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Abstract—Most of the existing algorithms for the objective audio 

quality assessment are intrusive, as they require access both to 

an unimpaired reference recording and an evaluated signal. 

This feature excludes them from many practical applications. 

In this paper, we introduce a non-intrusive audio quality 

assessment method. The proposed method is intended to account 

for audio artefacts arising from the lossy compression of music 

signals. During its development, 250 high-quality uncompressed 

music recordings were collated. They were subsequently processed 

using the selection of five popular audio codecs, resulting in 

the repository of 13,000 audio excerpts representing various levels 

of audio quality. The proposed non-intrusive method was trained 

with the data obtained employing a well-established intrusive 

model (ViSQOL v3). Next, the performance of the trained model 

was evaluated utilizing the quality scores obtained in the subjective 

listening tests undertaken remotely over the Internet. The listening 

tests were carried out in compliance with the MUSHRA 

recommendation (ITU-R BS.1534-3). In this study, the following 

three convolutional neural networks were compared: (1) a model 

employing 1D convolutional filters, (2) an Inception-based model, 

and (3) a VGG-based model. The last-mentioned model 

outperformed the model employing 1D convolutional filters in 

terms of predicting the scores from the listening tests, reaching 

a correlation value of 0.893. The performance of the Inception-

based model was similar to that of the VGG-based model. 

Moreover, the VGG-based model outperformed the method 

employing a stacked gated-recurrent-unit-based deep learning 

framework, recently introduced by Mumtaz et al. (2022).  

 

Keywords—objective audio quality assessment; non-intrusive 

audio quality evaluation, convolutional neural networks 

I. INTRODUCTION 

UBJECTIVE scores obtained in audio quality listening tests 

are regarded as reference data. Therefore, they are 

commonly utilized during the development and optimization of 

products and services. However, obtaining such data is time-

consuming, expensive, and complicated, often requiring 

researchers to follow rigorous experimental protocols [1],[2]. 

Hence, some scientists and engineers prefer using objective 

methods of audio quality assessment as they are less expensive, 

faster, and relatively easy to apply. However, most of 

the developed objective quality assessment methods so far are 

intrusive since the two signals are required at their inputs: 

(1) an unimpaired reference audio signal, and (2) a signal under 
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test. The above requirement precludes such methods from many 

real-life applications. The intrusive quality assessment methods 

are also referred to as ‘double-ended’ techniques [3]. 

In this paper, we introduce a non-intrusive (single-ended) 

audio quality assessment method employing convolutional 

neural networks. No reference signal is required by the proposed 

technique. During the development of the method, three 

convolutional neural networks were adapted for our purposes 

and their performance compared, namely: (1) a model 

employing one-dimensional (1D) convolutional filters [4], 

(2) an Inception-based model [5], and (3) a VGG-based 

model [6]. The proposed method is intended to account for 

audio artefacts arising from the lossy compression of music 

signals. This type of artefacts can be regarded as one of the most 

common types of distortions encountered in modern audio 

delivery systems such as Internet-based music streaming 

services. In this study, a repository of 13,000 music audio 

excerpts was employed. The proposed method was trained with 

the data obtained using a well-established intrusive model 

(VISQOL v3) [7]. Finally, its performance was evaluated by 

means of the quality scores acquired in the subjective listening 

tests undertaken remotely over the Internet. The proposed 

method, after further optimization, could be applied for real-

time audio quality monitoring of music recordings streamed 

over the Internet. 

We make the following contributions: (1) We introduce 

a non-intrusive method for the audio quality assessment of 

lossy-compressed music recordings, employing convolutional 

neural networks. (2) We demonstrate that our method 

satisfactorily matches the scores obtained from the subjective 

listening tests, outperforming the state-of-the-art technique 

recently introduced in the literature. 

The next section overviews the related work in the area of 

the objective audio quality assessment. The methodology 

applied in this work is described in Sec. III. The obtained results 

are discussed in Sec. IV. The conclusions are provided in 

the last section of the paper. 

II. RELATED WORK 

Objective modelling of audio quality perception can be traced 

back to the early work of Karjalainen [8] who in 1985 
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demonstrated that it is possible to computationally predict audio 

quality scores obtained by human listeners. In the years 

1998−2000, joint efforts of several research groups culminated 

in the development of a method for Perceptual Evaluation of 

Audio Quality (PEAQ) [9], which was subsequently 

standardized by ITU [10]. Since then, several competitive 

methods have been developed, most notably PEMO-Q [11], 

HAAQI [12], InSE-NET [13], and ViSQOL [3],[7]. They 

exhibited superior performance compared to the PEAQ 

technique under some conditions. Despite its outdated neural 

network, the PEAQ method is still used by some engineers [14]. 

