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Abstract—Glacial landforms, created by the continuous 

movements of glaciers over millennia, are crucial topics in 

geomorphological research. Their systematic analysis affords 

invaluable insights into past climatic oscillations and augments 

understanding of long-term climate change dynamics. The 

classification of these types of terrain traditionally depends on 

labor-intensive manual or semi-automated methods. However, the 

emergence of automated techniques driven by deep learning and 

neural networks holds promise for enhancing efficiency of terrain 

classification workflows. This study evaluated the effectiveness of 

Convolutional Neural Network (CNN) architectures, particularly 

Residual Neural Network (ResNet) and VGG in comparison with 

Vision Transformer (ViT) architecture in the glacial landform 

classification task. By using preprocessed input data from Digital 

Elevation Model (DEM) which covers regions such as the Lubawa 

Upland and Gardno-Leba Plain in Poland, as well as the Elise 

Glacier in Svalbard, Norway, comprehensive assessments of those 

methods were conducted. The final results highlight the unique 

ability of deep learning methods to accurately classify glacial 

landforms. Classification process presented in this study can be the 

efficient, repeatable and fast solution for automatic terrain 

classification. 
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I. INTRODUCTION 

LACIAL landforms, sculpted by the dynamic forces of 

glaciers thousands of years ago, offer valuable insights 

into past and present geological processes. In the field of 

geomorphology, the study of Earth's landforms and the 

processes that shape them lies a critical task: the classification 

of these terrain types. Until now, classification has traditionally 

relied on manual or semi-automatic methods, often prone to 

time-consuming processes and interpretation errors. However, 

recent advancements in remote sensing technologies, 

particularly the availability of high-resolution digital elevation 

models (DEMs), offer new opportunities for automating and 

refining the classification process.  

 The availability of DEM data presents an opportunity to take 

advantage of the latest advances in deep neural networks. Deep 

neural networks are currently solving tasks in a variety of fields, 

particularly in Computer Vision, from image classification to 
 

 
Paweł Nadachowski is with Gdansk University of Technology, Gdansk, 

Poland (e-mail: s170633@student.pg.edu.pl). 
Zbigniew Łubniewski is with Gdansk University of Technology, Gdansk, 

Poland (e-mail: lubniew@eti.pg.edu.pl). 

image generation. By using appropriate preprocessing 

techniques, DEM data can be effectively treated as image data, 

enabling the use of current deep neural network architectures to 

classify glacial landforms. This study delves into the exploration 

of several deep learning architectures. These range from classic 

Convolutional Neural Network (CNN) architectures, such as 

ResNet and VGG, to newer architectures incorporating the 

recently popular attention mechanism, such as the Vision 

Transformer. 

II. RELATED WORKS 

Methodologies for determining geomorphological structures 

have undergone significant evolution over time. From the 

laborious and subjective manual delineation processes [1], [2] 

of Earth's surface features to methods based on bathymetry [3], 

[4], satellite [5] or radar imagery [6], [7]. Recently there has 

been a transition towards more efficient and automated machine 

learning methodologies [8]. These modern approaches afford 

the advantages of objectivity, consistency, and repeatability in 

interpretation [9]. However, automated techniques such as 

object-based image analysis (OBIA) are also gradually gaining 

attention [10]. 

This study is a continuation of previous research efforts, in 

particular the study described in [10], in which glacial 

landforms were classified using a combination of 

geomorphometric and spectral features. That earlier work was 

conducted jointly by the same research team and used classical 

machine learning models such as Random Forest [11] and 

Support Vector Machine (SVM) [12].  

The purpose of this research is to present deep neural network 

architectures as another novel approach to characterizing terrain 

types and, in particular, to classifying glacial landforms. 

III. STUDY SITES 

The study sites consist of three different locations with one in 

Svalbard, Norway and two in northern Poland. They are 

represented in datasets as digital elevation model (DEM) 

format, each annotated with labeled types of glacial landforms 

and different DEM resolutions. The datasets used in this study 

follow the datasets described in [10], providing detailed 

information on the data acquisition methodology. 

