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Abstract—The use of video streaming is constantly increasing. 

High-resolution video requires resources on both the sender and 

the receiver side. Many compression techniques can be utilized to 

compress the video and simultaneously maintain quality. The main 

goal of this paper is to provide an overview of video streaming and 

QoE. This paper describes the basic concepts and discusses existing 

methodologies to measure QoE. Subjective, objective, and video 

compression technologies are discussed. This review paper gathers 

the codec implementation developed by MPEG, Google, and 

Apple. This paper outlines the challenges and future research 

directions that should be considered in the measurement and 

assessment of the quality of experience for video services. 
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I. INTRODUCTION 

HE Online video services have grown exponentially since 

their inception. It has been predicted that, by 2022, 82% of 
all global internet traffic per year will be video content. 
According to the forecasts, this figure will continue to increase 
in the following years [1], and also mentioned in Statista 
Research [2]. Network speed and processing power is 
increasing, but on the other hand, video parameters – bit rate, 

frame rate, and resolution require more resources in the video 
compression system. Some methods can be used to compress 
videos and compactly optimize them. When videos are com-
pressed, they can be stored or transmitted to viewers in an 
efficient manner [3]. The two organizations MPEG and ITU 
developed video coding standards [4]. That pioneer standard 

was H.261 and there have been extensions such as AVC/H,264, 
HEVC/H.265, and VVC/H.266. The objective of these 
standards was to double the compression ratio and retain the 
video quality of the video. Using these standards, it also 
increases the computation complexity and resource 
consumption [5]. 

The video sequence is encoded at different bit rates. These 
data rates are the constant bit rate (CBR) and variable bit rate 
(VBR) [6]. The use of one of these rate control modes depends 
on the streaming of the video. The application of these data rates 
has an impact on file size, encoding time, and video quality. 
Compression efficiency is highly dependent on bit rate for a 

given resolution and frame rate [7]. 
The aim of video compression is to minimise the bit rate and 

storage complexity and simultaneously retain video quality. 
There is continuous growth and high demand for video 
streaming services such as video on demand (VOD) and live 
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streaming services. These services are provided by companies 
such as YouTube, Netflix, and Amazon Video. These service 
providers must meet the expectations of end users. It is essential 
to know the requirements of real users and measure the 
satisfaction and overall quality of experience (QoE) [8]. 

It is essential to determine the QoE of the end users. There is 

a demand for QoE models to measure QoE. These models can 
be based on subjective, objective, or hybrid evaluation [9]. 
These models utilize network and application level factors and 
predict the QoE of end users. The video resolution is FHD, 
UHD,4K, and 8K. The challenge of streaming these types of 
content requires high bandwidth and network resources to 

transmit this high-resolution content. There are a variety of 
codecs developed by MPEG and other vendors. These codecs 
should be investigated and applied to specific scenarios for 
video streaming. Every codec has its own limitations and 
possible applications in a particular context [10]. 

This paper focuses on a general overview of video streaming 

QoE. This paper provides state-of-the-art video coding and 
compression technologies. This also covers the methodologies 
utilized to measure video QoE. This paper analyzes the 
compression techniques and its suitability for video streaming 
applications, especially for FHD and 4K applications. In this 
study, we answer the following research questions:  

1) What are the methodologies used to measure QoE of video 
streaming? 

2) What compression techniques are utilized for video 
optimization? 

The rest of the article is organised as follows. Section 2 
describes the basic concepts of QoE of video streaming. It also 

lists the factors that have a potential impact on video QoE. This 
section describes the assessment methodologies used to measure 
video QoE. Section 3 provides an overview of video 
compression and its association with QoE. This section provides 
details about compression technologies. Section 4 demonstrates 

the existing video compression technologies in practice related 
to video streaming. This Section also includes the video codecs 
developed by various vendors. Section 5, summarizes the 
review, identifies challenges, and proposes future research work 
in this domain. 

