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Emerging Challenges in Technology-based Support
for Surgical Training

Minsik Hong, and Jerzy W. Rozenblit

Abstract—This paper stipulates several technological research
and development thrusts that can assist in modern day ap-
proaches to simulated training of minimally invasive laparoscopic
and robot surgery. Basic tenets of such training are explained,
and specific areas of research are enumerated. Specifically,
augmented and mixed reality are proposed as a means of
improving perceptual and clinical decision-making skills, haptics
are proposed as mechanism not only to provide force feedback
and guidance, but also as a means of reflecting a tactile feel of
surgery in simulated training scenarios. Learning optimization
is discussed to fine tune the difficulty levels of various exercises.
All the above elements can serve as the foundation for building
computer-based virtual coaching environments that can reduce
the training costs and provide a broader access to learning highly
complex, technology driven surgical techniques.

Keywords—Surgical training, minimally invasive surgery, vir-
tual coaching, force guidance, haptics, mixed reality, learning
optimization

I. INTRODUCTION

M INIMALLY invasive surgery (MIS) was introduced in
the late 1980s and has been widely performed for

various surgical procedures such as kidney removal, chole-
cystectomy, otolaryngology, and splenectomy in the last three
decades [1]. Such procedures significantly reduce recovery
time and postoperative pain with lower perioperative compli-
cations and less blood loss. However, the MIS technique is
more challenging than conventional open surgery and has a
steeper learning curve. This effect is due to limitations such
as restricted vision with 2D images through an endoscopy and
special tools that offer a limited range of motion with the
fulcrum effect [2]. Furthermore, trainees are inundated with
recognition of intraoperative anatomy, avoidance of potential
complications, and listening to staff instruction, which can
result in sensory overload during the learning process.

A significant advancement in the evolution of MIS was the
development of a clinical, FDA-approved robotic platform in
the late 1990s using a master-slave type of robotic system
[3]. Subsequent new generations of surgical robots overcome
several limitations of conventional MIS. For example, 3D
vision is facilitated through stereo endoscopy to minimize the
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limitation of depth perception issues caused by 2D visualiza-
tion in conventional MIS. Also, the articulated movements of
robotic arms with 7 degrees of freedom have expanded the
reconstructive ability to match that of the human hand. Fur-
thermore, the robotic systems eliminate hand tremors, thereby
facilitating fine-grained, precise instrument movements [4].

Although robotic surgery platforms resolve and mitigate
the limitations of conventional MIS, the predominant robotic
systems (e.g., da Vinci, Intuitive Surgical, Inc.) do not provide
any haptic and tactile feedback. Therefore, surgeons are purely
dependent on visual cues while performing an operation. In
the current system, they must rely on visual cues of tissue
deformation to assess the force on the tissues.

There are various surgical training simulators for conven-
tional MIS, where physical reality and virtual reality setups
have been widely utilized to develop such systems. The
most common physical reality simulator (PRS) is a box
trainer designed to practice the fundamentals of laparoscopic
surgery (FLS) [5]. Such a trainer consists of two surgical
instruments with a camera, a trainer box, and consumables
such as a peg board, suture blocks, and gauze pads for
FLS tasks. It is a cost-effective solution but there are no
guidance features. To provide a certain level of guidance (e.g.,
objective performance evaluation), computer-enhanced PRSs
(e.g., CELTS [6], LTS3E [7]) have been proposed with as-
sessment metrics [8] such as completion time and path length.
Virtual reality simulators (VRSs) [9], [10] generally utilize
computer graphics to provide simulated training environments
with a specialized instrument interface. Unlike PRSs, VRSs
can allow trainees to practice simulated surgical procedures
such as cholecystectomy with objective assessments so that
they can learn such procedures. However, VRSs do not provide
natural haptic feedback (e.g., tactile feedback by tool-tissue
interactions) while PRSs deliver such feedback. To overcome
this issue, several VRSs have been utilized haptic rendering
techniques for artificial haptic feedback so that trainees feel a
certain degree of feedback [11], [12].