The area surrounding the Elise Glacier in the Kaffiøyra region 

of Svalbard, Norway, is the first of these study locations. The 

foreland of the Elise Glacier (shown in Fig. 1) indicates the 

Karolina Trzcińska is with University of Gdansk, Gdansk, Poland (e-mail: 

karolina.trzcinska@ug.edu.pl). 
Jarosław Tęgowski is with University of Gdansk, Gdansk, Poland (e-mail: 

jaroslaw.tegowski@ug.edu.pl). 

Comparison of Deep Learning approaches  

in classification of glacial landforms 
Paweł Nadachowski, Zbigniew Łubniewski, Karolina Trzcińska, and Jarosław Tęgowski 

G 

https://creativecommons.org/licenses/by/4.0/


824 P. NADACHOWSKI, ET AL. 

 

 

retreat of the Elise Glacier from its maximum extent during the 

Little Ice Age, a period that lasted until the early 1920s [13]. 

Consequently, meaning that these are fresh glacial areas with 

clearly preserved glacial and fluvioglacial relief features. The 

DEM data for the Elise Glacier were obtained from ArcticDEM 

and are derived from images taken by the DigitalGlobe 

constellation consisting of the WorldView-1, WorldView-2 and 

WorldView-3 satellites [14]. The data were downloaded as 32-

bit GeoTIFF files with a spatial resolution of 2 meters, derived 

from mosaic elevation data. Terrain types covering the Elise 

Glacier region include end moraines, hummocky moraines, 

outwash and till plains.  

 

 

Fig. 1. Location and terrain types of the first study site – foreland of the 

Elise Glacier (Kaffiøyra region, Svalbard, Norway). 

Two additional study sites situated near the Baltic coast in 

northern Poland are the Gardno-Leba Plain (shown in Fig. 2) 

and the Lubawa Upland (shown in Fig. 3). These regions were 

affected by Pleistocene glaciation during the last Glacial 

Maximum - the Scandinavian ice sheet. Elevation data for these 

locations were sourced from the database maintained by the 

Head Office of Geodesy and Cartography in Poland (GUGiK) 

and were acquired through LiDAR scanning conducted between 

2011 and 2014 [15]. The spatial resolution of the DEM for these 

regions is 5 meters for the Gardno-Leba Plain and 1 meter for 

the Lubawa Upland. The Gardno-Leba Plain region comprises 

various terrain formations, including end moraines, hummocky 

moraines, outwash/glaciolacustrine plains, till plains, and 

valleys. On the other hand, the Lubawa Upland region includes 

hummocky moraines, kettle holes, till plains, and valleys. 

 

Fig. 2. Location and terrain types of the second study site – Gardno-Leba 

Plain (northern Poland). 

 

Fig. 3. Location and terrain types of the third study site – Lubawa Upland 

(northern Poland). 

The ground truth labels for terrain types in each study site 

were constructed by visually inspecting DEMs, existing 

geologic and geomorphologic maps, orthophotos and terrain 

identification. 

IV. DEEP LEARNING ARCHITECTURES 

Artificial Neural Networks, particularly Deep Neural 

Networks (DNNs), have become fundamental in modern 

artificial intelligence research due to their ability to learn 

complex patterns and make accurate predictions in a variety of 

domains [16], [17]. With millions of learnable parameters and 

multiple layers, DNNs excel at analyzing vast and complex data 

sets, although they require careful consideration to avoid issues 

such as over-fitting [18]. Given the grid-like nature of input data 

in glacial landform classification, networks such as 

Convolutional Neural Networks (CNNs), in particular the VGG 

and ResNet architectures are particularly well-suited for this 

task. Additionally, the study explores the Vision Transformer 

(ViT), a recent advancement in neural network architectures that 

has shown promise in handling grid-like data structures. By 

comparing these different approaches, the research aims to 

identify the most effective techniques for accurate and efficient 

glacial landform classification. 

