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DNA recognition using Novel Deep Learning Model
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Abstract—DNA, a significant physiological biometric, is present
in all human cells like hair, blood, and skin. This research
introduces a new approach called the Deep DNA Learning
Network (DDLN) for person identification based on their DNA.
This novel Machine Learning model is designed to gather
DNA chromosomes from an individual’s parents. The model’s
flexibility allows it to expand or contract and has the capability to
determine one or both parents of an individual using the provided
chromosomes. Notably, the DDLN model offers quick training
in comparison to traditional deep learning methods. The study
employs two real datasets from Iraq: the Real Iraqi Dataset for
Kurds (RIDK) and the Real Iraqi Dataset for Arabs (RIDA). The
outcomes demonstrate that the proposed DDLN model achieves
an Equal Error Rate (EER) of 0 for both datasets, indicating
highly accurate performance.

Keywords—DNA Recognition; Deep Learning; DNA Identifi-
cation.

I. INTRODUCTION

DNA biometrics, often known as DNA fingerprinting or
DNA profiling, involved utilizing an individual’s unique

DNA characteristics for identification and authentication. The
method relied on the distinct genetic information present in
an individual’s DNA to establish their identity, similar to how
traditional biometric methods like fingerprinting, iris scan-
ning, and face recognition relied on distinguishing physical
attributes. Specific nucleotide sequences, including adenine,
guanine, cytosine, and thymine, were present in a person’s
DNA, collectively constituting their genetic code [1]–[3].

Humans shared most of their DNA sequences; however,
some parts of the genome showed variation across people.
DNA profiles unique to individuals were constructed using
these variable regions known as polymorphisms. The process
of DNA biometrics involved collecting a DNA sample, often
from blood, saliva, or hair, and analyzing specific DNA regions
with significant variation among individuals. Gel electrophore-
sis and Polymerase Chain Reaction (PCR) were typically
employed to analyze these regions. The resulting DNA profile
served as an individual’s distinct identity, often represented
as a set of bands or alleles. DNA biometrics found wide-
ranging applications, including paternity testing, identifying
missing persons, monitoring animal populations, and forensic
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Fig. 1. The DNA structure

science, where it helped identify suspects using biological evi-
dence recovered from crime scenes. Given the highly personal
and sensitive nature of genetic information, it’s essential to
emphasize that the use of DNA biometrics requires careful
management of privacy and ethical concerns [4]–[7].

DNA was composed of two lengthy strands of nucleotides,
forming a double helix structure. A nucleotide comprised a
base, a sugar, and a phosphate component. Nucleotides paired
up to create base pairs during DNA construction: adenine
paired with thymine, and cytosine paired with guanine. Each
base was linked to a sugar and a phosphate molecule. In the
double helix, base pairs functioned as ladder rungs, while
sugar and phosphate molecules formed vertical side rails.
DNA’s visual representations were available in Figure 1 [1]–
[7]. Within cells, 46 elongated structures called chromo-
somes housed DNA instructions. These chromosomes con-
sisted of smaller DNA segments called genes. Chromosomes
had parental origins: one came from the mother and the other
from the father.

The creation of a new deep learning model is the
paper’s major goal and contribution. The Deep DNA Learning
Network (DDLN) is its name. When identifying DNAs of
people based on their chromosomes, this model is used.
After the introduction, the essay is organized as follows:
The suggested DDLN model is presented in Section 3, the
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findings are shown and discussed in Section 4, and the study
is concluded in Section 4. Section 2 summarizes earlier work.

II. PRIOR WORK

Systemic Lupus Erythematosus (SLE), an autoimmune
condition with variable regional frequency, was the subject
of the study in [8]. In North America, there were 23.2 SLE
cases per 100,000 people yearly, which was a comparatively
larger incidence rate than in Africa, where there were just
0.3 cases per 100,000 people annually. By examining genetic
variants that affected Killer T cell activity, the research
aimed to foresee the autoimmune response of killer T cells
in people with SLE. The study did this by identifying
genetic differences using the Boyer-Moore technique and an
approximation matching technique. The authors particularly
focused on DNA sequences from patients of SLE where the
gene nucleotide sequences are connected to T-cell killers in
the reference genome of a human. A threshold of a total
of 10% length of gene nucleotide sequence was permitted
by single nucleotide polymorphisms (SNPs). When 50% of
the vulnerability genes was not identical the patient was
considered as vulnerable.

in [9] the Unique Personal DNA Pattern (UPDP) was
suggested as a new algorithm, where the DNA was used for
personal identification. The main aim of this algorithm was
to focus on identifying useful repeated DNA patterns. Four
databases were employed, namely the DNA Sequences (DS),
Human DNA Sequences (HDS), Sample DNA Sequence
(SDS), and DNA Classification (DC). The results were such
interested, as low errors of False Acceptance Rates (FARs)
were benchmarked as 0.75%, 0.26%, 1.41%, and 2.07% for
the DS, HDS, SDS, and DC, respectively. Furthermore, there
was also the outstanding performance of 0% for each False
Rejection Rate (FRR) of any of the four databases.