It constitutes the only international standard for the objective 

assessment of audio quality [10].  

The performance of the objective audio quality methods is 

widely regarded as satisfactory [9]-[14]. However, since these 

methods are predominantly intrusive, requiring access to 

a reference signal, the scope of their real-world applications is 

significantly reduced. Therefore, several non-intrusive 

techniques have been developed. The state-of-the-art non-

intrusive methods comprise such techniques as MOSA-

Net [15], DNSMOS [16], WAWEnets [17], Quality-Net [18], 

NISQA [19], and NIC-STOI [20]. Nevertheless, all the above-

mentioned non-intrusive methods have been developed for 

the quality assessment of ‘speech’ signals. Hence, they are not 

suitable for the evaluation of audio recordings, as demonstrated 

in [21].  

 To the best of the authors’ knowledge, the literature provides 

only one study with the non-intrusive method intended for 

the quality assessment of audio recordings, including music. 

Namely, it is the technique proposed in 2022 by Mumtaz et 

al. [21]. It was developed for the audio quality assessment of 

multimedia content generated by the users of popular video-

sharing services. The scope of their method was limited to 

the quality assessment of the two types of distortions, namely, 

low-bitrate coding distortions and background noise. It was 

designed by combining a traditional feature extraction 

procedure with a deep learning approach based on a stacked 

gated-recurrent-unit framework. The correlation coefficient 

between the quality scores obtained using their method and 

those acquired in the listening tests was equal to 0.834. 

 While Organiściak and Borkowski [22] also published 

a paper on ‘single-ended quality measurement of a music 

content’, a closer examination of their report revealed that, 

contrary to the paper’s title, its authors developed a method for 

the ‘classification’ of audio distortion types rather than for 

the quality assessment.  

III. METHOD 

This section provides the experimental details regarding 

the development and evaluation of the proposed method. For 

clarity, Fig. 1a shows a block diagram demonstrating how 

the intrusive method employing the ViSQOL technique [7] can 

be employed to assess the quality of low-bitrate compressed 

audio signals. This approach was used in this work to generate 

the training data, which will be described in more detail below. 

Note, that the ViSQOL algorithm takes two signals at its input: 

an original reference recording and a signal to be assessed. 

The latter one is subject to a low-bitrate lossy compression 

algorithm. The ViSQOL technique yields an estimated audio 

quality value at its output. 

A non-intrusive method introduced in this study is illustrated 

in Fig. 1b. In the proposed approach, low-bitrate audio signals 

are initially converted to spectrograms and then directed to 

the convolutional neural network. The network estimates 

the audio quality scores. In contrast to the intrusive approach, 

the proposed algorithm undertakes the quality assessment task 

“blindly,” solely based on low-bitrate compressed signals. 

 
Fig. 1. Audio quality assessment techniques: (a) intrusive method employing 

ViSQOL algorithm [7], (b) non-intrusive method proposed in this study 

 

A. Selecting Reference Music Recordings 

For the purpose of this study, 250 uncompressed reference 

music recordings were selected. They were acquired from 

private CD collections as well as from publicly available 

Internet-based repositories. The selected reference recordings 

represented a broad range of music genres, including rock, 

heavy metal, progressive rock, jazz, hip-hop, pop, country, 

reggae, disco, blues, classical music, and opera. The recordings 

were trimmed to a duration of 10 seconds each. They were 

stored in an uncompressed monophonic WAV format at 

a 48 kHz sample rate with a 16-bit resolution.  

B. Introducing Audio Quality Degradations 

The audio quality of the selected 250 reference recordings 

was degraded using two processes: lossy low-bitrate audio 

coding and low-pass filtering. To this end, the five following 

audio codecs were utilized: mp2 (MPEG-1 Audio Layer 2), mp3 

(MPEG-2 Audio Layer 3), ADTS, ogg (Ogg Vorbis), and Opus. 