A. Convolutional Neural Network (CNN) 

Convolutional Neural Networks are predominant in computer 

vision for their adeptness in extracting meaningful features from 

data [19]. They comprise convolutional layers, pooling layers, 

and fully connected layers, enabling hierarchical feature 

learning from input matrices like images or like in this example 

DEM data. An example of CNN architecture is shown in Fig. 4. 

By leveraging the convolutional layers, CNNs can detect 

distinctive features across layers, capturing simple edges in 

initial layers and textures or shapes in subsequent ones. Pooling 

layers further down-sample feature maps while preserving 

valuable information, aiding in feature extraction and 

controlling overfitting. Fully connected layers aggregate spatial 

information from previous layers, facilitating high-level feature 

representation and classification, making CNNs a promising 

tool for classifying glacial landforms using DEM data. In this 

study two types of CNN architectures were used during the 

experimentations: VGG and Residual Neural Network 

(ResNet). 
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Fig. 4. Visualization of sample CNN architecture 

B. VGG 

The VGG network, introduced by the Visual Geometry 

Group at the University of Oxford in 2014, stands as a 

prominent CNN architecture [20]. It gained acclaim for its 

simplicity and uniformity, comprising multiple convolutional 

layers followed by max pooling layers for down-sampling, and 

ending with fully connected layers for classification. Utilizing 3 

x 3 convolution filters throughout, VGG achieves depth by 

stacking multiple convolution layers, leading to improved 

performance in image classification tasks. In practice two VGG 

types of architectures are used with 16 and 19 layers 

(convolutional and fully connected) each. These are shown in 

Fig. 5. 

 

 

Fig. 5. Visualization of the VGG-16 and VGG-19 architectures 

C. Residual Neural Network (ResNet) 

Residual Neural Networks (ResNets) [21] were developed to 

address the issue of vanishing gradients encountered by very 

deep neural networks [22]. They introduce residual connections, 

allowing for more direct information flow through the network. 

By focusing on learning the difference between input and 

desired output, ResNets enable the network to prioritize learning 

subtle changes rather than starting from scratch at each layer. 

ResNets come in various depths, denoted by numbers like 

ResNet-50, ResNet-101 or ResNet-152 (which are shown in 

Fig. 6), with deeper architectures typically achieving better 

performance but requiring more computational resources and 

data for training. These networks have shown effectiveness in 

preserving essential information and mitigating vanishing 

gradient problems, making them valuable tools for various deep 

learning tasks. 

 

 

Fig. 6. Visualization of the ResNet-50, ResNet-101 and ResNet-152 

architectures 

D. Vision Transformer (ViT) 

Vision Transformer (ViT) [23] differs from traditional 

Convolutional Neural Network architectures by adopting self-

attention mechanism originally designed for natural language 

processing [24]. Attention mechanism in ViT allows this 

architecture to selectively focus on relevant parts of input data, 

enhancing its ability to learn and process information 

effectively. ViT can capture both local and global features 

within images. Operating directly on fixed-size image patches 

ViT eliminates the need for handcrafted features and 

demonstrates remarkable performance across diverse computer 

vision tasks. The simplified architecture visualization is 

presented in Fig. 7. 

Several modifications have been made to improve the 

original Vision Transformer architecture. This study used a 

modification proposed in [25], incorporating Shifted Patch 
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Tokenization (SPT) and Locality Self-Attention (LSA) 

mechanisms into the ViT architecture. These improvements 

enable the model to achieve high performance when learning 

even on a smaller dataset. 

 

 

Fig. 7. Visualization of the ViT architecture. Adapted from [23]. 