As opposed to conventional MIS training, mature and well-
developed robotic surgery training procedures are still under
development (e.g., the Fundamentals Robotic Surgery (FRS)
program proposed in [13]). These robotic surgery training
procedures are designed for preclinical training which is gener-
ally recommended before surgical trainees enter the operating
room. For this training, various dry or wet lab tasks, and
virtual reality-based training tasks were proposed [14]. Also,
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several virtual reality simulators (e.g., dV-Trainer and dVSS
[15]) with assessment schemes [16] have been developed and
are commonly used for such training.

The remainder of this article is organized as follows: our
research objective is presented in Section 2. Then, we describe
our proposed virtual coaching framework and illustrate ongo-
ing research activities in Section 3 and Section 4, respectively.
In Section 5, discussion and conclusion are presented.

II. OBJECTIVES

In general, MIS procedures have a steep learning curve.
Therefore, the historical pathway of “see one, do one, teach
one” is not cost-effective, nor optimal from a quality and safety
standpoint in MIS training. To enhance skills acquisition pro-
cedures, we propose a design framework to utilize intelligent
virtual coaching techniques for both conventional and robotic
MIS training. The coaching framework is motivated by several
factors such as the need to train surgeons on low resource
settings in remote rural areas and the lack of extensive access
to expert surgeons who could devote sufficient time to didactic
activities.

III. METHODS

In real life, when someone learns new motor skills (e.g.,
playing tennis) with human instructors, an instructor generally
provides: 1) a demonstration before practicing an exercise task,
2) instant feedback (e.g., verbal instruction) while performing
a particular task, and 3) post-procedure feedback based on
the instructor’s assessment. This is a mentor-apprenticeship
process. In MIS training, training procedures [16] are as
follows: trainees are firstly asked to take e-learning or video
training courses to acquire theoretical knowledge. Then, they
generally use preclinical simulators (e.g., various PRSs or
VRSs) to learn fundamental motor skills such as instrument
manipulations, object transferring, suturing, and cutting. After
completing such preclinical training, they could participate in
performing surgery under expert surgeons’ supervision in the
operating room. During both preclinical and clinical training
sessions, trainees could also get feedback (e.g., debriefing)
from experts.

Existing training systems with simulated tasks are primar-
ily designed for preclinical training and motor skills (e.g.,
instrument manipulation) acquisition. However, motor skills
alone may not be sufficient to develop surgical expertise.
Also, expert surgeons’ supervision is generally required for
trainees to acquire such hands-on skills. Therefore, we propose
a virtual coaching scheme to provide the better training expe-
rience so that trainees enhance their skills effectively without
experts (i.e., robotic systems become an instructor). In [17],
the authors suggested several recommendations to develop the
next-generation simulators by utilizing force guidance with
haptics and proficiency-based learning. In this section, we
propose how to design such novel simulators by introducing
various technologies.

A. Perceptual-cognitive skills acquisition based on mixed re-
ality

In the operating room (OR), surgeons may frequently face
various unexpected, non-routine situations while performing
surgery. Thus, they must possess sophisticated perceptual-
cognitive skills to resolve a surgical issue by making quick
decisions and use their motor skills to execute the best course
of action to rectify problems. While a few studies have been
published regarding cognitive aspects of surgical expertise
[18], [19], to our knowledge, there are no reported simulators
for trainees to acquire perceptual-cognitive skills simultane-
ously with motor skills in minimally invasive surgery.

We propose here mixed reality (MR) [20] environments for
the perceptual-cognitive training by emulating some aspects
of the inherent sensory load in the OR environment, where
the OR is a dynamic setting with team communication, visual
and audio signals, and other sensory inputs. By utilizing MR
rendering with audio cue augmenting, we can create simulated
critical situations and facilitate the practice of perceptual-
cognitive skills. Through such simulated training setups with
the corresponding evaluation metrics, we can also assess
decision-making skills as well as the resulting motor execution
of the training scenarios.

To generate critical situations (e.g., simulated bleeding)
effectively given an MR rendering interface, algorithms for
real-time interactions between real and virtual objects [20]
are needed. For instance, a depth map generation algorithm
is utilized to handle occlusion interactions [21]. Object recog-
nition and tracking schemes [22] are also required for the
MR rendering. The following scenario illustrates how the MR
rendering works for perceptual-cognitive skills training: while
a trainee performs an instrument navigation task (e.g., move
an instrument to a goal position without hitting obstacles), a
bleeding effect can be activated and rendered when a trainee
makes collisions frequently. To enhance the degree of realism,
we should keep tracking the interactions among instruments
and a training environment (e.g., a 3D printed kidney model).