II. BACKGROUND 

In this section, we will discuss the background information 

on QoE and the factors influencing QoE of video services. QoE 

and its important factors are shown in (Figure 1). We will also 

discuss the methods used to evaluate QoE. 
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A. QoE Influence Factors 

There are factors that could have an impact on QoE. These 

factors are classified as Human IFs, System IFs, Context IFs and 

Content IFs respectively [11]. 

1) Human IFs: These factors are related to human aspects and 

the usage of technology. This group covers the 

demographic and socioeconomic background of the end 

users. This also describes the emotional and physiological 

states of users. 

2) System IFs: This group of factors describes the technical 

aspects of using a service or application. These factors 

contain network related e.g., wired, wireless, jitter, 

bandwidth, and packet loss. These factors also have 

information related to the de-vice, for example, the display, 

resolution, and codec supported. 

3) Context IFs: The context factors are related to the user’s 

environment and physical location. This group also 

contains information on temporal, social, economic, task, 

and technical characteristics. 

4) Content IFs: These factors contain information related to 

the content of the service provider. The content IFs are 

associated with the video format, encoding, resolution, 

duration, motion patterns, type, and content of the video 

displayed. 

 

Fig. 1. Quality of Experience [12] 

B. Assessment Methodologies in QoE 

There are approaches available to measure QoE [13]. The two 

main categories of approaches are classified as subjective and 

objective [14]. The subjective approach is considered the user 

feedback to estimate the video quality as perceived by users. 

The objective assessment approach, on the other hand, uses 

mathematical models and statistics methods that provide quality 

scores that closely resemble the perceived video quality. The 

detail of assessment methodologies is shown in (Figure 2). 

1) Subjective evaluation 

In the subjective evaluation method, the experiments were 

carried out in a lab environment. The TV and mobile phone 

mediums are used to run videos [15,16]. The Mean opinion 

score (MOS) is a metric used to evaluate videos. The quality 

scale ranges from 1 to 5. [17]. There are three categories in 

which videos are displayed to observers. These are single 

stimulus (SS) [18], double stimulus (DS) [19], and comparison 

stimulus [18]. 

Single stimulus: In a single stimulus, the distorted videos are 

displayed one by one and rated by each tester. Sometimes, the 

reference videos are shown without informing the testers. There 

are three main methods in this category called absolute category 

rating (ACR), absolute category rating with hidden reference 

(ACR-HR), and single stimulus continuous quality evaluation. 

Double stimulus: In this method, reference videos and distorted 

video are shown to the tester. To evaluate the distorted video, 

the tester is asked to consider the difference in quality compared 

to the reference video. The double stimulus class methods are 

DSIS, DSCQS, and SDSCE. 

Comparison stimulus: In comparison, the stimulus method 

distorted videos are displayed to the tester. There are two ways 

in which quality assessment can be carried out. The first is pair 

comparison (PC) [20] where the tester must indicate which 

video and recording quality is better. The second is called 

stimulus com-parison adjectival categorical judgment (SCAC) 

[20]. In this method, the tester indicates the quality of the second 

video compared to the first video. 

There are issues in conducting a subjective evaluation. 

Subjective assessments are time consuming and expensive. 

Subjective evaluation cannot be used to monitor real-time 

applications. Using a subjective evaluation approach, only a 

small number of influence factors can be evaluated due to the 

limited test duration and test subjects. 

C. Objective evaluation 

The objective models use mathematical and statistical models 

to estimate QoE based on QoS metrics. There are established 

objective quality assessment approaches that are the Peak-to-

Noise Ratio (PSNR), Structural similarity metric (SSIM) [21], 

Mul-ti-Scale Structural Similarity [22], SSIMplus [23], Video 

Quality Model (VQM) [21], and Natural Image Quality 

Evaluator (NIQE) [24]. These models proven to perform better 

compared to PSNR. Most researchers use PSNR, the 

logarithmic ratio between the maximum value of a signal and 

the background noise, due to its simplicity to assess video 

quality. The use of PSNR is useful, especially in real-time 

systems. There is a heuristic mapping of PSNR to MOS exists, 

although research work [25] demonstrated that the correlation 

between PSNR and subjective quality could be decreased if the 

codec type of content changes, unless otherwise specified, 

PSNR is a qualified indicator of video quality. 