In [10], it was emphasized that stream-matching methods
were employed for the DNA sequencing. In this study, the
Rabin-Karp (R-K) and Maximum Common Substream
(MCS) algorithms were explored. Different code methods
and implementations were assessed. The results provided
insightful on the contributed factors that lead to the success
in analyzing the DNA sequence by using the R-K and MCS
algorithms.

In [11], sensors were used, biometric data were collected
and features were extracted. Furthermore, comparisons with
templates were considered for the case of identification.

In [12], the development of high-throughput sequencing
technology made sequencing individual genomes quick
and inexpensive. Compression techniques were required
to minimize the burden on data storage and to enable
data sharing and administration as the number of sequenced
genomes rose. These techniques could be roughly divided into
reference-free and reference-based categories. Redundancies
in the target DNA sequence were looked for in reference-free

approaches to accomplish compression. On the other hand,
reference-based techniques found redundant DNA sequences
between the target sequence and the reference sequences
before compressing them. These techniques worked well with
population sequences that were very similar and had few
mismatches. Some methods could also be used on sequences
with evolutionary links or ones that had some similarities,
such as chromosomes. Forensics and DNA applications were
presented in [13]. An overview based on human recognition
systems was provided in [14].

In the paper [15], the police distributed a picture, but no
one claimed the corpse. Eyewitnesses who had earlier seen
the man—dubbed the Somerton Man by newspapers—on the
beach put his age at approximately 40 and surmised that
he was inebriated since they had seen him lift his arm. The
authorities treated the death as a suicide even though there
was no suicide note because of the location of the death.
Blood in the stomach was found during the autopsy, which is
frequently indicative of poisoning. Chemical testing, however,
was unable to detect any toxicity, probably as a result of the
limits of the tools at hand at the time.

In [16], due to processing difficulties and sensitivity
concerns, DNA profiling and latent ridge impression analysis
(also known as fingerprint analysis) were traditionally treated
as independent procedures in forensic investigations. In order
to solve this, a novel method was developed that enabled
effective DNA profiling and Fingerprint Analysis (FPA) from
the same latent material in forensic applications. Features
were acquired from both fingerprints and their DNAs.
Combination was implemented for inputs to an Improved
Artificial Neural Network (IANN). A very high accuracy
of 98.54% was successfully achieved for recognition by the
network. It suitably predicted whether a user was a client
or an impostor. The used method here outperformed other
currently exploited approaches. This successfully combine
between fingerprint analysis and DNA profiling in terms of
forensic research.

In [17], a scalable approach for processing Single
Nucleotide Polymorphism (SNP) data of High-Throughput
Sequencing (HTS) was described in DNA forensics. The
pipeline was used to deal in parallel with numerous samples.
This was compatible with both high-performance and
standalone computing platforms. Components had been
monitored for identifying files of finished sequencing from
different platforms like Ion Torrent and Illumina. For
automating SNP allele in FASTQ data, GrigoraSNPs software
was utilized.

In [18], the understanding of protein-DNA interactions
depended on identifying DNA-binding proteins (DBPs).
Traditional experimental techniques for identifying DBPs
required a significant amount of time and effort. Nevertheless,
current methods usually fall short. Recently, machine
learning techniques have been examined to sort out such
challenges. Restricted Kernel Machines (RKM) of Multi-View
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Hypergraph (MVH) was introduced in this work as a new
DBP predictor.This method acquired 5 features from 3
protein views. A general hidden vector was utilized for
connecting the views. Hypergraph regularization was applied
in terms of structural consistency. Results on the PDB186
and PDB1075 databases revealed accuracies of 85.48%and
84.09%, respectively. This surpassed other state-of-the- art
techniques. The approach MV-H-RKM was combined with
publicly provided code. It also demonstrated promising DBP
ability in recognition.

