS” COLUMN. IN BOLD THE BEST METHOD WHEN SEVERAL WHERE COMPARED.

Table II — Continued from previous page

Reference Dataset Features Methods Results
. . . Blood, 1 scale, 0.93 ac, 0.90 se, 0.95 sp,
Tang et al. [21] Private: 60 CN, 60 AD 1 demographic BPN 0.93 AUC
Ma et al. [22] ROSE: 13 CN, 26 AD Retinal OCTA OCTA-Net 0.99 ac, 0.97 AUC
Mahendran et al. [23] GEO: 74 CN, 87 AD Gene expressions AE+IDBN 0.97 ac, 0.95 se, 0.96 sp, 0.95 F1
Sosa-Marrero et al. [24] ADNI-2: 150 AD, 345 MCI 6 scales MyGNG 0.85 ac, 0.82 sp, 0.91 se, 0.96 AUC
. . 3 scales,
Sudrez-Araujo et al. [25] ADNI: 203 CN, 128 MCI . CPN 0.87 ac, 0.9 se, 0.85 sp, 0.95 AUC
2 demographic
CN-MCI 0.88 ac, 0.85 se,
L 0.91 sp, 0.91 AUC;
Cheah et al. [26] Private: 59 CN, 59 MCI, 30 AD 1 scale CNN CN-AD 0.89 ac, 0.82 se.
0.95 sp, 0.94 AUC
Chiricosta et al. [27] GEO: 90 AD, 90 non-AD Blood MLP; LR; LDA; DT; NB; 0.89 ac, 0.95 se,

Tlias and Askounis [28] ADReSS: 78 AD, 78 non-AD

Speech, Transcripts

kNN; RF; SVM 0.93 AUC, 0.90 F1, 0.86 pr
0.9 ac, 0.89 se, 0.91 sp,

BERT+ViT+Co-attention 0.9 F1, 0.91 pr

HUMANNS-S is its supervised version. The first neural module
of HUMANN-S is a Self-Organizing Map [35]; the second
one, the Tolerance layer; and the last one, a Perceptron type
net, which performs the last stage of a classification process,
the discrimination task. In [36] some schemes of HUMANN-S
ensembles, combined via Simple Majority Voting or Weighted
Majority Voting, were compared to tackle a multiclass Differ-
ential Diagnosis of Dementia task. The selected HUMANN-S
modules were those with low validation errors and with a high
diversity between pairs. With only 5 neuropsychological tests
from 30 patients extracted from a private dataset, both schemes
of HUMANN-S ensemble outperformed the physician. Values
of sensitivity of 0.96, 0.22 and 0.85 and specificity of 0.9,
0.67 and 0.88 were obtained when classifying AD, Vascular
dementia and other types of dementia, respectively. Both
schemes yielded values of accuracy of 0.89.

A MyGNG is a novel supervised method that combines
the ontogenetic ANN called Growing Neural Gas (GNG) [37]
with a perceptron [24]. This perceptron, whose input is the
GNG output, uses a backpropagation-like learning algorithm.
The GNG is used for clustering the input data, whereas the
perceptron, for labeling them. In [24], features were ranked
with Fast Correlation-Based Filter (FCBF) [38], which is
able to select the most relevant features while discarding
those that provide similar outcomes. Just 6 items from 3
neuropsychological tests were the selected features. From the
ADNI database 345 MCI and 150 AD patients were extracted.
MyGNG yielded 0.96 AUC, 0.85 accuracy, 0.82 specificity and
0.91 sensitivity.

A SupeRGNG is another novel ontogenetic neural architec-
ture derived from the aforementioned GNG [37] but appending

the new “tuning of the inter-class boundaries” procedure [39].
In it, the topology produced by the GNG is modified in a
supervised manner, by means of the cluster disconnection
and reconnection steps. Using the same dataset as in [24],
the SupeRGNG outperformed the MyGNG presented there
according to all the performance metrics used: 0.97 AUC, 0.98
accuracy, 0.98 specificity and 0.98 sensitivity. Additionally,
in [39] the SupeRGNG was further compared with several
DL-based solutions that also dealt with the MCI-AD clas-
sification problem and that also were trained with datasets
built with ADNI subjects (albeit with neuroimaging data).
The SupeRGNG outperformed some of those solutions too,
providing good and stable performance results.

IV. CONCLUSIONS

In this work, current and good performing ANN-based
proposals for the early diagnosis of AD have been collated
and analyzed, and the trends in this field have been shown and
discussed. Differences between the trends with neuroimaging-
based articles and non-neuroimaging-based ones were found,
hence they were analyzed separately.

Based on these trends, it was concluded that new proposals
based on ontogenetic neural architectures as the ones presented
may set a trend for future researches due to their good
capabilities in complex classification tasks and requiring input
data derived from cost-effective and low invasive diagnostic
criteria.

Neural computation-based CAD systems for AD diagnosis
have yielded superb performance results, both with neuroimag-
ing and non-neuroimaging data. The high costs of neuroimag-
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ing techniques have not deterred their usage. Similarly hap-
pened with DNNs, which need expensive hardware and long
training times. Strategies to mitigate both impacts, such as data
augmentation techniques and transfer learning, respectively,
were popular and are highly recommended. Although DL-
approaches that used neuroimaging are almost always at
the top of the list in terms of performance metrics, several
solutions have outperformed them, such as those based on
multimodality and ontogenic architectures.

Many proposals for both the diagnosis and prediction of AD
will arise, especially while it remains incurable. Novel modal-
ities and techniques will be published in the next decades
for diagnosis and prediction of AD. Works that make use of
multimodality or are based on ensembles of ANNs, even deep
ones, might become the best candidates and, probably, will be
developed shortly.
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