Video streams in HD, full HD, and 4k are becoming popular. 

The issue is how to store and transmit the high-bandwidth data. 

Video compression technology enables one to reduce bandwidth 

demand at the cost of reduced video quality. Video compression 

technologies have the potential to reduce data volume [26]. 

However, reducing can cause distortion in compressed videos 

and impact quality. The purpose of video compression is to 

efficiently reduce visual data by avoiding loss of visual quality 

due to compression [27]. 

Most conventional VQA (Video quality assessment) methods, 

for example, SSIM [28], PVM [29], VMAF [30] and some other 

methods are discussed in the articles by [21] and [31-32] the  

video quality from the perspective of human perception of 

signal fidelity. 

To achieve a video compression rate with minimum loss of 

visual data, some algorithms and video coding standards, such 

as MPEG-1, MPEG-2, MPEG-4, H.263, and H.264/AVC are 

developed [27] and [33]. 

Videos are stored and compressed in different coding 

standards. Hence, the com-pression ratios are different from 

each other and the impact on video quality is also different. 
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Videos posted online contained distortion and noise compared 

to the original videos. 

These methodologies are tested in a few typical test videos 

without showing their generalization power. As the solutions are 

not generic, they have shown that incorporating content in the 

VQM computation considerably improves the correlation be-

tween subjective and objective quality assessment as well as 

maintaining a low computational complexity [40], [36], [41] 

and [39]. 

There are other issues related to objective video quality 

models, one of which is the limited evaluation of the state-of-art 

VQMs. Methods are tested on existing databases with few video 

sequences, which shows little difference in the scene content 

[42]. Researcher [21] choose twenty sequences from the 

database {VQEG} [43]. Researchers [44] and [45] extracted 

twenty sequences from same database [43]. 

In another research work [31] researcher chose content from 

one database [46] to evaluate methodologies. In addition to this, 

the researcher [47] selected content from two different video 

quality databases [48] and [49]. In research [50] work 30 

contents selected from two different databases [46] and [51]. 

The contents of those databases are used to compare the 

performance of the considered VQMs. This quite limited the test 

samples to draw conclusions. 

 

Fig. 2. QoE Assessment Methodology 

III. VIDEO COMPRESSION AND QOE 

Video streaming requires high bandwidth to stream video. 

There is a need for compression technologies to compress video. 

The compression techniques need to compress videos at higher 

spatial and temporal resolution, dynamic resolution, and quality. 

There is a continuous growth in developing compression 

technologies, from the first international video coding standard 

H.120 [52], to the latest standards such as MPEG-H.262 [53] 

and H.264/AVC [54]. There is a recent addition to compression 

technology called Versatile Video Coding (VVC) [55]. The 

VVC compresses video by reducing bit rates by 30 - 40 percent 

compared to the High Efficiency Video Coding (HEVC) 

standard [56]. The Alliance for Open Media (AOMedia) 

developed open source codec to compete with MPEG standards. 

Research work shows that the AOMedia Video 1 (AV1) codec 

[57] outperforms its predecessor VP9 [58]. 

The H.264/MPEG-4-AVC [54] is still the most prolific video 

coding standard, de-spite the fact that H.265/HEVC [56] 

standard offers better coding performance. A next-generation 

video coding standard is emerged, Versatile Video Coding 

(VVC), which targets the coding gain over H.265/HEVC. The 

VVC standard supports immersive formats (360° video) and 

higher resolutions, for example, 16K video. 