In [19], a new model called the DNA Fine-tuned
Language Model (DFLM) was presented. This model
exploited human genomics and ChIP-seq Databases. It refined
DBP characteristics and acquire sequence dependencies by
effectively influencing the human genome information by
utilizing different ChIP-seq data. Comparative assessments
were evaluated for 69 databases, they showed that the DFLM
attained superior performance over other methods. Noticeably,
improvement of the DFLM was continued for smaller datasets
and more difficult DBPs. Visualization analysis yielded that
acquired sequence dependencies of the DFLM were more
influential than classical one-hot encoding.

In [20], the discovered that gene demonstration regulation
needed DNA motifs recognition. DNA motifs were certain
sequence patterns that connected to proteins. The performance
of such motifs immediately their lengths were hinged. They
are still considered as a challenging aspect for accurately
assessing. ”MotifLen” was introduced in this work as a new
machine learning method, it was designed to obtain motif
length and it is a supervised method. This method utilized the
convolutional neural network and produced data for assessing
aspects. By enhancing the temporal performance of motifs
and optimizing them, the proposed approach was modified
upon providing motif exploration techniques. Results revealed
that MotifLen obtained a percentage accuracy outstanding
of 90% for validation. It overcame other compared methods
by using real databases. It also effectively improved motif
exploration methods. Overall, MotifLen could be considered
as a promising issue for accurate motif length assessing for
analyzing DNA sequence.

In [21], one of essential steps in DNA ploidy including
Image-Based Cytometry (ICM) was the nuclei segmentation.
It was crucial for precise estimation of DNA content. Existing
supervised methods necessitated laborious pixel-wise labeling.
This study introduced an innovative approach: a framework for
weakly supervised nuclei segmentation using sparsely anno-
tated bounding boxes instead of segmentation labels. The ap-
proach combined fully supervised instance segmentation with
self-training and traditional image segmentation. Coarse masks
for nucleus-bounding boxes were generated through standard
segmentation, followed by mask refinement and pseudo-label
generation for unlabeled nuclei using a teacher model. Both
teacher and student models shared the same architecture, with
the student model initialized from the teacher model. The

Fig. 2. The framework of the novel DDLN approach

collaboration of pseudo labels, refined masks, and manual
bounding boxes facilitated the training of the student model.

III. PROPOSED METHOD

This research introduces a novel deep learning
architecture named the Deep DNA Learning Network
(DDLN). Comprising five layers, namely the input layer
(chromosome layer), the first hidden layer (distance layer),
the second hidden layer (Impulse Response (IR) layer),
the third layer (concatenation layer), and the output layer
(decision layer), this network is designed. The initial two
hidden layers serve as a feature extraction component, while
the final two layers’ function as a classifier.

The structure of this innovative DDLN model is
depicted in Figure 2. The input layer accommodates two
input vectors, (X1 andX2). The first vector, X1, corresponds
to input values from the mother’s chromosome, whereas
the second vector, X2, comprises input values from the
father’s chromosome. The first hidden layer calculates the
Euclidean distance between the inputs and assigns weights to
each chromosome, as represented by the subsequent equations:

yi1,j1 =
∥∥X1 −Wi1,j1

∥∥ , i1 = 1, 2, ..., n1, j1 = 1, 2, ...,m1

(1)
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Fig. 3. An illustration of the IR function used in the second
hidden layer

yi2,j2 =
∥∥X2 −Wi2,j2

∥∥ , i2 = 1, 2, ..., n2, j2 = 1, 2, ...,m2

(2)
In the given context, let’s consider the following definitions:

yi1,j1 denotes a node value situated within the first hidden
layer corresponding to the mother’s chromosome. Wi1,j1

represents the weight vector linked to the first hidden layer
for the mother’s chromosome. Here, n1 represents the total
count of chromosome values pertaining to the mother, while
m1 signifies the quantity of chromosome training vectors
associated with the mother. Similarly, yi2,j2 stands for a
node value within the first hidden layer related to the father’s
chromosome, and Wi2,j2 denotes the weight vector affiliated
with the first hidden layer for the father’s chromosome.
In addition, n2 denotes the total number of chromosome
values for the father, and m2 corresponds to the number of
chromosome training vectors for the father.

Within the second hidden layer, an Impulse Response
(IR) is computed, labeled as δj1 or δj2, which is based on
the calculated Euclidean distance. Specifically, δj1 signifies
the IR associated with the mother’s chromosome, while δj2
represents the IR corresponding to the father’s chromosome.
An illustration exemplifying the application of the IR function
within the second hidden layer can be observed in Figure 3.