V. METHODS 

The digital elevation model (DEM) data utilized in this study 

consists of X, Y, Z coordinate values. To ensure optimal 

processing by the neural networks model, it is a need to format 

the data into a suitable matrix structure. Specifically, the input 

for the models should be in format of N x M matrix, where N 

represents the number of samples and M denotes the 

dimensionality of each sample. Furthermore, each sample must 

be associated with a corresponding label which indicates the 

terrain type it represents. Since the CNN and Vision 

Transformer architectures are made for images, it was decided 

to split the DEM areas into squares. Then, for each square the 

elevation points were connected to their terrain type labels for 

further analysis. 

A. Data preprocessing, splitting and augmentation 

A random sampling of N points (N=600) per class from the 

DEM data was conducted for each study site using the "Random 

selection with subsets" method in QGIS. Subsequently, square 

polygons were generated at the center of the previously selected 

points, with dimensions chosen to encompass a 64x64 point area 

from the DEM. This criterion aimed to ensure adequate 

coverage of geomorphological features across different 

resolutions, while maintaining efficiency in model training. The 

"Buffer" method in QGIS was utilized during point selection to 

prevent squares from overlapping class boundaries, ensuring 

that each square contained points exclusively from a single 

glacial landform class. The resulting linked data was exported 

as a CSV file and processed in Python using the NumPy and 

Pandas libraries, yielding data arrays with dimensions Nx64x64, 

where N represents the sample count. A representative single 

sample is illustrated in Fig. 8. 

Following data preprocessing, the data was partitioned into 

three subsets: training, validation, and test. The training set, 

comprising 80% of the data, was utilized for model training. 

Meanwhile, the validation set, constituting 10% of the data, was 

employed to optimize hyperparameters and assess model 

generalization. To mitigate overfitting, the Early Stopping 

method was implemented, halting training if validation loss 

failed to improve over a specified number of epochs. Finally, 

the test set, comprising the remaining 10% of the dataset, was 

utilized for the conclusive evaluation of model performance. 

 

 

Fig. 8. Visualization of the sampled areas (left) and a zoomed-in view of a 

single 64x64 sample (right). 

To increase the size of the training set for better training of 

deep learning models, it was decided to use data augmentation 

methods. Horizontal mirroring, vertical mirroring, and 

simultaneous horizontal and vertical mirroring were applied to 

each of the extracted samples, quadrupling the size of the 

training dataset. 

Three different random datasets were generated for each 

study site. Each went through the same data preparation process. 

This was aimed to assess the models' ability to learn general 

patterns in the data and check if they could achieve consistent 

results regardless of the sampled points from the DEM. 

B. Model implementation, hyperparameters optimization and 

training 

Each of the models used during this study was implemented 

in Python using the PyTorch [26] machine learning framework. 

The CNN architectures such as VGG-16, VGG-19, ResNet-50, 

ResNet-101, ResNet-152 were taken from an official package 

for PyTorch called Torchvision. In order to prepare them for 

processing data from DEM, they were modified to take 1 

channel from each sample instead of 3 as implemented in the 

original code. In the case of the Vision Transformer model that 

was used in the experiments, the implementation from the vit-

pytorch library [27] was used. This library is based on the 

PyTorch and has many different modifications to the original 

ViT architecture implemented. 

Before training a machine learning model, setting appropriate 

hyperparameters is crucial as they do not directly learn but 

significantly impact training quality. Key hyperparameters in 

this study included batch size, learning rate, number of epochs, 

and patience for the Early Stopping method [28]. The batch size, 

determining the number of samples processed per iteration, was 

set to 256, ensuring efficient memory usage during training. The 

learning rate, critical for parameter adjustment, was set to 

0.00001 for CNNs, except for the VGG architectures for the 

Lubawa Upland site where the models performed better with a 

value of 0.0001 and 0.001 for ViTs, balancing convergence 

speed and model performance. Additionally, the number of 

epochs was set to 500, although models rarely reached this limit 

due to the Early Stopping mechanism with a patience of 50 

epochs, preventing overfitting by halting training when 

classification performance on validation set stopped improving. 