The Alliance for Open Media (AOMedia) develops open-

source video codecs. The VP9 standard [58] was developed by 

Google to be comparable to MPEG and formed the basis for the 

AV1 standard [57]. The AV1 standard is expected to be the 

competitor for MPEG standards in the context of video 

streaming applications. 

The performance of video coding algorithms is assessed by 

comparing their rate-distortion (RD) or rate-quality (RQ) 

performance on a variety of test sequences. Objective quality 

metrics or subjective evaluations are utilised to assess the 

quality of compressed video. The difference in RD and RQ 

performance between codecs can be calculated using objective 

quality measurements [59] or SCENIC (subjective assessment) 

[60]. To compare video codecs and optimize rate vs. quality 

performance, approach, convex hull rate distortion 

optimization, is developed by Netflix [61] for adaptive 

streaming applications. 

The research work is focusses on comparisons between 

MPEG codecs (H.264/AVC and HEVC) and open-source 

codecs (VP9 and AV1) [62][63][64]. The work also provides 

details about the application of adaptive streaming services 

[65][66][61]. 

IV. VIDEO COMPRESSION TECHNIQUES 

In video, transmission, and streaming consist of a large 

volume of data that need large bandwidth and storage space. The 

video must be compressed to minimize its storage and 

transmission capacity. Among several important standards, 

MPEG-4 is the most used technique for video compression. 

1) Motion Picture Experts Group - MPEG-4 

The MPEG-4 standards belong to the ISO/IEC/ITU-T family 

of codecs. The MPEG-4 was initially aimed at low-bit video 

communication. The MPEG-4 standard is efficient on a variety 

of bits, ranging from kilobits per second to megabits per second. 

The MPEG-4 provides improved coding efficiency compared to 

previous versions like MPEG-2. MPEG-4 can encode mixed 

media data, for example, video, audio, and speech [67]. 

2) Advanced Video Coding - MPEG-4 / AVC 

Advanced video coding (AVC) is also referred to as H.264 or 

MPEG-4 part 10. MPEG-4/AVC is based on block-oriented, 

motion-compensated integer-DCT coding. This standard 

supports a resolution up to 8K UHD. This standard was created 

as an alternative to other codecs offering better image quality 

with higher compression such as MPEG-1 and MPEG-2. 

MPEG-4/AVC uses advanced encoding techniques and is 

divided into several pro-files, allowing one to obtain different 

qualities of the encoded streams in relation to their properties 

and compression time. 

Among the compression profiles, the basic profile (BP) was 

created, which used in teleconferences and mobile devices, 

where the stream must be encoded quickly with limited 

computing power. The second profile is the main profile (MP) 

used in standard definition (SD) digital broadcasting. The third 
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is high-level profile (HiP) which is used to compress the high 

definition (HD) streams. The MPEG-4/AVC allows us to 

compress video streams from 64 kb/s to 960 Mb/s at resolutions 

from 128 × 96 to 4096 × 2304 [54]. 

3) High-Efficiency Video Coding - HEVC / H.265 

The HEVC standard targets to optimize video resolution 

performance by incorporating a parallel computing pipeline 

architecture. This standard aims to increase the aspect of the 

video resolution with distinct features. Compared to AVC 

standard, HEVC provides better compression at the same level 

of video quality. The HEVC supports resolution up to 8192 × 

4320 which includes 8K UHD. 

AVC uses the integer discrete cosine transform (DCT) with 4 

× 4 and 8 × 8 block sizes. High Efficiency Image Format (HEIF) 

is also based on the HEVC standard. The HEVC standard is the 

second most used video coding format after AVC [56]. 

4) Essential Video Coding - MPEG-5 / EVC 

The MPEG-5/EVC standards provide better visual quality for 

video calls and alleviate the expensive royalty for video codecs. 