The bitrate values considered for each codec along with 

associated process identification numbers (IDs) are presented in 

Table I. In addition to lossy low-bitrate audio coding, the audio 

quality of the reference recordings was also degraded by means 

of a low-pass filter, with the cut-off frequencies and associated 

process IDs outlined in Table II. To this end, a 4th-order infinite 

impulse response (IIR) filter was used. Note, that in total there 

were 45 processes, out of which 41 accounted for the audio 

coding conditions, whereas the remaining 4 processes 

represented the low-pass filtering conditions.  
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 The audio quality of the processed recordings was objectively 

assessed using the state-of-the-art intrusive algorithm, namely 

ViSQOL v3 [7]. Initial examination of the objective quality 

scores obtained using the above 45 processes revealed that their 

distribution was highly skewed towards high-quality scores. 

In order to obtain a more uniform distribution of the quality 

scores, the following algorithm was applied: 

1. For all the 250 reference recordings, processes 1−45 

were applied, yielding 11,250 audio excerpts 

(250×45).  

2. The excerpts obtained using processes 6−8, 14−16, 

23−27, 32, and 39−41 were excluded from 

the repository, as they were deemed redundant in terms 

of the resultant quality levels.  

3. The above repository was supplemented by 

the excerpts obtained using ‘cascaded’ processing, 

whereby reference recordings were sequentially 

processed by two randomly selected processes from 

the list of all 45 processes described in Tables I and II. 

4. The previous step was repeated until 64,960 excerpts 

were generated in total.  

5. The obtained excerpts were trimmed to 10 seconds in 

duration and loudness equalized to -23 LUFS [23]. 

6. The quality of the excerpts was objectively assessed 

using the ViSQOL v3 method. 

7. The final repository of 13,000 excerpts was obtained 

by randomly drawing the excerpts in such a way that 

the quality distribution of the resultant repository was 

relatively uniform. 

The audio quality scores generated by the ViSQOL v3 

algorithm used in step 6 originally ranged from 1 (the worst) to 

5 (the best). In our study, they were scaled to 0−1 range. 

C. Calculating Spectrograms 

The final repository of 13,000 audio excerpts was converted 

to Mel-spectrograms. They were subsequently used as 

monochromatic ‘images’ at the inputs of the convolutional 

neural networks. During the calculation of the spectrograms, 

256 Mel-frequency bands were used. A moving window of FFT 

analysis was employed. Its length was equal to 2048 samples 

with an overlap of 256 samples. Recall, that the sample rate 

of the audio excerpts was equal to 48 kHz. An analysed signal 

was weighted using a Hann window. Finally, the spectrogram 

values were normalized to the range of 0−1. The spectrograms 

were stored as two-dimensional tensors of the size of 1876×256, 

where the first dimension represented time and the second one 

signified frequency.  

D. Convolutional Neural Networks 

Three types of convolutional neural networks (CNN) were 

adapted for our purposes. The first one involved 

1D convolutional filters [4]. It was employed in our work due to 

the promising results of the pilot study. Its topology is presented 

in Table III. It can be seen in the table that the network takes 

spectrograms of size 1876×256 at its input. It consists of three 

1D convolutional layers, with an increasing number of filters in 

each consecutive layer (64, 128, 256) and a decreasing length of 

the filters in each successive layer (11, 7, 3). Max pooling and 

dropout layers were used after each convolutional layer, with 

the max pooling stride and dropout rate being equal to 2 and 

0.01, respectively. After converting two-dimensional tensors to 

one-dimensional ones in the flattening layer, the data were 

processed using three fully connected layers (dense layers), 

intertwined with one dropout layer. Rectified Linear Unit 

(ReLU) activation function was used in all the convolutional 

layers, whereas a linear activation function was utilized in 

the dense layers (the dense layers performed a linear 

regression).  

The second network used in this study was based on 

the Inception v3 model [5], whereas the third one employed 

the VGG19 model [6]. The adapted topology of the Inception-

based model is presented in Table IV. The architecture of 

TABLE I  

DEGRADATION PROCESSES USING LOSSY LOW-BITRATE CODECS 

Codec Process ID Bitrate (kb/s) 

mp2 1–8 32, 48, 64, 96, 128, 192, 256, 320 

mp3 9–6 32, 48, 64, 96, 128, 192, 256, 320 
adts 17–27 24, 32, 48, 64, 96, 128, 192, 256, 320, 512, 700 

ogg 28–32 48, 64, 96, 128, 192 

opus 33–41 24, 32, 48, 64, 96, 128, 160, 192, 256 

 