To support more complex tasks such as suturing with critical
situations, more advanced techniques (e.g., deep learning for
moving object detection [23]) with a variety set of data (e.g.,
videos and instrument movements) are required. The deep
learning (DL) technique [24] can be used to construct a
depth map given a physical reality setup for high fidelity MR
rendering. Such depth map generation schemes can also be
applied for both standard and robotic surgery training systems.

Audio augmenting is realized using recorded or synthesized
audio cues. The corresponding audio file plays for realistic
effects like a trainee is in the OR environment. Also, the audio
augmentation can be used for generating noise distraction so
that a virtual coaching system evaluates trainees’ perceptual-
cognitive skills under a stressful environment.

B. Adaptive force guidance based on reinforcement learning

Several force-based guidance systems have been proposed
in standard (e.g., VRS [25] and dual-user interface [26] for
training) and robotic (e.g., [27], [28] for tele-operation) MIS
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setups. In [29], an adaptive force guidance scheme was pro-
posed for laparoscopic surgery skills training given a physical
reality setup with augmented reality based visual guidance.
Such guidance was applied for the Computer Assisted Surgical
Trainer (CAST) for trainees to practice instrument navigation
effectively. As a hands-on interface, CAST and a human
trainee share surgical instruments. CAST can teach surgical
movements in a manner that mimics a human instructor
who would teach trainees by holding their hand, where the
force guidance was realized using virtual fixtures with the
corresponding motor control algorithms. However, such force-
based training systems [25], [26], [29] are mainly designed
for relatively simple tasks such as instrument navigation and
object transferring.

To teach a trainee given an advanced task (e.g., suturing)
and to provide personalized active guidance, more advanced
motion planning and control schemes are required. Virtual fix-
tures have been widely used to assist human for teleoperation,
handwriting, and other human-machine collaboration tasks
[30]. Depending on the purpose, such fixtures can regulate or
promote a specific motion. In surgical training, a guidance vir-
tual fixture (GVF) can be utilized to assist a trainee to navigate
a task-specific pathway. To construct a GVF with defining the
pathway, we can utilize existing motion planning algorithms
[31] or demonstration-based path generation [32]. In general,
surgical tasks do not always have fixed goals and trajectories.
Therefore, we propose utilizing a demonstration-based scheme
to construct GVF for suturing and other complicated tasks. For
instance, surgical motions from expert surgeons are collected
given a particular task and then their motions are characterized
to develop a probabilistic model. The generated model can be
utilized to find a common representation [33] and to define the
corresponding GVF geometry (e.g., a virtual tube to represent
surgical movements).

To develop an advanced control scheme given a GVF, we
can consider the utilization of the reinforcement learning (RL)
[34]. RL allows us to teach a controller through high volume
of “trial and error” interactions. For this learning procedure, a
simulated setup is generally required instead of using an actual
system. To construct such simulated setups, we can introduce
digital twin technology [35]. As a human-in-the-loop control
problem, we should consider interactions among the RL agent,
the environment, and the user for RL-implementations. Also, a
different control policy may be needed as the user behaves dif-
ferently. By utilizing this RL-base control scheme, we expect
that the robotic guidance system teaches novice trainees in
laparoscopic surgery skills training by providing personalized
instant force guidance.

C. Feel of surgery based on haptics
Tactile feedback in surgery is critical and one of the

biggest hurdles in VRSs and MR simulators for both standard
MIS training and robotic surgery. Specifically, current robotic
surgery platforms do not provide any tactile feedback. A
recent systematic review identified if tactile feedback improved
surgical performance [36]. Most studies reported that such
feedback improved performance (e.g., reducing task comple-
tion time). However, one study reported a negative result,

where participants felt that feedback force was too high and
therefore not realistic.