This standard defines two profiles. The first one is the baseline 

profile, which is royalty free as it only consists of technologies 

that are more than 20 years old, and the second is the main 

profile which contains enhanced tools to improve the 

compression efficiency. Both the baseline and main profiles 

save bit rates 40 % compared to H.264/AVC and HEVC 

standards [68]. 

5) Low Complexity Enhancement Video Codec - MPEG-5/ 

LCEVC 

This standard is known as the MPEG-5 (Part-2) standard. 

This codec is designed to be used with existing video codecs, 

leveraging specific tools for encoding residuals. This means the 

difference between the original video and its compressed 

representation. The LCEVC standard has the ability to improve 

compression efficiency and reduce computational complexity 

using a small number of specialized enhancement tools [69]. 

V. VIDEO QUALITY ASSESSMENT METRICS 

There are video quality assessment metrics that can predict 

user perception when using video services. These metrics are 

Peak Signal to Noise Ratio (PSNR) [80], Structural Similarity 

index (SSIM) [81], and Video Multimethod Assessment Fusion 

(VMAF) [82]. 

1) Peak Signal-to-Noise Ratio (PSNR) 

This is the most common metric used to calculate image and 

video quality. The PSNR metric is used to compare the codec 

compression efficiency. To determine the PSNR, first, for a 

video sequence, the Mean Squared Error (MSE) between each 

pair 𝑖 of corresponding reference and processed video frames is: 

𝑀𝑆𝐸(𝑖) =
1

𝑊𝐻
 ∑ ∑[𝑌𝑟(𝑥, 𝑦, 𝑖) − 𝑌𝑝(𝑥, 𝑦, 𝑖)]

𝐻−1

𝑦=0

𝑊−1

𝑥=0

                  (1) 

In equation (1), the values 𝑊 and 𝐻 represent the width 

and height respectively, in pixels. 𝑌𝑟 and 𝑌𝑝 are the 

luminance values of the reference and processed video 

frames. Once the 𝑀𝑆𝐸 is calculated, the 𝑃𝑆𝑁𝑅 can be 

computed in decibels for each pair 𝑖 as follows: 

𝑃𝑆𝑁𝑅(𝑖) = 10 log10

𝐼2

𝑀𝑆𝐸(𝑖)
                                                      (2) 

where 𝐼, represent the value of maximum luminance. 

Now, to find the overall 𝑃𝑆𝑁𝑅 score for the video, 

following equation can be used: 

𝑃𝑆𝑁𝑅 =
1

𝑁
∑ 𝑃𝑆𝑁𝑅(𝑖)

𝑁

𝑖=1

                                                              (3) 

In equation (3), 𝑁 represents the total number of frames in 

the video. The 𝑃𝑆𝑁𝑅 is easier to implement, but, on the 

other hand, 𝑃𝑆𝑁𝑅 does not always correlate with the end 

user quality. The two videos perceived qualities may yield 

a similar score and thus it will not be accurate on the end 

user persuasion. The 𝑃𝑆𝑁𝑅 is not aimed at long-term 

quality predictions. The PSNR metric is designed for 

quality estimation of video sequences, which is the result 

of video compression or packet loss. 

2) Structural similarity index (SSIM) 

The SSIM is a full reference image quality evaluation 

metric. The SSIM measure image similarity from three 

different aspects: for example, structure, contrast, and 

brightness. The range of values for SSIM is [0,1]. If SSIM 

yields a large value, it means the distortion is smaller. 

Suppose signal x is the reference frame and signal y is the 

degraded version, a method is used to compare three 

components luminance, contrast, and structure. Equation 

(4) shows the relation between all components. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼 . [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾                       (4)   

In equation (4), the α, β and  represents three 

parameters. These parameters are used to adjust the 

importance of each component. The SSIM results would 

be better if we measure content-dependent distortion. 

This metric can capture and assess the impact of noise. 