TABLE II  

DEGRADATION PROCESSES EMPLOYING A LOW-PASS FILTER 

Process ID Cut-off Frequency (Hz) 

42 3500 

43 5000 
44 7500 

45 9000 

 

TABLE III 

TOPOLOGY OF THE NEURAL NETWORK EMPLOYING 1D CONVOLUTIONAL 

FILTERS 

Layer Acronym Description 
Output Tensor 

Shape 

Input Input layer with shape: 1876×256 1876×256 

Conv1D 1D convolutional layer 

(number of filters: 64, length: 11) 

1866×64  

MaxPooling1D Max pooling layer (stride: 2) 933×64 

Dropout Dropout layer (rate: 0.01) 933×64 

Conv1D 1D convolutional layer 
(number of filters: 128, length: 7) 

927×128 

MaxPooling1D Max pooling layer (stride: 2) 463×128 

Dropout Dropout layer (rate: 0.01) 463×128 
Conv1D 1D convolutional layer 

(number of filters: 256, length: 3) 

461×256 

MaxPooling1D Max pooling layer (stride: 2) 230×256 
Flatten Flattening layer 58880 

Dense Dense layer 256 

Dropout Dropout layer (rate: 0.01) 256 
Dense Dense layer 128 

Dense Dense layer 1  

 

TABLE IV 

INCEPTION-BASED NETWORK ARCHITECTURE 

Layer Acronym Description 
Output Tensor 

Shape 

Input Input layer with shape: 1876×256 1876×256 

Reshape Reshape layer 1876×256×1  

Conv2D 2D convolutional layer 
(number of filters: 3, size: 11×11) 

1866×246×3 

Resizing Resizing layer 224×224×3 

Inception Inception v3 model 1000 
Dense Dense layer 256 

Dense Dense layer 128 

Dense Dense layer 1  

 
TABLE V 

VGG19-BASED NETWORK ARCHITECTURE 

Layer Acronym Description 
Output Tensor 

Shape 

Input Input layer with shape: 1876×256 1876×256 

Reshape Reshape layer 1876×256×1  

Conv2D 2D convolutional layer 
(number of filters: 3, size: 11×11) 

1866×246×3 

Resizing Resizing layer 224×224×3 

VGG VGG19 model 1000 

Dense Dense layer 256 

Dense Dense layer 128 

Dense Dense layer 1  
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the VGG19 model was almost identical. The only difference 

was the fifth layer, where instead of the Inception model, 

the VGG19 algorithm was exploited. Similar to the first model, 

both the Inception-based and VGG-based models accepted 

spectrograms of size 1876×256 at their inputs. Their topology 

was mutually identical in terms of the four input layers (Input, 

Reshape, Conv2D, and Resizing) as well as the three dense 

layers. The core difference regarded the fifth layer. It contained 

either an Inception or a VGG19 model. The presented 

topologies were designed heuristically during the pilot tests. 

Similar to the first network, they both employed the ReLU 

activation function in the convolutional layers, whereas a linear 

activation function was utilized in the dense layers. 

The VGG19 and Inception models were used with 

the weights pre-trained on the ImageNet database [24]. These 

weights were kept intact during the experiments. The weights of 

the remaining layers in the proposed topologies of the network 

were subject to optimization.  

The initial inspection of the audio quality scores produced at 

the output of the above three networks revealed that their values 

occasionally exceeded unity, representing a notional top quality. 

Therefore, all the output scores extending beyond the top-

quality score were truncated to 1.0. The networks were 

implemented in Python using the TensorFlow library. 

E. Training and Validation 

As mentioned above, in total, 13,000 music excerpts were 

converted to spectrograms, out of which approximately 

75% were used for the training purposes, whereas the remaining 

25% served for the validation procedures. The training and 

validation sets were unique in terms of music recordings. 

Out of 250 reference music recordings exploited in this study, 

190 were employed in the training set, whereas 60 reference 

recordings were utilized in the validation set.  

All three networks shared the same optimization approach. 

However, they differed in terms of the batch size (see below). 

They were all optimized using the Adam optimization 

algorithm [25]. Mean square error was employed as a loss 

function, whereas root mean squared error was utilized as 

a regression metric. For all three networks, the initial learning 

rate value was set to 0.001. Subsequently, its value was reduced 

by a factor of 2 when a validation loss was not improving for 

ten consecutive epochs. For the 1D convolution-based model, 

the batch size was set to 64. For the Inception-based model and 

for the VGG19-based model, the batch size was adjusted to 

64 and 32, respectively. The above-mentioned optimization 

values were identified heuristically during the pilot tests. 