In reality, the result of the Euclidean distance produces
a value that falls within the range of either 0 or 1. These
particular values remain within an acceptable threshold, a
tolerance that aligns with the parameters set by the employed
real Iraqi datasets. The equations governing the computation
of the Impulse Response (IR) function can be determined as
follows:

δj1 =


1 if yi1,j1 = 0 or 1

0 otherwise

 (3)

δj2 =


1 if yi2,j2 = 0 or 1

0 otherwise

 (4)

Therefore, the third layer effectively combines the values
of δj1 and δj2. To reiterate, δj1 pertains to the chromosome
of the mother, while δj2 corresponds to the chromosome of
the father. The equation governing the third layer’s operation
can be represented as follows:

Zk =

11 if δj1 = 1 and δj2 = 1
10 if δj1 = 1 and δj2 = 0
01 if δj1 = 0 and δj2 = 1

 , k = 1, 2, ..., q (5)

In this context, consider the following definitions: Zk

signifies a node value situated within the third hidden
layer, which accounts for both chromosomes. The variable
q represents the count of chromosome values, applicable
to either the mother (n1) or the father (n2), with the
condition that (n1) equals (n2). As a result, the output
layer generates the decision results, wherein each decision
outcome corresponds to the essential identification value.
This value can be calculated utilizing the subsequent equation:

Rk =

 2 if Zk = 11
1 if Zk = 10
−1 if Zk = 01

 , k = 1, 2, ..., q (6)

where: Rk denotes the identification value attributed to the
output layer.

It’s noteworthy to highlight that the training weights are
initially set based on the input training vectors themselves.
This very concept of weight initialization is similarly discussed
in [22]. This aspect offers notable advantages to the proposed
Deep DNA Learning Network (DDLN) model, including the
following:

• It exhibits a high level of flexibility, allowing for the
addition or removal of hidden and output nodes.

• The training process doesn’t necessitate iterative steps,
contributing to a rapid training phase.

• It doesn’t fall prey to the challenges of local error that
other deep learning models, utilizing backpropagation
training algorithms, often face.

• It possesses the capability to discern either one or both
parents of an individual.

IV. RESULTS AND DISCUSSIONS

A. Datasets Descriptions

This study utilizes two authentic datasets from Iraq:
the initial one is labeled as the Real Iraqi Dataset for Kurd
(RIDK), and the subsequent one is denoted as the Real Iraqi
Dataset for Arab (RIDA). Each individual is characterized by a
chromosome containing 30 values, with 15 inherited from the
mother and 15 from the father. The RIDK dataset encompasses
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chromosome values for 52 individuals, while the RIDA dataset
comprises chromosome values for 200 individuals.

Considering the practical considerations of Iraqi forensic
medicine, a tolerance of ±1 for each chromosome value is
deemed acceptable. This tolerance is incorporated into the
creation of training data. Thus, the augmentation of applying
±1 to each chromosome value is employed for both datasets.
Consequently, the RIDK dataset generates 1,560 training data
points, while the RIDA dataset generates 6,000. Conspicu-
ously, , the actual values of both datasets are retained for the
testing phase, involving 52 test data for RIDK and 200 for
RIDA.

B. DDLN Performances

The evaluation of the DDLN involves assessing its
Equal Error Rate (EER) and processing times using the two
utilized datasets. Specifically, the EERs and processing times
are measured for the complete utilization of the employed
RIDK and RIDA datasets. The performance of the DDLN
on both datasets in terms of EERs and processing times is
presented in Table I. In addition, Figure 4 shows the training

TABLE I. DDLN performances of accuracies and times for
the employed datasets

Employed Datasets RIDK dataset RIDA dataset

Training time 1.24 Sec. 6.19 Sec.
Testing time 0.10 Sec. 1.08 Sec.

EER 0 0

and testing samples for both RIDK and RIDA datasets.

Fig. 4. Number of training and testing samples for RIDK and
RIDA datasets

Figures 5 and 6 demonstrate the Receiver Operating
Characteristic (ROC) and Detection Error Tradeoff (DET)
appearances for our approach. ROC represents the relationship
between the False Acceptance Rate (FAR) and True Positive
Rate (TPR) which equals to (1 - False Rejection Rate (FRR)).
DET represents the relationship between the FAR and FRR
[23]–[25]. These figures show the optimal views of ROC and
DET. Such appearances are expected for our approach as it
obtains the highest accuracy of 100% and lowest Equal Error
Rate of 0%.