The SSIM metric is also used to capture blur artefacts. The 

SSIM is not suited for assessing the quality of super-

resolution algorithms. It also does not provide a good 

result in the case of detecting and capturing spatial and 

rotational shifts. It will also fail in capturing changes in 

brightness, contrast, hue, and saturation. 

3) VMAF 
VMAF is an objective full-reference video quality metric. 

This metric compares the reference and distorted video 

sequences to predict subjective quality. This metric combines 

human vision modelling with machine learning. The VMAF  
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TABLE I  

CODEC IMPLEMENTATION STUDIES 

 

metric is useful for evaluating video quality when comparing 

video codecs, encoding settings, and transmission standards. 

 
Fig. 3. VMAF Algorithm 

The VMAF model combines several video quality features, 

for example, visual in-formation validity (VIF) [83], detail loss 

metric (DLM) [84] and also temporal (TI) related information. 

The VMAF can train support vector machine (SVM) regression 

on subjective data. The regression results yield per-frame 

quality score for videos. Figure (3) shows multiple components 

regarding quality features and integration of other analysis tools 

into the VMAF model. The VMAF mimics user perception 

instead of purely objective metrics such as PSNR. The VMAF  

 

 

metric has the capability to capture large differences between 

codecs and scaling artefacts in a manner that is better correlated 

with perceptual quality. 

VI. DYNAMIC HTTP ADAPTIVE STREAMING (DASH) 

In HAS (HTTP Adaptive Streaming) applications video files 

are encoded at multiple bitrates, resolutions, audio sample rates 

and representations. The representations will then be divided 

into segments and stored on an HTTP server. The client sends a 

request to select segments. This depends on the network 

conditions which could lead to quality switching and stalling. 

DASH is one of the most popular streaming technologies for 

delivering video over the internet. DASH is used by OTT 

providers like Netflix and YouTube. 

A. DASH Data Sets 

In this section DASH datasets will be described. The initial 

dataset [85] contains five video sequences and the segments are 

based on PSNR objective model. The dataset includes six 

different segment durations, MPD files and simple profiles. The 

dataset includes 10 video sequences. The video sequences 

encoded using four codecs with different segment durations. 

This dataset is based on service provider recommendations. One 

issue with this dataset is that recommendations provided by 

service providers do not consider different client devices. 

A dataset [86] developed considering multiple base URLs for 

all segments. In this dataset video segments provided with MPD 

files consist of the main and live profile. Another dataset [87] 

which includes 12 video sequences. The video sequences are 

Reference Codecs Subjective/objective 

Methodology 

Metrics Resolutions Focus of the study 

[1] VVC, SVT, AV1, 

x265, VP9 

Subjective, objective PSNR, 

VMAF 

Up to 

1600p 

A comparative study report on bitrate savings 

[2] HEVC and VVC  Subjective MOS FHD VVC performs better than HEVC in terms of compression 

[3] VVC, HEVC, VP9, 

AV1 

Objective, subjective PSNR, 

VMAF 

Up to 

1080p 

VVC provides the best coding efficiency. 

For higher resolutions AV1 outperformed HEVC 

[4] H.265/HEVC, VP9, 

AV1 

Subjective, objective MOS, 

PSNR 

Up to 

1080p 

AV1 delivered better values as compared to H.265/HEVC, 

VP9. AV1 codec take longer to encode 

[5] H.264, H.265, AV1 Subjective objective  PSNR, 

SSIM, 

VMAF 

1080P AV1 has shown to result in the best quality for most 

bitrates and contents considered. 