The Vision Transformer architecture offers a slightly 

expanded set of hyperparameters compared to CNNs. These 

include patch_size, dim, depth, heads, mlp_dim, dropout, and 

emb_dropout rate, allowing for fine-tuning of model 

characteristics. Leveraging the Optuna [29] hyperparameter 

optimization platform, 200 tuning runs were executed per each 
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site to identify optimal hyperparameter values, aiming to strike 

a balance between comprehensive exploration of the search 

space and computational efficiency. The best-performing 

hyperparameter values for each location, determined by the 

highest overall validation accuracy, are summarized in Table I. 

 
TABLE I  

VIT HYPERPARAMETER VALUES FOR EACH STUDY SITE 

 Elise Gardno-Leba Lubawa 

patch_size 16 8 8 

dim 64 32 128 

depth 6 11 9 

heads 23 11 10 

mlp_dim 256 512 32 

dropout 0.5 0.2 0.1 

emb_dropout 0.3 0.3 0.3 

learning_rate 0.001 0.001 0.001 

 

Following hyperparameter tuning, models were retrained on 

each study site. During training, model performance was 

assessed on a validation set after each epoch to monitor 

overfitting tendencies. Early Stopping was implemented to halt 

training upon overfitting detection to prevent further 

deterioration of model performance and then save the model 

checkpoint with the highest overall accuracy. Experiment 

tracking was facilitated using the MLflow [30] library to keep 

detailed records of each experiment, including configurations, 

hyperparameters and metrics. The training process was 

conducted on a machine with a GeForce RTX 3070 Ti graphics 

card, ensuring smooth and efficient experiment execution. 

VI. RESULTS 

After completion of training models, each of them was loaded 

from the checkpoint and assessed on the test sets. Detailed 

accuracy assessments for each instance of the models (#1-#3) in 

each study site are presented in the following tables: Table II for 

the Elise Glacier site, Table III for the Gardno-Leba Plain site, 

and Table IV for the Lubawa Upland site. 

 
TABLE II 

TEST ACCURACY ASSESSMENT FOR THE ELISE GLACIER STUDY SITE 

Model #1 #2 #3 Average 

VGG-16 96,3% 91.3% 93.3% 93.6% 

VGG-19 97.9% 88.8% 92.5% 93.1% 

ResNet-50 97.1% 96.7% 95.4% 96.4% 

ResNet-101 96.3% 90.4% 93.8% 93.5% 

ResNet-152 95.4% 93.3% 90.0% 92.9% 

ViT 97.5% 92.1% 94.6% 94.7% 

 
TABLE III  

TEST ACCURACY ASSESSMENT FOR THE GARDNO-LEBA PLAIN STUDY SITE 

Model #1 #2 #3 Average 

VGG-16 86.0% 84.3% 82.0% 84.1% 

VGG-19 83.7% 84.7% 83.3% 83.9% 

ResNet-50 80.0% 79.7% 74.7% 78.1% 

ResNet-101 73.7% 83.7% 77.0% 78.1% 

ResNet-152 80.3% 80.7% 74.7% 78.6% 

ViT 79.3% 70.7% 69.0% 73.0% 
 

TABLE  IV 

TEST ACCURACY ASSESSMENT FOR THE LUBAWA UPLAND STUDY SITE 

Model #1 #2 #3 Average 

VGG-16 54.2% 55.8% 54.6% 54.9% 

VGG-19 54.2% 52.9% 53.3% 53.5% 

ResNet-50 77.9% 81.7% 75.8% 78.5% 

ResNet-101 78.8% 76.3% 74.6% 76.6% 

ResNet-152 77.5% 75.8% 74.2% 75.8% 

ViT 61.7% 70.8% 69.6% 67.4% 

 

From the above tables assessing the accuracy of the models, 

it can be seen that the best results were obtained for the Elise 

Glacier site. Each of the models achieved more than 90% 

accuracy for this data. The highest value was achieved by the 

VGG-19 model in instance #1 with an accuracy of 97.9%. The 

classification map of the test points along with the confusion 

matrix is shown in Fig. 9 and Fig. 12. From the confusion 

matrix, it can be seen that only the till plains and end moraines 

terrain types have misclassification in a small number of 

samples. However, averaging all the results from all the 

experiments, it was the ResNet-50 model that proved to be the 

best, achieving an average accuracy of 96.4%. The ViT model 

was second best, with an average accuracy of 94.7%. The 

ResNet-152 model was the worst, achieving an average 

accuracy of 92.9%. The differences between all the models are 

small at a few percent, indicating that the models did quite well 

in classifying the foreland of the Elise Glacier site. 