To deliver more realistic and satisfactory tactile feedback for
training simulators, novel haptic rendering [37] schemes are
required, where the haptic rendering generates reaction force
based on collision detection and collision response. Several
VRSs could provide some level of haptic feedback by using
commercial haptic devices (e.g., Touch, 3D systems inc., USA)
[38]–[40] or their custom devices [41]–[43]. As a simple
approach, we can utilize linear haptic feedback. However,
such linear feedback causes vibration and resonance when
encountering a structure but cannot replicate the force of the
structure. Therefore, the realistic feeling of transitions between
soft tissue and bone as well as tissue deformation cannot be
achieved [44].

We propose here a tissue-specific feedback scheme to de-
liver more realistic tactile interactions for simulators. Also, a
multimodal sensing approach is suggested for robotic surgery
platforms. For the tissue-specific tactile feedback, we can
use computed tomography (CT) scanning images to segment
structures of the human body part with tissue stiffness. The
segmented results can also be used for VR or MR rendering
with the corresponding deformation models [45]. Based on the
segmentation outcomes, we then assign a non-linear stiffness
coefficient for each segment (e.g., bone and soft tissue) so
that the haptic rendering algorithm generates reactive force
for tissue-specific tactile feedback. To model such coefficient,
we can consider using animal cadavers for data collection and
mechanical characterization [46].

Several tactile feedback mechanisms have been proposed for
robotic surgery systems in academic research settings, however
currently no clinical robotic platform has been able to achieve
such feedback. For the tactile sensing, three approaches have
been reported - sensors on the grasper [47], [48], sensor-less
force estimation [49]–[51], and sensors near the tool mounting
point [52], [53]. These approaches are mainly for force-based
tactile feedback. If we integrate more sensing modalities with
force sensing, it will enhance surgical outcomes as well as
training learning curve by providing extra tactile sensory
information such as softness and temperature. For instance,
we expect that addition of thermal conductivity will increase
navigation of the surgical tool especially when vision is
obstructed as it allows the operator to “feel” the difference
between tissue types through their distinct thermal conductiv-
ity signature [54]. To support such multimodal approaches, the
sensors should be small and sterilizable enough to install on
the gripper.

Finally, the most important consideration of the haptic
feedback mechanism is to guarantee system stability and
transparency. For instance, haptic rendering generally requires
an update rate of around 1 kHz for stable and realistic
force interactions [37]. Especially in robotic surgery platforms,
haptic displays should not impact controls of the robot (i.e.,
transparency). Therefore, a wearable haptic display may be
suitable solution for robotic surgery.
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D. Proficiency-based learning based on learning optimization
During a mentor-apprenticeship learning process, instructors

can adjust the difficulty of the training task based on the
progress of trainees to maximize the learning rate. Several
proficiency-based learning approaches were presented for min-
imally invasive surgery skills training [55], [56]. For instance,
a training curriculum was proposed to consider proficiency
using FLS tasks [57]. Allowable errors and recommended
completion time were suggested based on expert performance
to design this curriculum.

We propose the integration of a learning optimization [58]
technique into surgical training simulators so that trainees en-
hance training experiences in MIS. Such a learning optimiza-
tion can be applied for both motor and perceptual-cognitive
skills. We firstly suggest defining proper proficiency for both
skills. For instance, motor skills’ proficiency can be character-
ized objectively using completion time, idle time, path length,
and average time [8]. To assess perceptual-cognitive skills,
we can consider situational awareness and decision-making
aspects given a specific task with key situations. For such an
assessment, eye movements may be one of objective metrics
that reflect the perception of the operating field.

While facing critical situations with mental stress, a trainee
may 1) need more reaction time, 2) focus solely on the local
area (e.g., capture a trainee’s view by using eye-tracking),
3) make a wrong decision, and 4) finally execute improper
actions (e.g., errors such as collision and dropping). To design
objective and subjective evaluation metrics for perceptual-
cognitive skills, the NASA task load index (NASK-TLX) [59]
can be utilized.

Based on the defined proficiency with evaluation metrics,
we then design a learning optimizer so that the coaching
system can adaptively adjust task difficulty by generating
specific critical situations and providing comprehensive tasks.
As an intelligent tutoring system (ITS) [60], the proposed
coaching system aims to mimic the behavior of a human
tutor by monitoring trainees’ surgical actions, identifying when
feedback is required, and providing appropriate individualized
force feedback in real time. Therefore, the coaching systems
adjust the difficulty of training tasks (e.g., adaptive training – a
novice trainee is asked to practice a partial task at first instead
of completing the entire task) to maximize the learning rate.