The maximum number of training epochs was limited to 300. 

However, the networks were trained until an overfitting effect 

was observed based on the validation loss curve. To this end, 

an early stopping procedure was employed. The training process 

was terminated when no improvement in the validation loss was 

observed for 50 consecutive epochs. After the termination 

of the training procedure, the model parameters were reversed 

to those exhibiting the minimum validation loss.  

The music excerpts exploited in this study are not publicly 

available due to copyright restrictions. However, the trained 

network models along with the source code developed in this 

work have been made publicly available at GitHub [26]. 

F. Testing with Objective Data 

To test the trained models using objective data, eleven new 

high-quality reference music recordings were acquired. They 

represented various music genres. The selected music 

recordings were not exploited earlier during the training and 

validation of the models. 

The selected new recordings were degraded in audio quality 

in the same way as described above in Sec. III B. As a result, 

750 test excerpts were generated. These new excerpts were 

evaluated in audio quality using the three networks 

implemented in our study. The above procedure represented 

a non-intrusive approach. Moreover, the new test excerpts were 

also assessed by means of the intrusive ViSQOL v3 [7] 

technique. Subsequently, the quality scores obtained with non-

intrusive and intrusive approaches were compared. 

G. Testing with Subjective Data 

The developed models were also tested using the subjective 

data, obtained from the two listening tests undertaken 

in conformance with the MUSHRA recommendation (ITU-R 

BS.1534-3 [2]). Both experiments were carried out remotely, 

over the Internet, using the WebMUSHRA software [27]. 

The reason for undertaking two listening tests instead of one 

was the insufficiency of data obtained from the first listening 

test, preventing these authors from reaching reliable 

conclusions. Since the methodology applied in both listening 

tests was almost identical, the first test will be described in 

detail, whereas only the methodological differences will be 

discussed with regard to the second test. 

1) Audio Stimuli 

Eight new reference music recordings were selected for 

the first listening test. They were acquired from the publicly 

available repository [28]. The first recording served for 

the listeners’ training purposes, whereas the remaining seven 

recordings were used in the listening tests.   

Each recording was degraded in the audio quality using three 

selected processes employing the low-bitrate audio coding. 

Moreover, every recording was also low-pass filtered to produce 

the so-called anchor recordings in conformance with 

the MUSHRA recommendation [2]. To this end, an IIR 

(Chebyshev Type I) filter of the 10th order was employed. 

According to the standard, the cut-off frequency of the filter was 

set to 3.5kHz and 7kHz, respectively, to produce two distinct 

quality levels of the low-pass filtered anchors. As a result, 

40 excerpts (8×5) were generated. They represented different 

levels of quality. Out of 40 degraded excerpts, five were used 

during the initial training session, whereas the remaining 

35 recordings were employed in the listening test. The duration 

of the excerpts under assessment ranged from 5 to 9 sec. 

(The exact trimming points of the excerpts were adjusted 

in a musically aesthetic way, as assessed by the first author). 

The excerpts were looped during the listening test. It must be 

emphasized that these excerpts were not employed formerly 

in the training or validation of the models.  

2) Listening Test Procedure 

As mentioned above, the listening tests were undertaken 

remotely over the Internet. During the tests, the participants 

were asked to assess the basic audio quality of the audio 

excerpts in comparison to the reference recordings. Prior 

to undertaking the above task, the listeners were initially 

provided with a set of instructions, explaining the assessment 



NON-INTRUSIVE METHOD FOR AUDIO QUALITY ASSESSMENT 335 

 

methodology. They were requested to perform the test using 

headphones. Moreover, they were asked to adjust the playback 

volume to a comfortable level. Furthermore, they were 

instructed that at least one of the evaluated items must 

be assigned the maximum score, as reference recording was 

included in the set of evaluated excerpts.  Before the test, 

the listeners completed a training session, similar to 

the assessment task performed during the actual test. This 

procedure allowed them to get acquainted with the interface and 

familiarize themselves with the 100-point audio quality scale 

recommended by the MUSHRA standard [2].  

The stimuli were presented to each listener in random order. 

To assess the listeners’ repeatability, five excerpts were 

presented twice. The listening test was typically completed by 

each participant within approximately 30 minutes. After 

finishing the test, the participants were requested to confirm 

whether they had used headphones.  

