Enhanced Optimization Model for Operational Decision and Efficient Learning Multiproduct Retail

Authors

  • Solly Aryza Universitas Sumatera Utara
  • Syahril Efendi Universitas Sumatera Utara, Faculty of Computer Science and Information Technology
  • Poltak Sihombing Universitas Sumatera Utara, Faculty of Computer Science and Information Technology
  • Sawaluddin Sawaluddin Universitas Sumatera Utara, Faculty of Mathematics and Natural Sciences

Abstract

The success of businesses depends on factors such as cost management, improving product and service quality, and satisfying customer demands. This study has been conducted to optimize the distribution of multiple products and levels of product flow under uncertain conditions. This involves developing a mathematical model that minimizes supply chain costs while maximizing customer satisfaction across different scenarios. This has enabled businesses to introduce omnichannel approaches that cover all social strata, tastes, and habits, allowing organizations to take greater control over pricing and product selection and receive precise feedback from the market and customers. 

Author Biographies

Solly Aryza, Universitas Sumatera Utara

Student Doctoral Program in Computer Science

Syahril Efendi, Universitas Sumatera Utara, Faculty of Computer Science and Information Technology

Professor Of Faculty Computer Science Universitas Sumatera Utara

Poltak Sihombing, Universitas Sumatera Utara, Faculty of Computer Science and Information Technology

Professor Of Faculty Computer Science Universitas Sumatera Utara

Sawaluddin Sawaluddin, Universitas Sumatera Utara, Faculty of Mathematics and Natural Sciences

Professor Of Faculty Mathematics And Natural Science

References

Al-Fawzan, M.A., & Al-Sultan, K.S. (2018). Optimization of production planning using genetic algorithm. International Journal of Advanced Computer Science and Applications, 9(6), 45-52.

Almeida, C. L., & Morabito, R. (2019). Production planning optimization for multi-product batch plants with uncertain processing times. Chemical Engineering Transactions, 72, 205-210.

A N Burnetas, C E Smith Adaptive ordering and pricing for perishable products Operations Research, volume 48, issue 3, p. 436 – 443 Posted: 2000.

A. Aouad, V. Farias, and R. Levi. Assortment optimization under consider-then-choose choice models. Available at SSRN: http://ssr.com/abstract=2618823, 2015

A. Aouad, V. Farias, R. Levi, and D. Segev. The approximability of assortment optimization under ranking preferences. Available at SSRN: http://ssrn.com/abstract=2612947, 2015b.

B Chen, X Chao Dynamic inventory control with stockout substitution and demand learning. Accepted at Management Science Posted: 2019.

Bar Ifrach, Costis Maglaras, and Marco Scarsini. Bayesian social learning with consumer reviews. ACM SIGMETRICS Performance Evaluation Review, 41(4):28-28, apr 2014. ISSN 01635999. doi: 10.1145/2627534.2627542. URL http: //dl. acm. org/citation. cfm?doid=2627534.2627542.

Bar Ifrach, Costis Maglaras, Marco Scarsini, and Anna Zseleva. Bayesian Social Learning from Consumer Reviews. 2018.

Chris Anderson. The Long Tail: Why the Future of Business Is Selling Less of More. Hyperion, New York, 2008. doi: 10.5465/AMP.2007.25356519. URL http: //amp. aom. org/cgi/doi/10.5465/AMP.2007.25356519.

Chen, J., & Yang, X. (2020). Multi-objective optimization for production planning with a case study in a steel mill. Journal of Industrial and Production Engineering, 37(1), 47-61.

Daron Acemoglu, Ali Makhdoumi, Azarakhsli Malekian, and Asuman Ozdaglar. Fast and Slow

Learning From Reviews. Technical report, National Bureau of Economic Research,

Cambridge, MA, nov 2017. URL http://www.nber.org/papers/w24046.pdf.

D. Bertsimas and N. Kallus. From predictive to prescriptive analytics. arXiv preprint

arXiv:1402.5481, 2014.