The results of the experiments on the Gardno-Leba Plain 

show that the models performed worse than on the Elise Glacier. 

The range of results extends from 69% to 86% accuracy. The 

best model was the VGG-16 model achieving a score of 86% 

accuracy at the #1 instance and the best average score from 3 

experiments equal to 84.1% average accuracy. The visualization 

of classification map and the confusion matrix on the test set are 

shown in Figure 10 and Figure 13. From the confusion matrix it 

can be seen that outwash and till plains have most 

misclassifications. The second-best model was VGG-19, 

achieving an average accuracy of 84.1%. The worst performing 

model was ViT, achieving an average accuracy of 73%. It can 

be noted that in the case of Gardno-Leba Plain site, the usual 

CNN family models performed much better than ViT 

architecture. 

The models performed worst in the Lubawa Upland site. 

Here, models such as VGG-16 and VGG-19 were unable to 

learn relationships between elevation points, achieving a 

maximum accuracy of 54.2% and very low average accuracy 

scores. Models from the ResNet architecture fared much better, 

where ResNet-50 achieved the best result of 81.7% accuracy 

and 78.5% average accuracy from 3 experiments. The 

visualization of the classification map for the best instance of 

model #2 along with the confusion matrix can be observed in 

Fig. 11 and Fig. 14. The ViT model performed slightly worse 

than ResNets, achieving results of 67.4% average accuracy. 

Summarizing the results obtained from the experiments, it 

can be seen that CNN models performed significantly better 

than models with ViT architecture. This may be due to the fact 

that ViT models require more data for correct classification than 

CNN models. On the other hand, in terms of the difference 

between VGG and ResNet models, VGG models perform better 

on easier maps where the boundaries between different terrain 
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types are easy to separate, such as the Elise Glacier or the 

Gardno-Leba Plain. On more difficult maps with more complex 

land type shapes, such as the Lubawa Upland, they cannot find 

the relationship between data and terrain labels. This makes 

networks with ResNet architecture a better choice for the 

certainty of a high accuracy score during classification for any 

type of location. 

 

 

Fig. 9. Visualization of the classification with the VGG-19 best model 

instance (#1) at the Elise Glacier site. 

 

Fig. 10. Visualization of the classification with the VGG-16 best model 

instance (#1) at the Gardno-Leba Plain site. 

 

Fig. 11. Visualization of the classification with the ResNet-50 best model 

instance (#2) at the Lubawa Upland site. 

 
Fig. 12. Confusion matrix for the VGG-19 best model instance (#1) at the 

Elise Glacier site. 

 
Fig. 13. Confusion matrix for the VGG-16 best model instance (#1) at the 

Gardno-Leba Plain site. 

 
Fig. 14. Confusion matrix for the ResNet-50 best model instance (#2) at the 

Lubawa Upland site. 

VII. CONCLUSIONS 

The study showed that deep neural networks, such as CNN 

and ViT, can achieve decent results in classifying glacial 

landforms using only elevation values. The performance of the 

models of these architectures was demonstrated on three 

different study sites representing different glacial terrain forms 

and classification difficulty levels. The experiments also made 

it possible to compare different network architectures. In this 

way, it was shown that the classic CNN models perform much 
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better than the newer ViT models with a fairly small amount of 

data. Future research should certainly check the behavior of 

these models on larger datasets and test the classification 

method described in this study on other types of terrain, not just 

glacial landforms. 
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