3) Participants and Data Screening 

In total, 24 participants took part in the first listening test. 

They were recruited from the population of students at Białystok 

University of Technology. The data from the three participants 

were rejected as they had not used the headphones (based on 

the self-reports acquired after the test). Recall, that employing 

headphones constituted one of the requirements provided 

to the listeners in the instructions. Moreover, the data from four 

listeners were removed due to the abnormalities observed in 

their assessment scores. These listeners assigned the top score 

to all the excerpts, evaluated the 3.5kHz anchor using the top 

score, or assessed hidden reference recordings with mid-scale 

quality values. Furthermore, the data from two other listeners 

were rejected based on their poor repeatability. For these two 

listeners, the discrepancy between the scores obtained for 

the replicated stimuli exceeded 50% of the grading scale. 

The data from the remaining 15 listeners were retained. In line 

with the typical practice [1],[2], for each evaluated audio 

excerpt, the retained data were summarized by calculating mean 

opinion scores (MOS).  

4) Methodological Differences in the Second Listening Test 

Regarding the second listening test, the methodological 

differences were as follows. Seven new reference music 

recordings were gathered. They were degraded in quality using 

the same procedure as before. They were acquired from 

a different repository [29]. In total, 24 participants were 

recruited for the second listening test, out of which the data from 

six participants were rejected due to the abnormalities in their 

assessment scores. These six listeners assessed hidden reference 

recordings with mid-scale quality values, rated the 3.5kHz 

anchor as much better than the 7kHz anchor, or evaluated 

the 3.5kHz anchor as better than the hidden reference recording. 

Moreover, the data from one participant were removed because 

of their poor repeatability (assessing the replicated excerpts with 

the discrepancy exceeding 40% of the grading scale). The data 

from the remaining 17 participants were kept. Subsequently, 

the retained data were aggregated by calculating MOS values 

for each evaluated audio excerpt. Finally, the MOS values from 

both listening tests were merged and used to test the accuracy 

of the developed models.  

IV. RESULTS 

This section provides the results of the evaluation 

of the developed models using objective and subjective data. 

For consistency with the subjective data obtained employing 

a 100-point scale recommended by the MUSHRA standard [2], 

the scores calculated by the models were scaled to a 0−100 

range. 

Many metrics could be used to assess the goodness of fit of 

the proposed method, including mean absolute error, mean 

square error, root mean square error, Pearson’s correlation 

coefficient, Spearman’s rank-order correlation, Kendall’s rank-

order correlation, or the coefficient of determination. In this 

study, the two following metrics were employed, namely: root 

mean square error (RMSE) and Pearson’s correlation 

coefficient. They were selected because they are commonly 

applied by researchers in the area of objective speech and audio 

quality modelling [12],[17],[19],[21]. RMSE is regarded as an 

adequate descriptor of the model’s accuracy [16],[19] whereas 

Pearson’s correlation coefficient is considered to be a suitable 

measure of the strength of a linear association between the target 

and predicted quality scores [3],[9].  

A. Test Results Using Objective Data 

Figure 2a shows the audio quality scores achieved using 

the    proposed non-intrusive method employing 

1D convolutional filters (vertical axis). They are plotted against 

the data calculated with the ViSQOL v3 intrusive algorithm 

(horizontal axis). It can be seen that the results obtained using 

the proposed method match the scores obtained 

with the ViSQOL technique relatively well, given that the non-

intrusive algorithm worked without access to the reference 

recordings. In this example, Pearson’s correlation coefficient 

between the compared scores was equal to 0.823, whereas root 

mean square error (RMSE) amounted to 15.65 points relative 

to   a 100-point scale. Moreover, a   saturation effect could 

be observed, as some data for reference recording No. 8 (grey 

circles) were limited to the top of the scale. Recall, that during 

the development of the networks, their output values were 

deliberately ‘clipped’ to the maximum permissible value 

of the grading scale (Sec. III D).  

The results of the quality scores predicted using 

the Inception-based model, plotted against the scores from 

the ViSQOL v3 algorithm, are presented in Fig. 2b. Overall, 

the degree of match between the scores is better than in 

the previous case, with no saturation effect observed. For this 

example, the correlation coefficient was equal to 0.902, whereas 

the RMSE value amounted to 10.42 points, indicating 

a considerable improvement compared to the previous model.  