[6] H.264/AVC, 

H.265/HEVC 

VP9, AVS2, AV1 

Subjective 

objective  

SSIM plus 4K AVC shows good quality performance. Limited subjective 

study 

[7] HEVC Subjective VMAF 640 × 416 The VMAF measurements were fitted to the subjective 

DMOS of expert and non-expert observers using 

exponential, linear, and logistic curve fitting models 

[8] HEVC, AV1 Subjective objective PSNR, 

VMAF 
UHD subjective results confirm that the two codecs do not differ 

significantly in most cases 

[9] H.264/AVC, 

H.265/HEVC, VP9 

Subjective objective MOS, 

PSNR 

1080p H.265/HEVC, VP9 delivers better values as compared to 

H.264/AVC 

[10] H.264/AVC, 

H.265/HEVC, VP9, 

AV1 

objective PSNR, 

VMAF 

Upto1080p Overall HEVC, VP9 and AV1 perform better than 

H.264/AVC. Among this, AV1 is having best compression 

performance 
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encoded using temporal scalability of 6, 12 and 24 fps. The 

MPD files with the Main profile are provided. 

A dataset [88] created for modelling continuous time-varying 

subjective quality. The video resolution is 720p and of 300 

seconds duration. This dataset is based on the quality switching 

which is performed only using the quality adaptation dimension. 

This dataset is useful for modeling the continuous time quality 

varying prediction models. 

A dataset [11] consists of 14 source videos and 112 distorted 

version sequences. The distorted video is compressed version. 

The dataset only consists of full high definition (FHD) video. 

The limitation of this dataset is only three source videos, and the 

distorted version of these videos are provided. 

The LFOVIA dataset [90] has 18 raw source videos and 36 

distorted versions. This dataset consists of 4K resolutions. 

Rebuffering and quality switching is taken into consideration 

measuring video quality. 

There is a dataset [91] which includes 24 source videos and 

174 distorted versions. The video resolution is 720p and it only 

considers stalling. This dataset has limitations and is not suitable 

for designing QoE models. A dataset [92] created consisted of 

15 source video and 420 distorted version. The dataset considers 

four adaptation algorithms. The dataset is useful for measuring 

client-side adaptation and end user QoE. 

B. DASH Models 

In this section we include the discussion of DASH models. A 

recent literature focuses on the different types of DASH models.  

There are several works focusing on the video quality in 

MPEG-DASH domain. The research work [93] focuses 

improving on the video quality of experience (QoE) and 

considering parameters for the adaptation algorithm. In this 

work nine objective VQA methods are compared. The objective 

methods are applied on video sequences containing spatial and 

temporal activities. The result from the study reveals that more 

VQA methods require to be utilized in streaming services. 

The work [94] carried out which focus on stall events on 

video quality in HAS application. The media quality and the 

impact of stall events correlated. The impact of stall and quality 

switches on the perceived QoE studied. A model from the study 

is inherited and tested. The study [95] carried out in the video 

quality and DASH domain. In this study a model is proposed 

estimating the cumulative video quality for HTTP adaptive 

streaming. The evaluation results reveal essential components 

of the cumulative quality model. The results show that the 

proposed model achieves high prediction performance.            

The subjective tests [96] were carried out to measure the video 

and audio quality. The live music over mobile networks with 

MPEG-DASH is considered. The results reveal that reducing 

audio quality has an impact on quality of experience (QoE). 

This research also provides an objective model for audio and 

video quality estimation. The research study [97] on video 

encoding and optimization reveals that adaptive video encoding 

approach is suited for SVT-AV1 and x25 codecs. The study also 

reports bitrate savings when tested with VVC, SVT-AV1, x265, 

and VP9 codecs. A study [98] reports on the influence of 

segmentation parameters on video quality. The goal of the study 

was to improve the segmentation process. The results 

demonstrate enhancement in SSIM values.  

The video codecs AV1 and HEVC were compared in adaptive 

streaming environment [99]. The objective evaluation is carried 

out with PSNR and VMAF metrics. The study results show 

there is no significant difference in the perceived quality 

between AV1 and HEVC.    

The database named Waterloo Streaming QoE Database III 

(SQoE III) is established [100]. The database consists of video 

sequences created from a variety of sources. The subjective and 

objective evaluation is carried out. The result of this study 

provides foundation for developing adaptive video streaming 

algorithms and video QoE. 