D. Bertsimas and V. V. Misi6. Data-driven assortment optimization. Submitted, 2015.

Dimitris Bertsimas and Angela King. An algorithmic approach to linear regression. Operations

Research, 64(1):2-16, 2015.o89jbtt gb p

Felipe Maldonado, Pascal Van Hentenryck, Gerardo Berbeglia, and Franco Berbeglia. Popularity

signals in trial-offer markets with social influence and position bias. European Journal of Operational Research, 266(2):775-793, apr 2018. ISSN 0377-2217. doi: 10.1016/J.EJOR.2017.10.056. URL https://www.sciencedirect.com/science/ article/pii/S377221717309852.

Gilvan C. Souza, Barry L. Bayus, and Harvey M. Wagner. New-Product Strategy and Industry Clockspeed. Management Science, 50(4):537-549, apr 2004. ISSN 0025-1909. doi: 10.1287/mnse.1030.0172. URL http://pubsonline.informs.org/doi/abs/10.1287/ mnsc.1030.0172.

G. Vulcano, G. van Ryzin, and R. Ratliff. Estimating primary demand for substitutable products from sales transaction data. Operations Research, 60(2):313-334, 2008.

G. Vulcano, G. van Ryzin, and W. Chaar. Choice-based revenue management: An empirical study of estimation and optimization. Manufacturing and Service Operations Management, 12(3):371 - 392, 2010.

Hidayat, R., & Mustofa, K. (2019). Optimasi multi produk dengan metode simulated annealing pada produksi gula kristal. Jurnal Inovasi Teknik Mesin, 1(2), 96-100.

Kris Ferreira, David Simchi-Levi, and He Wang. Online network revenue management using thompson sampling. Operations Research (forthcoming), 2018.

Lee, H. L., & Rosenblatt, M. J. (1986). Simultaneous determination of production run length and safety stocks in a stochastic multi-product production system. Management Science, 32(8), 960-966.

Li, X., & Yin, Y. (2017). Production planning and scheduling optimization in process industry. Journal of Industrial and Production Engineering, 34(3), 179-188.

Ming Hu, Joseph Milner, and Jiahua Wu. Liking and Following and the Newsvendor: Operations and Marketing Policies Under Social Influence. Management Science, 62(3):867-879, 2016. ISSN

Ma, J., & Tang, W. (2018). Multi-objective optimization of production planning for a multi- product production system. Journal of Intelligent Manufacturing, 29(2), 467-479.

Niu, Y., Guo, L., Wu, Y., & Xu, X. (2019). Optimization of production planning for a multi- product batch plant using hybrid genetic algorithm. Computers & Chemical Engineering, 121, 80-89.

Rangel-Miranda, O., & Gutiérrez-Tapia, C. (2020). Production planning optimization in a multi- product batch plant through genetic algorithms. Computers & Chemical Engineering, 138, 106856.

Seyedhosseini, S. M., Safaei, N., & Seyedhoseini, S. M. (2019). An integrated model for multi- objective production planning in multi-product batch plants. Journal of Cleaner Production, 231, 1231-1246.

Santos, J. F. D., Campos, L. M. S., & Almada-Lobo, B. (2021). Multi-product production planning optimization model for the food processing industry considering raw material and energy consumption. Computers & Industrial Engineering, 158, 107374.

Tavakkoli-Moghaddam, R., Fazel Zarandi, M. H., & Ghodsi, R. (2019). A hybrid multi-objective multi-product production planning optimization model with environmental considerations. Journal of Cleaner Production, 208, 1304-1315.

Yudoko, G., & Santosa, B. (2017). Optimasi produksi gula rafinasi dengan menggunakan algoritma genetika. Jurnal Teknik ITS, 6(1), A332-A337.

Wang, Z., Zhang, J., & Zhang, H. (2019). Multi-objective production planning optimization for manufacturing systems with multiple product lines. Journal of Intelligent Manufacturing, 30(5), 1865-1879.

Additional Files

Published

2024-07-18

Issue

Section

Applied Informatics