Once trainees have mastered the motor skills needed to
accurately control the device, the coaching system adds com-
plexity and stress to the training tasks to better emulate the
situations doctors encounter in the OR as well as the decisions
they make. Both complexity and stress are increased gradually
in a manner that is matched to the trainee’s level of expertise.
Such additions will be adjusted from trial to trial according
to match the trainee’s skill level. For instance, when a trainee
makes a correct response, the next trial will tend to be harder
(higher complexity and/or stress). Conversely, when a trainee
makes a mistake, the next trial will tend to be easier (lower
stress and/or lower complexity).

IV. RESULTS

To realize the intelligent virtual coaching system, we may
need to include all the technical realizations – mixed-reality

rendering based critical events generations, adaptive force
based personalized guidance, haptics for feel of surgery, and
learning optimization with objective assessment methods. In
this section, we briefly introduce our ongoing technical real-
ization approaches to develop specific modules for a mixed
reality simulator (MRS) in laparoscopic surgery skills training
or a robotic surgery platform as preliminary research.

A. Mixed reality interface to generate critical events

In [24], a deep learning (DL) model was proposed to
construct a depth map given synthetic data with a single
camera setup. For the real-time implementation of the real and
virtual objects interactions in the MRS, we are developing a
light-weight deep learning scheme to estimate a depth map
given a physical reality environment. Our target computation
time is under 30ms to support 30 FPS real-time MR rendering.
For such a goal, we are investigating various DL models
inspired by [24] with the Unity game engine and its high
definition rendering interface (HDRP) which allows us to
configure a virtual world and then to collect training data
sets. Such a data collection procedure can also allow us to
overcome challenges in real world MIS environments (e.g.,
collecting ground-truth depth data from an endoscope). Fig. 1
illustrates an example of Unity HDRP virtual world and its
sample data.

Fig. 1. From top-left to bottom-right: (a) an Unity HDRP virtual world, (b)
a color image, (c) a segmentation image where red, blue, green represent
a background, instruments, and objects, respectively, and (d) a depth map,
where (c)-(d) are ground truth images for DL models.

We are also pursuing a DL model to track moving objects
to support advanced suturing tasks given a robotic surgery
platform. A da Vinci S robotic surgery system is used to
such development, where the system is decommissioned from
human use. Given stereo images captured from the da Vinci
system, an encoder-decoder based DL network [61] was ini-
tially utilized to track surgical instruments as shown in Fig. 2.
We are pursuing various techniques [23] to track instruments
as well as tiny surgical objects such as needles to achieve a
computationally effective solution.

B. Haptics to deliver tactile feedback

To simulate functional endoscopic sinus surgery (FESS), we
are developing a VR-based FESS simulator. For such a sys-
tem, we have established a communication interface between
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Fig. 2. From top-left to bottom-right: (a) a background image without moving
objects, (b) a test image, (c) an attention map while prediction, and (d)
estimated moving objects (e.g., instruments).

a computer-enhanced PRS which has a custom instrument
interface and a VR headset. Using the Unity game engine, a
simple virtual scene which consists of two surgical instruments
and a virtual block was constructed to evaluate a linear model
of haptic tactile feedback. As a user manipulates two surgical
instruments, the PRS sends instrument movements informa-
tion to Unity every sampling period (e.g., 50ms). Whenever
the game engine receives the information, the virtual scene
is updated, and then the collision information (i.e., surface
contact point and surface normal vector) sends back to the
PRS. Using the collision information, control outputs (e.g.,
u=k∆d where k is a stiffness coefficient, ∆d is the depth of
penetration) for three motors (i.e., each motor responsible for
yaw, insertion, and pitch, respectively) are generated for tactile
feedback. While the user manipulates the instruments, the
tactile feedback is delivered only to the right-hand instrument.