The outcomes demonstrate the effectiveness of the
proposed system with exceptional accuracy rates of 100%
achieved for both employed datasets. Furthermore, this study

Fig. 5. Demonstration of ROC appearance for our approach

Fig. 6. Demonstration of DET appearance for our approach

considers the time taken for training and testing, and the
newly introduced DDLN model exhibits remarkably short
durations for these processes. The DDLN’s rapid training
speed is particularly noteworthy, making it a noteworthy
achievement for this approach. In order to validate the
reliability of the DDLN, a comparison is made with other
deep neural networks.

The DDLN consistently outperforms these models across
various aspects, as detailed in Table II. Notably, it excels
previous deep learning models of the Stacked Autoencoder
[26], Deep Autoencoder Network [27], and Autoencoder
Deep Learning [28] in terms of flexibility, training time,
Mean Square Error (MSE), and the ability to identify parents.
The DDLN’s flexibility stands out as it can be adjusted in
size without necessitating re-training, unlike other networks
that require specific parameters such as hidden layer counts
and neurons.

The training times for the DDLN are the shortest among
the compared deep learning models for both datasets, pre-
senting a substantial advantage. Although the testing time for
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TABLE II. Comparisons between the proposed DDLN and previous deep neural networks (using the same training and testing
samples as Table 1)

Deep Learning Model Parameters Error and time
for the RIDK dataset

Error and time
for the RIDA dataset Identify Parents

SA [26]

NoHL= 3
NoHN in 1st HL = 25
NoHN in 2nd HL = 20
NoHN in 3rd HL = 15

MSE = 0.08
TRT = 6.59 Sec.
TET = 0.04 Sec.

MSE = 0.02
TRT = 20.33 Sec.
TET = 0.01 Sec.

No

DAN [27]

NoHL= 3
NoHN in 1st HL = 64
NoHN in 2nd HL = 64
NoHN in 3rd HL = 64

MSE = 0.08
TRT = 10.99 Sec.
TET = 0.01 Sec.

MSE = 0.02
TRT = 35.67 Sec.
TET = 0.02 Sec.

No

ADL [28]

NoHL= 4
NoHN in 1st HL = 30
NoHN in 2nd HL = 30
NoHN in 3rd HL = 30
NoHN in 4th HL = 30

MSE = 0.08
TRT = 8.62 Sec.
TET = 0.01 Sec.

MSE = 0.02
TRT = 25.40 Sec.
TET = 0.02 Sec.

No

Proposed DDLN

NoHL= 3
NoHN in 1st HL = 2× NoTV
NoHN in 2nd HL = 2× NoTV

NoHN in 3rd HL = no. of TV vectors

MSE = 0
TRT = 1.24 Sec.
TET = 0.10 Sec.

MSE = 0
TRT = 6.19 Sec.
TET = 1.08 Sec.

Yes

Where:
• Stacked Autoencoder (SA)
• Deep Autoencoder Network (DAN)
• Autoencoder Deep Learning (ADL)
• NoHL is the number of Hidden Layers.
• NoHN is the number of Hidden Nodes.
• HL is the Hidden Layer.
• TRT is the Training Time.
• TET is the Testing Time.
• NoTV is the number of Training Vectors

the proposed DDLN is slightly longer than some other mod-
els, it remains acceptable, particularly for the RIDK dataset.
The DDLN’s superior performance is further emphasized by
achieving the lowest Mean Square Error (MSE) of 0 for both
datasets, a feat unmatched by other models. Additionally, the
DDLN uniquely possesses the ability to identify the parent or
parents of the identified individuals, a feature not present in
the other compared deep learning models.

V. CONCLUSIONS

A new DDLN model is introduced in this research
to identify individuals based on their DNA. This innovative
method can ascertain either a single parent or both parents
of an individual by utilizing the given chromosomes. The
DDLN’s adaptability allows for scaling up or down as
needed. Unlike other deep learning models, the DDLN’s
training phase doesn’t require iterations and is devoid of
local errors. Furthermore, its training process is notably
swift. Real datasets from Iraq, referred to as RIDK and
RIDA, are employed for evaluation. In both datasets, the
proposed method achieves a remarkable EER of 0 and
demonstrates superior performance with perfect accuracy of
100%, surpassing other deep learning models.
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