The results obtained using the VGG-based model, illustrated 

in Fig. 2c, were similar to those achieved with the Inception-

based model discussed above. However, occasional ‘clipping’ 

of the scores occurred at the top end of the grading scale. 

For this example, the correlation coefficient between the scores 

was equal to 0.921, whereas the RMSE value amounted to 9.53 

points. 
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The test results of the developed models using the objective 

data are summarized in Table V. The presented data were 

acquired by repeating the experiments 15 times. The table 

reports the mean values and standard deviations 

of the correlation coefficients as well as the RMSE values, 

calculated across all the experimental repetitions. The VGG-19 

model exhibited the best performance, with the correlation 

coefficient equal to 0.875 (SD 0.038). While the correlation 

coefficient obtained for the Inception-based model was slightly 

lower, amounting to 0.847 (SD 0.076), the difference was not 

statistically significant according to the t-test (p > 0.05). This 

outcome implies that the performance of the VGG19-based and 

Inception-based models was the same in a statistical sense. 

The performance of the model employing 1D convolution was 

the worst, yielding the correlation coefficient of 0.701 

(SD 0.075). The difference between the best-performing model 

(VGG19) and the worst-performing technique (1D 

convolution), in terms of the correlation coefficients, was 

statistically significant at p = 9.7×10-9 level.  

Considering the RMSE values, the observations that can 

be made regarding the performance of the models are the same 

as above. Namely, the VGG19 model exhibited the best 

performance, while the technique employing 1D convolutional 

filters showed the worst operation. For these models, RMSE 

values were equal to 11.75 (SD 1.66) and 18.80 (SD 2.29), 

respectively. This difference was statistically significant at p = 

2.2×10-10 level. However, the difference between the RMSE 

values obtained using the Inception-based and VGG19-based 

models was statistically not significant. This result indicates that 

the performance level of these two models was similar. 

The difference between the RMSE values reached by 

the  Inception-based model and that employing 

1D convolutional filters was statistically significant at 

p = 2.6×10-6 level. 

B. Test Results Using Subjective Data 

Figure 3 illustrates the example test results of the three 

developed models using the subjective data. The performance 

of the model employing 1D convolutional filters is presented at 

the top pane of that figure (Fig. 3a). It can be seen that it exhibits 

a mediocre level of performance. Moreover, it tends to 

systematically underestimate the scores (bias effect) compared 

to the reference data obtained from the listening tests. In this 

example, the correlation coefficient between the objective and 

subjective scores equals 0.902, whereas the RMSE value 

amounts to as much as 20.79 points relative to a 100-point scale. 

A slightly better performance is shown by the Inception and 

VGG-based models, with their data presented in Figs. 3b and 

3c, respectively. Observe a better match between the subjective 

data and the scores predicted by the two models, with most of 

the data points scattered in the vicinity of a diagonal line. 

Nevertheless, a small level of an underestimation bias is also 

present in the data, indicating the need for further improvements 

of the proposed techniques. In contrast to the test results with 

the objective data discussed in the previous section, none of 

the models exhibited a saturation effect when evaluated with 

the subjective scores. 

The results obtained in the tests employing the subjective data 

are summarised in Table VI. It presents the correlation 

coefficients as well as the RMSE values. Like the previously 

discussed table above, it provides the mean values and standard 

deviations calculated with the results obtained in 15 

experimental repetitions.  

Parallel to the results described in the previous section, 

the VGG-based model proved to be the best-performing 

network, reaching the mean correlation coefficient of 0.893 

(SD 0.036), whereas the model employing 1D convolutional 

filters exhibited the worst performance, with the average 

correlation coefficient of 0.814 (SD 0.056). The difference 

between these correlation coefficients was statistically 

significant at p = 9.3×10-5 level. In terms of its performance, the 

Inception-based model ranked in the middle position, between 

the above two models, attaining the correlation coefficient of 

0.857 (SD 0.098). The differences between the correlation 

coefficients obtained for the Inception-based model and those 

achieved by the remaining two models were statistically not 

significant.  