Fig. 3 shows the significant difference between with and
without tactile feedback in terms of the depth of penetration.
There are three simulated scenarios - no feedback at all (k=0),
medium stiffness (k=0.6), and hard stiffness (k=1) where k
represents softness of the virtual block. A user was asked to
intentionally keep hitting the virtual block using the instrument
and stop the movement when the user visually inspects the
collision or fells strong resistance force. The user could
penetrate without any restrictions when k=0. Therefore, the
user could recognize the collision depending only on the visual
feedback. In case of medium and hard stiffness scenarios, the
user could feel reaction force after collision. However, the
median values of the penetration depths (2.68mm for k=0.6
and 2.69mm for k=1.0; red lines in the box plots) indicate that
there is no significant difference between k=0.6 and k=1.0 even
though the maximum values (i.e., outliers) in the box plots
show the difference. However, the tactile feedback prevents
huge penetration in general, and the user could have some
degree of tactile sensation.

Throughout this preliminary development, we showed the
feasibility of tactile feedback and potential benefits in training.

Fig. 3. Effectiveness of tactile feedback regarding penetration depths, where
k=0 represents no feedback, and k=0.6, k=1 simulate medium and hard
materials, respectively.

However, we have faced technical limitations under the cur-
rent system configuration. As mentioned in Section 3, haptic
rendering to generate reaction force requires an update rate of
around 1 kHz for stable and realistic force interactions. Under
the low frequency operation in the PRS, a user may consider
that a hard virtual object feels softer, and the end-user device is
vibrating in the worst case. Based on this observation, we are
improving the PRS hardware and software modules to support
the high frequency operation. A novel non-linear feedback
algorithm is also being investigated to deliver realistic tactile
sensation.

We have conducted a feasibility study to develop a novel
multimodal sensing framework for robotic surgery platforms.
We first prepared a simulated test bed which consists of a
robotic arm to emulate the slave robot, force-sensitive resistors
(FSRs) on the robot gripper, a game joystick to mimic the
surgeon console, and a wearable vibrator to deliver haptic
feedback. To control the wearable haptic displace, we have im-
plemented a fuzzy reasoning [62] based control algorithm. We
utilized FRS values, robot gripper states, the robot end effector
positions, and joystick commands to design the reasoning
algorithm. The control system generates a proper comment
to actuate vibrators, where six unique vibrating patterns were
mainly designed to represent (1) first touch by a gripper, (2-4)
holding and object with light, moderate, or strong pressure,
(5) pressing an object, and (6) hitting the ground by the end
effector. Using this test bed, we are investigating the best
haptic tactile feedback method for robot surgery training by
designing miniaturized sensors as well as a novel wearable
haptic display.

C. Computational models for a learning optimizer

The learning optimizer for motor skills will use a com-
putational model of human motor performance and human
motor learning to make online adjustments to the training
task to maximize the rate of learning. The motor performance
can be characterized as a feedback control system, and we
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are building such a model. A representative task (e.g., in-
strument navigation tasks) has been designed to collect data
for the modeling, and we are conducting a human subject
study followed in compliance with IRB guidelines. Also,
we are preparing the following use case: a novice trainee
uses the computer-enhanced MRS with the learning optimizer
for standard MIS motor skills training. First, the learning
optimizer will provide fundamental tasks for the trainee to
learn a basic skill (e.g., overcoming depth perception issues).
A typical task here is instrument navigation in a 3D space
with obstacles. Based on the trainee’s progress, the learning
optimizer will adjust the difficulty of the task by changing
the desired trajectory to maximize the rate of learning. As
skill develops, the coaching system will dynamically adjust
active guidance features such as visual/force feedback. The
model of perceptual-cognitive skills will be designed with the
corresponding evaluation metrics when we have the MR-based
critical event generator.

V. DISCUSSIONS AND CONCLUSIONS

In our view, this paper lays a foundation for developing
the theory-based concepts and attendant technologies to sup-
port computer-assisted surgical training in non-patient (i.e.,
simulated) environments. The benefits of such training are
clear in that skills acquisition can be done in a repeatable,
safe, and objective manner. It can be tailored to the users
and deployed in low-resource (for example, rural and less
economically developed) settings. We believe that the research
thrusts proposed here, as well as the preliminary results that we
have obtained lend themselves well to more technologically
sophisticated systems than those presently available on the
market.
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