In recent research carried out by [101] on segment size 

selection in video streaming. The tradeoff between video length 

and segment size is studied. In this study the playback quality is 

evaluated. The study results reveal segment size can minimize 

the buffer outage and thus impact the video quality.  

The research [102] demonstrates the HTTP push-based 

approach for video quality of experience. The study is carried 

out with HEVC codec. The results reveal high video quality and 

lowering freeze time. This approach reduces delay as compared 

to other approaches like HTTP/1.1.   

VII. OPEN CHALLENGES 

In this paper, we presented a brief review of video quality of 

experience (QoE) assessment methods and techniques. The 

subjective and objective assessment methods are reviewed 

thoroughly.  Video compression technology is used to compress 

the high-definition videos and its essential for video 

transmission. Different compression techniques and coding 

strategies reviewed and discussed. A variety of codecs presented 

in the study mainly developed by MPEG and Google.  

There are many factors which potentially impact the video 

quality. The encoding parameters, quality switching and stalling 

are some important factors covered in literature. The research 

[103] consider stalling patterns and quality level switching. In 

this work the author measure the impact of stall events on the 

video quality. The researcher [104] correlated content quality 

and the impact of stalling on the video quality of experience 

(QoE).  

In this paper, QoE assessment methodology and compression 

technologies are also reviewed. It is observed that most of the 

existing work has limitations. There are many studies that 

considers low resolution video streaming. Limited studies 

available considering Full HD and UHD (4K) content. The 

codec implementation is also limited in terms of video 

streaming [5-6][8]. Only a few studies considered video codec 

technology in video streaming. Most studies implement MPEG 

H.264 and H.265 codecs [33][55]. There are other codecs which 

need to be considered. There are limited investigations on the 

parameters that have the potential to affect video quality. For 

example, the quantization parameters should be considered. 

Subjective studies are required to determine any other important 

factors that can impact the video quality of experience [105-

106].  

Potential factors which possibly affect video QoE should be 

investigated and thus optimisation models should be formed. 

The Quantization parameters (QP) are important factors. 
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Existing studies have limited approaches to consider 

Quantisation parameters and investigate it thoroughly [107].  

MPEG-5 has two parts, Part-1 is Essential Video Coding 

(EVC) and Part-2 is LCEVC. The EVC codec is desirable to 

address the business needs of an organization, particularly video 

streaming. There is a high demand for capabilities in terms of 

compression ratio, as new formats such as UHD, 4K, and 8K are 

introduced. The enhanced technologies High Dynamic Range 

Video (HDR) and High Frame Rate (HFR) and service scenarios 

like Virtual Reality also come into existence. The MPEG-5, Part 

2, Low Complexity Enhancement Video Coding (LCEVC) is 

designed in a way for improving compression and minimizing 

overall computational complexity. As the LCEVC uses base and 

enhancement layers, it saves bits. The LCEVC is useful for 

sports broadcasting as it reduces the amount of data without 

compromising quality of the videos. The LCEVC is also 

effective in e-learning. As LCEVC reduces bandwidth 

consumption while using the internet at home [108-110].  

The challenge faced by the researchers in adaptive streaming 

QoE is the evaluation methods. There is limitation choosing 

between subjective and objective evaluation methods. There are 

limited databases available which are particularly focusing on 

adaptive streaming. For example, the database [85] which is 

focusing contains five video sequences and the segments are 

based on only PSNR objective model. The database [89] created 

which consists of full high definition (FHD) video sequences. 

The issues with these databases are limited availability of 

original and distorted version video sequences. There is a need 

to evaluate video quality over adaptive streaming applications. 

Very few studies are available to exploit the objective quality 

models. The research [98] work evaluate quality using SSIM 

model. The work [99] demonstrate video quality using PSNR 

and VMAF models. 
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