Similar observations can be made by inspecting the RMSE 

values in Table VI. The presented results confirm the superiority 

of the VGG-based model compared to the model based on 

the 1D convolutional filters. The mean RMSE value exhibited 

by the VGG-based model was equal to 16.96 (SD 1.83). This 

could be considered as an acceptable level of the prediction 

error, given its non-intrusive topology. In contrast, the RMSE 

value of the worst-performing algorithm was greater, amounting 

to 20.69 (SD 2.00). In terms of its prediction error, 

the Inception-based model was also ranked in the middle, 

between the above two models, yielding the RMSE value of 

18.60 (SD 4.26). The difference between the RMSE values 

obtained by the best and the worst-performing models was 

statistically significant at p = 1.1×10-5 level. However, 

the differences between the mean RMSE values achieved by 

the Inception-based model and the remaining two models were 

statistically not significant. 

C. Discussion 

The non-intrusive method proposed in this study was trained 

with the data obtained using the intrusive algorithm 

(ViSQOL v3), inheriting not only its ‘knowledge’ but also its 

potential biases. The risk of perpetuating bias effects in 

objective models is discussed in [30]. Ideally, the proposed 

algorithm should have been trained using the subjective data 

obtained with the listening tests. However, due to the scarcity of 

such data available in the public domain and considering 

the high cost of performing large-scale listening tests required 

to train deep learning algorithms, the above approach could 

be justified. 

TABLE V 

COMPARISON OF THE NON-INTRUSIVE MODELS TESTED USING DATA 

OBTAINED WITH THE VISQOL ALGORITHM 

 
1D 

Convolution 

Inception 

v3 
VGG19 

Correlation Coefficient 0.701  
(0.075) 

0.847 
0.076) 

0.875 
(0.038) 

RMSE 18.80 

(2.29) 

12.97  

(3.09) 

11.75 

(1.66) 
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Fig. 2. Comparison of the audio quality scores obtained using the intrusive 

ViSQOL method with the scores calculated by the non-intrusive algorithms:  
(a) 1D convolution model (b) Inception v3 model (c) VGG19 model  
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Fig. 3. Comparison of the audio quality scores obtained using the listening 
tests with the scores calculated by the non-intrusive algorithms:  

(a) 1D convolution model (b) Inception v3 model (c) VGG19 model 
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The results of the evaluation of the proposed method using 

the objective data, presented in Sec. IV A, demonstrate that our 

models successfully learned the knowledge from the ViSQOL 

algorithm. However, these outcomes are of little value with 

regard to assessing the generalization property of the developed 

models. In turn, the results of the evaluation with the subjective 

data, provided in Sec. IV B, prove that our technique is 

generalizable.  

Out of the three models compared in this study, the VGG-

based model turned out to be the best-performing neural 

network in terms of predicting the subjective data. It reached 

the correlation between the subjective and objective scores 

equal to 0.893 (SD 0.036). Hence, it outperformed the non-

intrusive audio quality assessment method proposed by Mumtaz 

et al. [21], who reported the correlation coefficient between 

the subjective and objective data as being equal to 0.834. 

The difference between the above-quoted correlation 

coefficients is statistically significant at p = 2.09×10-5 level 

(according to the one-sample t-test). However, the conclusion 

regarding the superiority of the method proposed in this paper 

must be treated with some caution due to the difficulty in 

the direct comparison of the methods between the studies. 

The music recordings employed in our work were solely 

affected by low-bitrate codecs, whereas those utilized in 

the work of Mumtaz et al. were also degraded by background 

noise [21]. 

 

CONCLUSIONS 

Most of the objective audio quality methods developed so far 

are intrusive, limiting the scope of their real-life applications. 

In this study, we introduce a non-intrusive audio quality 

assessment method based on convolutional neural networks. 

In contrast to the traditional intrusive techniques, it does not 

require a reference recording.  

The following three convolutional neural networks were 

compared as candidate techniques for the non-intrusive audio 

quality assessment: (1) a model employing 1D convolutional 

filters, (2) an Inception-based model, and (3) a VGG19-based 

model. The last-mentioned model performed the best in terms 

of predicting the scores from the listening tests, yielding 

a  correlation value of  0.893. While the model employing 

1D convolutional filters exhibited significantly worse results, 

the performance of the Inception-based model was almost 

the same as that of the VGG-19-based model. Moreover, 

the VGG19-based model outperformed the method employing 

a stacked gated-recurrent-unit-based deep learning framework, 

recently introduced by Mumtaz et al. [21].  

The applicability scope of the proposed non-intrusive method 

is limited to the assessment of the audio quality of music 

recordings affected by artefacts produced by lossy audio low-

bitrate codecs. Extending the capability of the method to other 

types of distortions will be considered in future work. 
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